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Appendix A:. Equivalence of the surrogacy of S and W = µT (S)

We aim to show that the surrogacy of S, as defined byRS, is equivalent to the surrogacy ofW = µT (S) = E(Y (T )|S(T ) =
S), as defined by RW , where

RW = 1− ∆W

∆
and ∆W =

∫
E(Y (T )|W (T ) = w)dFW (C)(w)− E(Y (C)).

That is, we must show that ∆S = ∆W when W = µT (S), i.e. W is obtained using the true model. Note that

∆S =

∫
E(Y (T )|S(T ) = s)dFC(s)− E(Y (C))

=

∫
µT (s)dFC(s)− E(Y (C))

=

∫
E{Y (T )|µT (S(T )) = µT (s)}dFC(s)− E(Y (C))

=

∫
E{Y (T )|W (T ) = µT (s)}dFC(s)− E(Y (C))

= E
[
E{Y (T )|W (T ) = µT (S(C))} | S(C)

]
− E(Y (C))

= E
[
E{Y (T )|W (T ) = W (C))} |W (C)

]
− E(Y (C))

=

∫
E(Y (T )|W (T ) = w)dFW (C)(w)− E(Y (C)) = ∆W ,

where W (T ) = µT (S(T )), W (C) = µT (S(C)), FW (C)(·) is the cumulative distribution function of W (C), and we have used
the fact that

E{Y (T )|µT (S(T )) = w} =

∫
E{Y (T )|S(T ) = s}dFw(s)ds =

∫
µT (s)dFw(s) = w,

where fw(s) is the cumulative distribution of S(T ) conditional on µT (S(T )) = w.

Appendix B:. Asymptotic Properties of ∆̂S and R̂S

We assume the following regularity conditions:

1. n = nT + nC , nT /n = πT > 0 and nC/n = πC > 0
2. Both S(T ) and S(C) are continuous random variables and S(C) has a finite support contained by the interval [a, b],

which is the support of S(T ).
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3. The functions µT (s)r(s) and r(s) have continuous second derivatives over the interval s ∈ [a, b], where µT (s) =
E(Y (T )|S(T ) = s), r(s) = fC(s)/fT (s), fC(s) is the density function of S(C) and fT (s) is the density function of
S(T ).

4. The kernel function K(s) is a smooth function with finite support, symmetric at zero and
∫
K(s)ds = 1. Denote

Kh(s) = K(s/h)/h, where h is the smoothing bandwidth. Here we assume that h = Op(n
−δ), δ ∈ (1/4, 1/2).

Recall that

∆̂S =

∫
µ̂T (s)dF̂C(s)− n−1

C

nC∑
i=1

YCi = n−1
C

nC∑
i=1

µ̂T (SCi)− n−1
C

nC∑
i=1

YCi

where F̂C(s) is the empirical estimate of FC(s) and

µ̂T (s) =
n−1
T

∑nT
j=1 YTjKh(STj − s)

f̂T (s)
, and f̂T (s) = n−1

T

nT∑
j=1

Kh(STj − s)

are the nonparametric estimators for µT (s) and fT (s), respectively. We first note the fact that

sup
s

{
|n−1
T

nT∑
j=1

YTjKh(STj − s)− µT (s)fT (s)|+ |f̂T (s)− fT (s)|

}
= Op(h

2 + log(n)(nh)−
1
2 ) = Op(log(n)n

δ−1
2 ),

which implies that
sup
s
|µ̂T (s)− µT (s)| = Op(h

2 + log(n)(nh)−
1
2 ) = Op(log(n)n

δ−1
2 ). (1)

To show the consistency of ∆̂S , it is sufficient to demonstrate that∣∣∣∣∫ µ̂T (s)dF̂C(s)−
∫
µT (s)dFC(s)

∣∣∣∣ = op(1),

where F̂C(s) is the empirical cumulative distribution functions based on {SCj , j = 1, · · · , nC} and FC(s) are the true
cumulative distribution function of S(C), since n−1

C

∑nC
i=1 YCi → E(Y (C)) in probability. It follows that∣∣∣∣∫ µ̂T (s)dF̂C(s)−

∫
µT (s)dFC(s)

∣∣∣∣
≤

∣∣∣∣∫ {µ̂T (s)− µT (s)}dFC(s)

∣∣∣∣+

∣∣∣∣∫ µT (s)d{F̂C(s)− FC(s)}
∣∣∣∣+

∣∣∣∣∫ {µ̂T (s)− µT (s)}d{F̂C(s)− FC(s)}
∣∣∣∣

= op(1)

where the first two terms are bounded by the uniform consistency of µ̂T (s) and F̂C(s) while the variance of the last term
is op(n−1) when nh→∞. The consistency of R̂S then follows since ∆̂ is a consistent estimator of ∆.

In order to derive the asymptotic distribution of n
1
2

{
∆̂S −∆S

}
and n

1
2

{
R̂S −RS

}
, we first derive the asymptotic

distribution of

n
1
2

{∫
µ̂T (s)dF̂C(s)−

∫
µT (s)dFC(s)

}
.

Similar to the above, we have the decomposition:∫
µ̂T (s)dF̂C(s)−

∫
µT (s)dFC(s)

=

∫
{µ̂T (s)− µT (s)} dFC(s) +

∫
µT (s)d{F̂C(s)− FC(s)}+ op(n

− 1
2 ).

Therefore,

n
1
2

{∫
µ̂T (s)dF̂C(s)−

∫
µT (s)dFC(s)

}
=n

1
2

∫
{µ̂T (s)− µT (s)}dFC(s) + n

1
2

∫
µT (s)d{F̂C(s)− FC(s)}+ op(1)

=I1 + I2 + op(1).
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Now consider the first term I1 :

I1 =n
1
2

∫
{µ̂T (s)− µT (s)}dFC(s)

=n
1
2

∫ {n−1
T

∑nT
j=1 YTjKh(STj − s)

n−1
T

∑nT
j=1Kh(STj − s)

− µT (s)
}
dFC(s)

=n
1
2

∫ −µ̂T (s)n−1
T

nT∑
j=1

{
Kh(STj − s)

fT (s)
− 1

}
+ n−1

T

nT∑
j=1

{
YTjKh(STj − s)

fT (s)
− µT (s)

} dFC(s)
=n

1
2

∫ −µT (s)n−1
T

nT∑
j=1

{
Kh(STj − s)

fT (s)
− 1

}
+ n−1

T

nT∑
j=1

{
YTjKh(STj − s)

fT (s)
− µT (s)

} dFC(s) +Op(log(n)
2nδ−

1
2 )

=(πTnT )
− 1

2

nT∑
j=1

∫ [
−
µT (s)

fT (s)

{
Kh(STj − s)− fT (s)

}
+

{
YTjKh(STj − s)

fT (s)
− µT (s)

}]
dFC(s) + op(1).

In the derivations, we used the uniform bounds the differences |µ̂T (s)− µT (s)| and |f̂T (s)− fT (s)|. Since

n
− 1

2

T

nT∑
j=1

∫
µT (s)

fT (s)
{Kh(STj − s)− fT (s)}dFC(s)

=n
− 1

2

T

nT∑
j=1

{∫
µT (STj + hs)r(STj + hs)K(s)ds−

∫
µT (s)dFC(s)

}

=n
− 1

2

T

nT∑
j=1

[
µT (STj)r(STj)−

∫
µT (s)dFC(s)

]
+Op(n

1
2−2δ)

and

n
− 1

2

T

nT∑
j=1

∫ {
YTjKh(STj − s)

fT (s)
− µT (s)

}
dFC(s)

=n
− 1

2

T

nT∑
j=1

{
YTj

∫
r(STj + hs)K(s)ds−

∫
µT (s)dFC(s)

}

=n
− 1

2

T

nT∑
j=1

[
YTjr(STj)−

∫
µT (s)dFC(s)

]
+Op(n

1
2−2δ).

Using a change of variables and Taylor series expansion, it follows that

I1 = (πTnT )−
1
2

nT∑
j=1

{YTj − µT (STj)} r(STj) + op(1).

Coupled with the fact that

I2 = (πCnC)−
1
2

nC∑
j=1

{
µT (SCj)−

∫
µT (s)FC(s)

}
it suggests that

n
1
2

{∫
µ̂T (s)dF̂C(s)−

∫
µT (s)dFC(s)

}
=(πTnT )−

1
2

nT∑
j=1

{YTj − µT (STj)} r(STj) + (πCnC)−
1
2

nC∑
j=1

{
µT (SCj)−

∫
µT (s)FC(s)

}
+ op(1).

Therefore,

n
1
2

(
∆̂S −∆S

∆̂−∆

)
=(πTnT )−

1
2

nT∑
j=1

(
{YTj − µT (STj)} r(STj)

YTj − E(Y (T ))

)

− (πCnC)−
1
2

nC∑
j=1

(
YjC − E(Y (C))−

{
µT (SCj)−

∫
µT (s)FC(s)

}
YjC − E(Y (C))

)
+ op(1)
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By the central limit theorem n

1
2 (∆̂S −∆S , ∆̂−∆)′ converges to a bivariate normal with a variance-covariance matrix of

Σ∆ = π−1
T E

(
{YTj − µT (STj)} r(STj)

YTj − E(Y (T ))

)⊗2

+ π−1
C E

(
YjC − E(Y (C))−

{
µT (SCj)−

∫
µT (s)FC(s)

}
YjC − E(Y (C))

)⊗2

,

where a⊗2 = aa′ for a vector a. By the multivariate delta method, n
1
2 (R̂S −RS) also converges to a mean zero Gaussian

distribution weakly as the sample size n→∞ as long as ∆ 6= 0.

Appendix C:. Asymptotic Properties of ∆̂S and RS.

In this section, we additionally assume the following regularity conditions:

1. β̂ is a regular estimator in that β̂ converges to a deterministic vector β0 in probability and has the expansion,

n
1
2

T (β̂ − β0) = n
− 1

2

T

nT∑
j=1

τTj + op(1)

for i.i.d. τTj , which is a mean zero random vector with a finite second moment. One consequence is that
|β̂ − β0| = Op(n

− 1
2 ).

2. Both S(T ) and S(C) are bounded. The random variables β′0S(T ) and β′0S(C) have continuous density function and
β′0S

(C) has a finite support contained by the interval [a, b], which is the support of β′0S(T ).
3. The function µβ0T (s)rβ0

(s), has a continuous second derivative over the interval s ∈ [a, b], where µβT (s) =

E(Y (T )|β′S(T ) = s), rβ(s) = fβC(s)/fβT (s), fβC(s) is the density function of β′S(C) and fβT (s) is the density
function of β′S(T ).

4. For sufficiently small δ > 0

|rβ2
(s)− rβ1

(s)|+ |µβ2T (s)rβ2
(s)− µβ1T (s)rβ1

(s)| ≤ C0|β2 − β1|

for |βi − β0| < δ, i = 1, 2.

Recall that

∆̂S =

∫
µ̂β̂T (s)dF̂β̂C(s)− n−1

C

nC∑
i=1

YCi = n−1
C

nC∑
i=1

µ̂T (Q̂Ci)− n−1
C

nC∑
i=1

YCi

where F̂βC(s) is the empirical estimate of FβC(s), Q̂Ci = β̂
′
SCi, and

µ̂βT (s) =
n−1
T

∑nT
j=1 YTjKh(β′STj − s)

f̂βT (s)
and f̂βT (s) = n−1

T

nT∑
j=1

Kh(β′STj − s)

are the nonparametric estimators for µβT (s) = E(Y (T )|β′S(T ) = s) and fβT (s), the density function of β′S(T ), based on
{(YTj ,STj), j = 1, · · · , nT }, respectively. We first note that

n
1
2

T {f̂β̂T (s)− f̂β0T (s)} = Op

(
nδ−

1
4 log(n)2 + 1

)
(2)

since the difference

n
1
2

T {f̂β̂T (s)− f̂β0T (s)}

=n
1
2

T

∫
Kh(u− s)d{F̂β̂T (u)− F̂β0T (u)}

=n
1
2

T

∫
Kh(u− s)d{F̂β̂T (u)− F̂β0T (u)− Fβ̂T (u) + Fβ0T (u)}+ n

1
2

T

∫
Kh(u− s)d{Fβ̂T (u)− Fβ0T (u)}

≤ sup
u
|n

1
2

T

{
F̂β̂T (u)− F̂β0T (u)− Fβ̂T (u) + Fβ0T (u)

}
|
∫
h−1|K̇(u)|du+ n

1
2

T |fβ̂T (u)− fβ0T (u)|

=Op

(
nδ−

1
4 log(n)2 + 1

)
.
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The last approximation holds since the class of functionF = {I(β′S ≤ s)− I(β′0S ≤ s)|s ∈ R, |β − β0| < δ} is Donsker
with an envelop function 1. Specifically, we can calculate the bracketing entropy log{N[](ε,F , ‖ · ‖)} ≤ C1| log(ε)| for a
positive constant C1, which implies that the bracketing entropy integral

J[](δ,F , ‖ · ‖) =

∫ δ

0

[
1 + log{N[](ε,F , ‖ · ‖)}

] 1
2 dε ≤ C2δ log(δ)2 <∞,

where the norm ‖f‖ = [E{f2(S(T ))}] 1
2 for f ∈ F andC2 is a constant. Furthermore sinceE{f2(S(C))} ≤ C3δ for f ∈ F ,

it follows from the maximum inequality that

sup
‖β−β0|≤δ,u

|n
1
2

T

{
F̂βT (u)− F̂β0T (u)− FβT (u) + Fβ0T (u)

}
| ≤ C4δ

1
2 log(δ)2,

where Cj , j = 3, 4 are positive constants. Considering the assumption that |β̂ − β0| = Op(n
− 1

2 ), thus we have

sup
u
|n

1
2

T

{
F̂β̂T (u)− F̂β0T (u)− Fβ̂T (u) + Fβ0T (u)

}
| = Op(n

− 1
4 ).

Therefore

sup
s
|f̂β̂T (s)− fβ0T (s)| ≤ sup

s
|f̂β̂T (s)− f̂β0T (s)|+ sup

s
|f̂β0T (s)− fβ0T (s)| = Op(log(n)n

δ−1
2 )

Similarly, it can be shown that
sup
s
|µ̂β̂T (s)− µβ0T (s)| = Op(log(n)n

δ−1
2 ). (3)

Therefore, the consistency of ∆̂S follows using similar arguments as in the preceding single surrogate marker setting given
(2) and (3). In addition, it follows from the same arguments used above that the process

n
1
2

{∫
µ̂β̂T (s)dF̂β̂C(s)−

∫
µβ0T (s)dFβ0C(s)

}
=n

1
2

∫
{µ̂β̂T (s)− µβ0T (s)}dFβC(s) + n

1
2

∫
µβ0T (s)d{F̂β̂C(s)− Fβ0C(s)}+ op(1)

=Ĩ1 + Ĩ2 + op(1).

Here

Ĩ1 =n
1
2

∫
{µ̂β̂T (s)− µβ0T

(s)}dFβ0C
(s)

=(πTnT )
− 1

2

nT∑
j=1

∫ [
−
µβ̂T (s)

fβ̂T (s)

{
Kh(β̂

′
STj − s)− fβ̂T (s)

}
+

{
YTjKh(β̂

′
STj − s)

fβ̂T (s)
− µβ0T

(s)

}]
dFβ0C

(s) + op(1).

Consider the processes

Q1n(β) =n
− 1

2

T

nT∑
j=1

[∫
µβT (s)

fβT (s)
Kh(β′STj − s)dFβC(s)−

∫
µβT (s)dFβT (s)

]

=n
− 1

2

T

nT∑
j=1

[
µβT (β′STj)fβC(β′STj)

fβT (β′STj)
−
∫
µβT (s)dFβT (s)

]
+ op(1)

and

Q2n(β) =n
− 1

2

T

nT∑
j=1

[∫
YTj

fβT (s)
Kh(β′STj − s)dFβC(s)−

∫
µβT (s)dFβT (s)

]

=n
−1/2
T

nT∑
j=1

[
YTj

fC(β′STj)

fβT (β′STj)
−
∫
µβT (s)dFβT (s)

]
+ op(1),
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where |β − β0| ≤ δ. Therefore

Q2n(β)−Q1n(β) = n
−1/2
T

nT∑
j=1

rβ(β′STj)
{
YTj − µβT (β′STj)

}
.

The class of function {
rβ(β′S){y − µβT (β′S)}

∣∣∣∣ |β − β0| ≤ δ
}

is Donsker under the regularity conditions and therefore

Q2n(β̂)−Q1n(β̂) = Q2n(β0)−Q1n(β0) + op(1)

which implies that

Ĩ1 = (πTnT )−
1
2

nT∑
j=1

{
YTj − µT (β′0STj)

}
rβ0

(β′0STj) + n
1
2

∫
{µβ̂T (s)− µβ0T (s)}dFβ̂C(s) + op(1).

Next

Ĩ2 =

∫
µβ0T (s)dn

1
2 {F̂β̂C(s)− Fβ0C(s)}

=

∫
µβ0T (s)dn

1
2 {F̂β̂C(s)− Fβ̂C(s) + Fβ̂C(s)− Fβ0C(s)}

=

∫
µβ0T (s)dn

1
2 {F̂β̂C(s)− Fβ̂C(s)}+

∫
µβ0T (s)dn

1
2 {Fβ̂C(s)− Fβ0C(s)}

=

∫
µβ0T (s)dn

1
2 {F̂β0C(s)− Fβ0C(s)}+

∫
µβ0T (s)dn

1
2 {Fβ̂C(s)− Fβ0C(s)}

+

∫
µβ0T (s)dn

1
2 {F̂β̂C(s)− Fβ̂C(s)− F̂C(s) + Fβ0C(s)}

=

∫
µβ0T (s)dn

1
2 {F̂β0C(s)− Fβ0C(s)}+

∫
µβ0T (s)dn

1
2 {Fβ̂C(s)− Fβ0C(s)}+ op(1)

Therefore

n
1
2

{∫
µ̂β̂T (s)dF̂β̂C(s)−

∫
µβ0T (s)dFβ0C(s)

}
=(πTnT )−

1
2

nT∑
j=1

{
YTj − µT (β′0STj)

}
rβ0

(β′0STj) + (πCnC)−
1
2

nC∑
i=1

{
µβ0T (β′0SCj)−

∫
µβ0T (s)Fβ0C(s)

}
+ n

1
2

{∫
µβ̂T (s)dFβ̂C(s)−

∫
µβ0T (s)dFβ0C(s)

}
+ op(1)

=(πTnT )−
1
2

nT∑
j=1

{
YTj − µT (β′0STj)

}
rβ0

(β′0STj) + (πCnC)−
1
2

nC∑
i=1

{
µβ0T (β′0SCj)−

∫
µβ0T (s)Fβ0C(s)

}
+ n

1
2 a′0(β̂ − β0) + op(1),

where a0 = ∂
∫
µβ0T (s)Fβ0C(s)/∂β|β0

. Therefore

n
1
2

(
∆̂S −∆Q

∆̂−∆

)
=(πTnT )−

1
2

nT∑
j=1

( {
YTj − µT (β′0STj)

}
r(β′0STj) + a′0τTj

YTj − E(Y (T ))

)

− (πCnC)−
1
2

nC∑
j=1

(
YjC − E(Y (C))−

{
µT (β′0SCj)−

∫
µT (s)FC(s)

}
YjC − E(Y (C))

)
+ op(1)

By the central limit theorem n
1
2 (∆̂S −∆Q, ∆̂−∆)′ converges to a mean-zero bivariate normal with a variance-covariance

matrix of

π−1
T E

( {
YTj − µT (β′0STj)

}
r(β′0STj) + a′0τTj

YTj − E(Y (T ))

)⊗2

+ π−1
C E

(
YjC − E(Y (C))−

{
µT (β

′
0SCj)−

∫
µT (s)FC(s)

}
YjC − E(Y (C))

)⊗2

.

It follows from the multivariate delta method that n
1
2 (R̂S −RQ) also converges to a mean zero Gaussian distribution as

long as ∆ 6= 0.
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Appendix D:. Justification of the Resampling Procedure

To justify the resampling procedure in the single surrogate marker setting, we first derive the asymptotic approximation
for the perturbed estimators. Since the perturbation weights are independent (in contrast to the correlated implicit weights
from the regular bootstrap method), the derivation of the asymptotical linear expansion of the perturbed estimator is almost
the same as that for the original estimator in Appendix B under weak moment conditions for the perturbation weights,
e.g., the existence of a finite third moment. Similar derivations have been used in other settings [1, 2, 3]. Specifically, we
have

n
1
2

(
∆̂

(b)
S −∆S

∆̂(b) −∆

)
=(πTnT )−

1
2

nT∑
j=1

(
{YTj − µT (STj)} r(STj)

YTj − E(Y (T ))

)
V

(b)
Tj

− (πCnC)−
1
2

nC∑
j=1

(
YjC − E(Y (C))−

{
µT (SCj)−

∫
µT (s)FC(s)

}
YjC − E(Y (C))

)
V

(b)
Cj + op(1),

which implies that

n
1
2

(
∆̂

(b)
S − ∆̂S

∆̂(b) − ∆̂

)
=(πTnT )−

1
2

nT∑
j=1

(
{YTj − µT (STj)} r(STj)

YTj − E(Y (T ))

)
(V

(b)
Tj − 1)

− (πCnC)−
1
2

nC∑
j=1

(
YjC − E(Y (C))−

{
µT (SCj)−

∫
µT (s)FC(s)

}
YjC − E(Y (C))

)
(V

(b)
Cj − 1) + op(1).

It follows from the central limit theorem that conditional on the data, n
1
2

(
∆̂

(b)
S − ∆̂S , ∆̂

(b) − ∆̂
)

converges weakly to a
mean zero Gaussian distribution with the variance covariance matrix of

lim
nT→∞

1

πTnT

nT∑
j=1

(
{YTj − µT (STj)} r(STj)

YTj − E(Y (T ))

)⊗2

+ lim
nC→∞

1

πCnC

nC∑
j=1

(
YjC − E(Y (C))−

{
µT (SCj)−

∫
µT (s)FC(s)

}
YjC − E(Y (C))

)⊗2

,

which converges to Σ∆ in probability. This implies that

sup
d∈R2

∣∣∣∣ pr

{
n

1
2

(
∆̂

(b)
S − ∆̂S

∆̂(b) − ∆̂

)
≤ d

∣∣∣∣ (YTi, STi, YCj , SCj), 1 ≤ i ≤ nT , 1 ≤ j ≤ nC

}
− pr (Z∆ ≤ d)

∣∣∣∣= op(1),

where Z∆ is a bivariate Gaussian with mean zero and variance-covariance matrix of Σ∆. Therefore, the conditional
distributions of n

1
2 (∆̂

(b)
S − ∆̂S), n

1
2 (∆̂(b) − ∆̂), and n

1
2 (R̂

(b)
S − R̂S) can be used to approximate the distributions of

n
1
2 (∆̂S −∆S), n

1
2 (∆̂−∆), and n

1
2 (R̂S −RS) for large n.

The justification of the resampling procedure in the multivariate marker setting is similar under the additional assumption
that

n
1
2

T (β̂
(b)
− β0) = n

− 1
2

T

nT∑
j=1

τTjV
(b)
Tj + op(1)

which holds in general when β̂ is the root of an estimating equation. As mentioned in the text, this type of resampling
approach is similar to the wild bootstrap [4, 5, 6].
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