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Appendix A:. Equivalence of the surrogacy of S and W = 1 (S)

We aim to show that the surrogacy of S, as defined by Rs, is equivalent to the surrogacy of W = ur(S) = E(Y(M|S(T) =
S), as defined by Ry, where

Ry =1-— %V and Ay = / EYDOIWD = w)dFy e (w) — BE(Y ().

That is, we must show that Ag = Ay when W = pp(S), i.e. W is obtained using the true model. Note that
Ag = / E(YMST = g)dFy(s) — E(Y(©)
- [ wa)ire - By ©)
— [ Bl (8) = r(s))are(s) - E©)
~ [ By W = un(s))ares) - B ©)
= B [ByDW® = up(8©)} | 8] - B(y(©)
- E [E{Y(T)‘W(T) — WY | W(C)} — B(Y©)

= /E(Y(T)\W(T) = w)dFy ) (w) — B(Y(©) = Ay,

where W) =y (ST, W) = 7 (S(D), Fyyrc) (+) is the cumulative distribution function of W (), and we have used
the fact that

E{YD|pp (81 = w} = /E{Y(T)|S(T) =s}dF,(s)ds = //LT(S)de(S) = w,

(T)

where f,(s) is the cumulative distribution of S(™) conditional on 7 (S(T)) = w.

Appendix B:. Asymptotic Properties of 35 and ﬁg

We assume the following regularity conditions:

l. n=nr+nc,np/n=mp>0and nc/n=mnc >0
2. Both S™) and S(©) are continuous random variables and S(©) has a finite support contained by the interval [a, b],
which is the support of S(T).
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3. The functions pr(s)r(s) and r(s) have continuous second derivatives over the interval s € [a, b], where pr(s) =
E(YMI|ST) = 5), r(s) = fc(s)/fr(s), fo(s) is the density function of S(©) and fr(s) is the density function of
S0,

4. The kernel function K (s) is a smooth function with finite support, symmetric at zero and | K(s)ds = 1. Denote
K (s) = K(s/h)/h, where h is the smoothing bandwidth. Here we assume that h = O, (n™°),d € (1/4,1/2).

Recall that
3s:/ 7(s)dFo(s ) —ng ZY&—HC ZMT (Sci) —ng ZY&

where F(s) is the empirical estimate of F(s) and

n ST Y K (S — s . N
IpNIE L (57 )> and fT(S):nq_“lth(STj_S)
fr(s) j=1

are the nonparametric estimators for p7(s) and fr(s), respectively. We first note the fact that

fir(s) =

Sup {|nT ZYTJKh Srj — ) = pr(s) fr(s)| + | fr(s) - fT(5)|} = 0, (h* +log(n) (nh) %) = O, (log(n)n" =),

Jj=1

which implies that
sup | fir(s) — pr(s)] = Op(h? +log(n)(nh) %) = Op(log(n)n "= ). (1)

To show the consistency of 35, it is sufficient to demonstrate that

\ [aryiies) ~ [urpree)

where Fi(s) is the empirical cumulative distribution functions based on {S¢j,j = 1,--- ,nc} and Fe(s) are the true
cumulative distribution function of S(©), since n;' "1 Yo — E(Y(©)) in probability. It follows that

‘ [ antsiareis) - / o (8)dFo ()

/{MT (s)}dFc(s) ‘/MT )d{Fc(s) ’ ’/{NT r(s)}d{Fc(s) — Fo(s)}

= Op(l)a

IN

where the first two terms are bounded by the umform consistency of uT( ) and F(s) while the variance of the last term
is 0,(n™') when nh — oc. The consistency of RS then follows since A is a consistent estimator of A.

In order to derive the asymptotic distribution of nz {35 — As} and nz {}ABS — RS}, we first derive the asymptotic

wt{ [ratets) - [urtarees)}.

Similar to the above, we have the decomposition:
[xtsyitets) - [ urisre)
= / {iir(s) = pr(s)} dFe(s) + / pr(s)d{ Fo(s) — Fo(s)} + op(n~4).

distribution of

Therefore,

:Il + 12 + Op(l).
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Now consider the first term /5 :
I =n? [{r(s) - ur(s)}dFo(s)
—n} /{nTl 255 Yo Kn(Sj — 9)

n;l Z?_Tl Kp(Stj —s)

1 Ky (Stj — s Z [ Yr;Kn(St; —
:nz/ |:MT s)nle{ij }JrnTlZ{ . fT(sJ

j=1 j=1

- MT(S)} dFc(s)

e

(o}
o [ [-omtont E (R0 o = }} +Olto'a 1)
}

=1 j=1

1 & s Yo, Ky (S
=(mrnr)” 2 z::l/ [*l;;((s)) {Kn(Srj —s) — fr(s)} + {% — pr(s) } dFc(s) +op(1).

In the derivations, we used the uniform bounds the differences |jir(s) — pr(s)| and |f (s) — fr(s)|. Since

Tz/

gt > { / pr(S1; + (S, + ) K s)ds — ms)ch(s)}

(S1j — ) = fr(s)}dFo(s)

nrT

=nr Z {MT Stj)r(Srj) — /MT(S)ch(S)] +O0p(n=72)

and

f} -/ {Hrt B =)} arets
=ng Z{YT]/ (St + hs)K(s )ds_/MT(S)dFC(S)}

_1
=np* Z |:YTJT(STJ) - /MT(S)dFC(S)] +0p(n>7%).
j=1
Using a change of variables and Taylor series expansion, it follows that

Iy = (mrnr)” Z{YTJ pr (S1;)} r(Srj) + 0p(1).

Coupled with the fact that

(ronc) %i{w (S0~ [ mrts)Fets) |

it suggests that

nt { [ ixtsyatets) - [ ur(s)are(s }

=(mrnr)” Z{YTJ pr (St;)}r(ST5) + (Tene)” éz:{MT(SCj)—/MT(S)FC(S)}+0p(1)-

= =1
Therefore,

) e (PP )

nc

1 o E(Y©) N [ (s) Fo(s
— (mene)”? ( Yic — BE(Y(© )}?C{MTg'gfg()C))fuT( VFe(s)} )+0p(1)

<.
Il
N
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By the central limit theorem n2 (Ag — Ag, A — A)’ converges to a bivariate normal with a variance-covariance matrix of

o (S \ &2 ) o @)y — A S)EFr (s ©2
DIYN W51E< {YTJYT‘:T(EX/)(}T))(STJ) > +7a E( Yie —E(Y )yj{u_Tés(YC;/J()(J))fMT( ol )} ) )

where a®? = aa’ for a vector a. By the multivariate delta method, ne (ﬁg — Rg) also converges to a mean zero Gaussian
distribution weakly as the sample size n — oo as long as A # 0.

Appendix C:. Asymptotic Properties of ﬁs and Rg.

In this section, we additionally assume the following regularity conditions:

1. Bisa regular estimator in that B converges to a deterministic vector 3, in probability and has the expansion,

ni(B - By) =ny? > e+ op(1)

=1

for ii.d. 7p;, which is a mean zero random vector with a finite second moment. One consequence is that

B— By| = Op(n2).

2. Both S™) and S(®) are bounded. The random variables B,S(™) and 3;S(®) have continuous density function and
3,S'©) has a finite support contained by the interval [a, b], which is the support of 3,S(™).

3. The function pg r(s)rg,(s), has a continuous second derivative over the interval s € [a,b], where pugr(s) =
E(YM|@'ST) = s), rg(s) = fac(s)/far(s), fac(s) is the density function of 3'S(®) and fgr(s) is the density
function of 3'S(T).

4. For sufficiently small § > 0

‘T,82 (S> - Tﬁl (S>| + ‘MﬁZT(S)rﬁQ (8) - MﬁlT(S)Tﬁl (S)| S CO|162 - IBI'
for |3, — By| < 0,7 =1,2.

Recall that

nc

no no
Ag = /ﬂgT(S)dF[;c(S) —ng' Z Yoi = ng' Z fir(Qci) — ng' Z Yoi
i=1 i=1 i=1
where Fgc(s) is the empirical estimate of Fc(s), Q\c,; = B/SC,; , and

ng' an YT*K}L(ﬁ/STx — 3) R nr
T j=1 - J J and fﬁT(S) — ’I’L;l ZK}L(B/ST] o 5)
for) )3

fipr(s) =

are the nonparametric estimators for pgr(s) = E(YT)|3'S(T) = s) and far(s), the density function of 3’S("), based on
{(Yrj,S7;),5 =1,--- ,nr}, respectively. We first note that

0 fr(s) = fo,r(5)} = Op (nlog(n)? +1) @
since the difference
n{Far(s) — fo,r(s))
—n / K (u — 8)d{ Eyp(u) — Epr(u))
. [ K= ) Fyp () = () = Fapla) + Far(w)} + . [ Kiu = 9{pr(w) - Fa,r(w)
<sup . { Far (1) = Fagr(u) = Fyrlw) + Fa,r(@)} | [ 1R @ldu + 0| fyp(0) = S,
~0, (né—% log(n)? + 1) .
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The last approximation holds since the class of function F = {I(3'S < s) — I(3,S < s)|s € R, |8 — B,| < &} is Donsker
with an envelop function 1. Specifically, we can calculate the bracketing entropy log{ Njj(e, F, || - ||)} < Ci|log(e)| for a
positive constant C'y, which implies that the bracketing entropy integral

J 1
Jp,F |- 1) = / [1+log{Ny(e, .|| - [N}]* de < Cadlog(6)* < oo,
0

where the norm || f|| = [E{f2(S(™))}]z for f € F and C, is a constant. Furthermore since E{f2(S(©))} < Csé for f € F,
it follows from the maximum inequality that

sup I { Fpr(u) = Fp,r(w) = Far (u) + Fa,r(u) } | < Ca6% log(6)%,
1B—Bo|<é,u

where C;, j = 3, 4 are positive constants. Considering the assumption that | B— Bol = Op(n*% ), thus we have

1

slip |n§ {FﬁT(u) - FIBOT(U) — Fap(u) + FgUT(u)} | = 0,(n~1%).
Therefore
sup| far(s) — fa,m(s)| < sup|far(s) — fa,(s)| +sup | fg,r(s) — fo,r(s)| = 0, (log(n)n"7")

Similarly, it can be shown that
N 5-1
sup |figp(s) — pg,r(s)| = Op(log(n)n="). 3)

Therefore, the consistency of Ag follows using similar arguments as in the preceding single surrogate marker setting given
(2) and (3). In addition, it follows from the same arguments used above that the process

{/ﬂBT(S)dFBC(S) /uﬂoT(S)dFﬁoc(S)}

0t [ (s) ~ npr()}dFac(s) + 0 [ nagr(9)Fac(s) - Fa,c(s)} +0,(1)
:Il —|— 12 + 017( )

N

n

N\»—‘

Here
I :”% /{/:LBT(S) - ﬂﬁoT(s)}dFﬁoc(s)

& | mar(s) YTth(ﬁ/STj —5)
= 2 E — KL S —_ - 4
) j:1/ [ Tpr(s) { B8 =) = Jar ()} + { Tar(s) M%T(S)}

dFBoc(S) + Op(l).

Consider the processes

Qn(B) =np* Y { UOT(S) 1o (B8, — ) (s) — / uﬁﬂs)dFﬁT(s)}

= L fer(s)

- 3 {ﬂﬁT(ﬁ STj)JfﬁC(B Sty) /MBT(S)dFﬁT(S)] + op(1)

=1 far(B'ST;))
and
Qun) =t 3 | [ 750851y inc(s) - [ mar(ohFr(s)
2N [y, SB[ e o] o
7 ; {Y " far(B'St;) /”ﬁ'T( )dFar( )} + 0p(1),
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where |3 — 3| < 4. Therefore
nr

Qon(B) = Qua(B) =n7'"* > " ra(B'S1y) {Yr; — nar(8'Sr))} .

j=1
The class of function

{Tﬁ(ﬂ’s){y — upr(B'S)} ‘ 18— Bol < 5}

is Donsker under the regularity conditions and therefore

Q2n(6) - Ql"L(IB) = QZn(ﬁo) - an(ﬁo) + Op(l)

which implies that

b= (rene) 4 Y (Ve — ur(B5Sr)} ra, (90S1) + 1t [ (i (s) = npr(5)}dFac(s) +0,(0).

Next
o= [ mayr()dnt (Fpc(s) - Fa,o(o))

— [ npr ()i Fac(9) = Fac() + Facls) ~ Fa,c(o))

— [ np ()i Facls) ~ Fac ) + [ a,r(s)dn’ (Fpe(s) = Fao()

= / np,r(s)dn® {Fp o (s) = Fa,o(s)} + / Hp,r(s)dn? {Fa(s) — Fa,o(s)}

+ [ oy (5)dnd (Fals) = Fals) = Fels) + Fae(s)

= / ngr(s)dn? {Fg,c(s) = Fa,o(s)} + / g7 (s)dn? {Fac(s) — Fa,c(s)} + 0p(1)

Therefore

Nl

n {/ﬂﬁT(S)dﬁﬁC(S) _/MﬁUT(S)dFﬁUC(S)}

—(rrne) S (Ve — pr(B4S1i)} 7, (BySt) + (reme) + S {MBOT(ﬂIOSCj) -/ ua(,ﬂs)Faoc(s)}

j=1 =1

Nl=

n { [ i s1iEct) - | uﬁaﬂs)ngoc(s)} T op(1)

nc

=(rrnr) ™2 > {Vr; = pr(B6S15)} 78, (B4Sts) + (meme) ™2 Y {MﬁoT(ﬁf)SCj) - /MﬁoT(S)Fﬁoc(S)}

J=1 i=1
+ n%aé(ﬁ = Bo) +0p(1),
where ag = 0 [ ug,r(s)Fa,c(s)/98|a,- Therefore

b ( 3§ - Ag ) (npng)~h nzT ( {Yr;j — ur(BoSt;) } r(ByStj) + agrr; >

A-A = Yr; — E(Y™)
K (Yo = BY©O) — {ur(ByScy) — [ ur(s)Fe(s
— (mene) "2 2( ( ) };CPL_(%O(YCZC))) fﬂ (s)Fo( )} )—i—op(l)

By the central limit theorem nz (ﬁs - Ag, A-— A)’ converges to a mean-zero bivariate normal with a variance-covariance
matrix of
g (Yri = nr(BSTy) ) r(ByST) +agrry \T L ip ( Yie = BOYVO) — {ur(ByScy) - [ur(s)Fe(9)} )
T Ypj — B(Y™D) c Yjc — E(Y(©) '

It follows from the multivariate delta method that n2 (fis — Rg) also converges to a mean zero Gaussian distribution as
long as A # 0.
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Appendix D:. Justification of the Resampling Procedure

To justify the resampling procedure in the single surrogate marker setting, we first derive the asymptotic approximation
for the perturbed estimators. Since the perturbation weights are independent (in contrast to the correlated implicit weights
from the regular bootstrap method), the derivation of the asymptotical linear expansion of the perturbed estimator is almost
the same as that for the original estimator in Appendix B under weak moment conditions for the perturbation weights,
e.g., the existence of a finite third moment. Similar derivations have been used in other settings [1, 2, 3]. Specifically, we

have
/\(b) . L nrT L . .
( A,\S Ag :(’/TTTLT)7§ Z ( {YTJYTHT(STJ)}Z(STJ) > V(b)
J

Nl

T Aw A . ~B(Y™)
]:
_ixa( Yo — E(Y©O) = {up(S
— (meng) ™2 Z < e ( )ijliTE((;/j(c) IMT } > V(b) + 0p(1),
j=1

which implies that

NN _ix~ ( AYry = pr(Sty)} r(Sty) ®)
"\ Aw A ) =) Yr; — E(Y™) (Vrj = 1)
‘7:
nc
_ 1 Yie = EY D) = {ur(Sc;) — [ pr(s)Fe(s)} (b) _
(rene) 3 ( y e, (V) ~ 1)+ 0, 1.

It follows from the central limit theorem that conditional on the data, n2 (ﬁgb) — ﬁs, A® _ ﬁ) converges weakly to a
mean zero Gaussian distribution with the variance covariance matrix of

nr ®2
2 Z( {Yr; — pr(Sti)} r(Stys) >
nr—oo mrnT P

= Yr; — BYD)

no C ®2
b lim o (Yoo - B Scj(c Jur(s)Fe(s)} ™
nc—o0 Tone = ch - E(Y
which converges to X A in probability. This implies that
1 8 AS . .
sup | prqn?2 b Sd (YTi,STi,YCj,SCj),l SZ SnT,l Sj Snc —pr(ZA Sd) :Op(l)7
deR? A _ &

where Zx is a bivariate Gaussian with mean zero and variance-covariance matrix of ¥a. Therefore, the conditional
distributions of n%(Agb) —Ag), nz(A® — A), and n%(Rgb) — Rg) can be used to approximate the distributions of
n:(Ag — Ag),n(A — A), and n? (Rg — Rg) for large n.

The justification of the resampling procedure in the multivariate marker setting is similar under the additional assumption
that

1 ~(b) 1 b
np(B8 " —Bo) =ng’ ZTTjVY(“j) + op(1)
j=1
which holds in general when B is the root of an estimating equation. As mentioned in the text, this type of resampling
approach is similar to the wild bootstrap [4, 5, 6].
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