Tailored CVD graphene coatings as a transparent and flexible gas barrier Tae Hoon Seo, ¹ Seula Lee, ^{1,4} Hyunjin Cho, ¹ S. Chandramohan, ³ Eun-Kyung Suh, ³ Heon Sang Lee, ⁵ Su Kang Bae, ¹ Soo Min Kim, ¹ Min Park, ² Jae Kwan Lee, ⁴ and Myung Jong Kim ^{1,*} ¹ Soft Innovative Materials Research Center and ² Photoelectronic Hybrid Research Center, Korea Institute of Science and Technology, Jeonbuk 565-905¹ and Seoul 136-791², Republic of Korea ³ School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756, Republic of Korea ⁴ Department of Carbon materials, Chonsun University, Gwangju 501-759, Republic of Korea ⁵ Department of Chemical Engineering, Dong-A University, Nakdong-Daero 550, Saha-gu, Busan 604-714, Republic of Korea **Figure S1.** Photograph of graphene transferred on to PET film. The image showing excellent flexibility. Figure S2. Schematic illustration of two-step growth processes. **Figure S3.** SEM images showing the effect of growth time and hydrogen flow rate at first step. The optimum condition for large domain graphene was 1 min of growth with hydrogen flow rate of 100 sccm. **Figure S4.** AFM images and root mean square (RMS) roughness values of Cu foils that went through various graphene growth processes. (a) 1step-w/o ECP (b) 1step-ECP and (c) 2step-ECP, respectively. The scan size is $10 \times 10 \, \mu \text{m}^2$. **Figure S5.** (a)-(c) SEM images of graphene surface on Cu foils after the copper etchant dropping, and (d) their etching pit density. The defect density shows a linear decrease from 1step-w/o ECP to 2step-ECP. **Figure S6**. SEM images measured four times in different position of graphenes grown (a) 1step-w/o ECP, (b) 1step-ECP, and (c) 2step-ECP, respectively. | Analysis/
Sample type | Domain size | Raman
2D/G ratio | Transmittance | Sheet
resistance | WVTR | Etching pit density | |--------------------------|--|--------------------------------------|---|---|--|--| | a)1step-w/o
ECP | 32 μm ²
28 μm ²
35 μm ²
35 μm ²
30 μm ² | 2.07
2.03
2.11
2.07
2.00 | 97.2757 %
97.3715 %
97.3829 %
97.7334 %
97.8395 % | 726 Ω/□
702 Ω/□
724 Ω/□
752 Ω/□
693 Ω/□ | 1.058 g/m²-day
1.066 g/m²-day
1.023 g/m²-day
1.086 g/m²-day
1.082 g/m²-day | 4.25x10 ⁷ Count/cm ²
4.87x10 ⁷ Count/cm ²
4.40x10 ⁷ Count/cm ²
4.71x10 ⁷ Count/cm ²
4.37x10 ⁷ Count/cm ² | | b)1step-ECP | 60 μm ² | 2.00 | 97.3829 % | 681 Ω/□ | 0.959 g/m²-day | 2.00x10 ⁷ Count/cm ² | | | 58 μm ² | 2.16 | 97.4405 % | 634 Ω/□ | 0.894 g/m²-day | 2.56x10 ⁷ Count/cm ² | | | 66 μm ² | 2.32 | 97.3787 % | 644 Ω/□ | 0.899 g/m²-day | 2.35x10 ⁷ Count/cm ² | | | 69 μm ² | 2.07 | 97.3684 % | 603 Ω/□ | 0.825 g/m²-day | 2.31x10 ⁷ Count/cm ² | | | 52 μm ² | 2.19 | 97.3620 % | 633 Ω/□ | 0.890 g/m²-day | 2.19x10 ⁷ Count/cm ² | | c)2step-ECP | 100 μm ² | 2.01 | 97.2752 % | 388 Ω/□ | 0.654 g/m²-day | 0.25x10 ⁷ Count/cm ² | | | 120 μm ² | 2.23 | 97.3299 % | 351 Ω/□ | 0.677 g/m²-day | 0.23x10 ⁷ Count/cm ² | | | 112 μm ² | 2.02 | 97.8583 % | 399 Ω/□ | 0.664 g/m²-day | 0.31x10 ⁷ Count/cm ² | | | 94 μm ² | 2.21 | 97.6690 % | 414 Ω/□ | 0.665 g/m²-day | 0.18x10 ⁷ Count/cm ² | | | 99 μm ² | 2.15 | 97.1979 % | 355 Ω/□ | 0.657 g/m²-day | 0.20x10 ⁷ Count/cm ² | **Table S1.** The various properties summarized of the three different samples studied in this work.