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In this work we have tacitly taken the proposed mechanisms of the main body of literature (as 

listed below)1-24 as our perspective of how these devices operate.  Specifically, we suggest 

that local polarization, associated with a defect or interface, is responsible in some way, as the 

origin of charge within the device.  That the polarization current due to dE/dt, is proportional 

to the creation of polarons at the interfaces and defects of the emitter and is thus related to 

what we have termed “polarization-induced current,” is clear from the literature cited.  

Importantly, this polarization-induced current has the same field dependence and behavior as 

that of a simple polarization current.  This we believe to be well discussed in the references 

provided.   

 

In this work, however, we suggest that such mechanisms can leave behind transient and 

uncompensated charge, particularly for the cases of the double insulating or the single layer 

insulator, AC-field activated device.  We further suggest that the “gate-like” semiconductor 

layer proposed can provide for compensation of this charge by allowing direct injection under 

½ of the power cycle, while still allowing for the operation of a “field-activated” device on 

the other ½ of the power cycle.  We emphasize that however one sees the exact mechanism of 

polaron and exciton formation, it is clear that our results, based upon charge compensation 

with the device during one power cycle, has led to a significant increase in performance 

brightness and efficiency.  So while we believe the standing model of AC field activated 

organic light emitting devices based on induced polarization-based currents is correct, our 

results in this work are not tied to its exact details.    
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SI 1 | XRD patterns of ZnO nanoparticles on SiO2 substrate and ITO coated glass. 

 

SI 2 | TEM images of ZnO nanoparticles (average diameter ~ 35nm). 
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SI 3 | Solutions F4TCNQ (orange), of Poly-TPD (transparent), and Poly-TPD:F4TCNQ 

(green) in weight ratio of 10:1. 

 

SI 4 | Luminance – RMS voltage characteristic of the AC-OEL devices employing Poly-

TPD:F4TCNQ, Poly TPD, and F4TCNQ as HGL and AC-OLED.  
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(b) 

SI 5 | The voltage waveform and current waveform at 40kHz before without DC voltage 

offset (a) and with a DC offset (b) of ZnO based AC-OEL device. 
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SI 6 | Electric response of additional DC voltage offset loading with AC driving voltage 

in the AC-OEL devices. RMS current density versus RMS voltage characteristics of the AC-

OEL devices with ZnO gate, P(VDF-TrFE-CFE) insulator and AC-OLED while an increasing 

DC voltage offset are added to AC driving voltage. 
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SI 7 | Luminescent and electric characteristics test system for AC-OEL devices. 

 

SI 8 | Lambertian patterns of actual emission and ideal panel emission. 

 

ZnO is a common semiconductor with a high-refractive-index (n=2.4) compared with that of 

organic polymers and glass. It is a concern that multiple reflections occur at the top and 

bottom surfaces of ZnO layers. If the intensities of reflected beams can destructively interfere 

and cancel each other, all the energy of the beam must be in the transmitted ray. However, 

anti-reflective structure requires glass substrate a higher refractive-index than ZnO layer. The 

refractive-index of glass substrate used in this work is about 1.5, which implies ZnO layer 

cannot be used as an optical out-coupler no matter how thick it is. In fact, ZnO layer obstructs 

light out-coupling from the devices because of possible total internal reflection at the interface 

between organic layer and ZnO layer. 
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A DC offset was added sine driving voltage to facilitate the electron extraction over the ZnO 

gate. SI 5 (a) and (b) show the current and voltage waveforms with and without a DC voltage 

offset (0.4V) respectively. The JRMS of device increases dramatically from 18.8 mA/cm2 to 

78.6 mA/cm2, which is attributed to enhanced electron extraction rate via ZnO gate.  

 

SI 6 shows JRMS - VRMS characteristic in the devices with ZnO gate, PVDF insulator or AC-

OLED. Considering the mechanisms of charge generation in Poly-TPD:F4TCNQ under 

intense high-frequency electric field, a great number of electrons and holes are created and 

accumulated in high-frequency AC cycles. Loading an external DC voltage offset, the 

massive electrons in Poly-TPD:F4TCNQ are drifted away to ITO over ZnO gate layer and 

leave empty sites as positive carriers. Promoted holes generation in the Poly-TPD:F4TCNQ 

suggests stronger hole injection to EML (PVK:Ir(ppy)3), leading to a brighter device. With 

increase of electric field by promoting DC offset in AC driving voltage, the current density 

across the device increases rapidly. A promoted current injection with the increasing DC 

offset is observed in the device without gate or insulator since a uniform electric field is still 

capable to affect electron extraction in the absence of gate or insulator. The inset of SI 6 

shows the direct current injection is significant suppressed, which suggests that the capacitor 

property of the AC-OEL device due to high k insulator has dominant influence. So it is not 

hard to understand L - VRMS curve of PVDF insulator device (the inset in Figure 5 (h)). 

 

Tunneling model:26,27 

     (1) 

 for a triangular barrier 

2 exp( )J V
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m*:the effective mass 

φ:the barrier height 

 

P-N junction model: 28 

    (2) 

The standard power efficiency calculation for AC driven OEL devices has been given by 

(nearly lambertian emission shown as SI 8),29 

2 2

2

[cd/ m ] [cd/ m ]
[lm/ W]

[W/ m ] cos / A
p
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L L

P V I
  


   

 
 

where L is luminance, θ is the phase angle between sinusoidal voltage and current, and A is 

active area of an EL pixel. 
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