Supplementary Fig. 1

1

Supplementary Figure 1

All 23 HPATs are significantly enriched for TEs.

(a) The different classes of TEs are color-coded; corresponding colors are used in **b**–e. (**b**,**c**) Coverage of different TE classes on the genome (exons + introns) and transcript (only exons) levels. The percentage of total length for each TE is represented for all 23 HPATs. Three control genes are included. (**d**) The 23 HPATs with embedded TEs and genomic length. Displayed are the most highly expressed isoforms for each HPAT gene. Genomic DNA is represented as a black line, and exons are represented by gray boxes. TEs are represented by the colored boxes underneath. Each exon is exonized with TEs (exons overlap TEs). The length of each genomic locus is not to scale.

Supplementary Fig. 2

Supplementary Figure 2

Molecular and functional analysis of HPAT2, HPAT3 and HPAT5 during preimplantation development.

(a) Magnified view of the ICM in human blastocyst demonstrates a specific staining pattern in the ICM of human blastocysts. Stars depict HPAT3 signal. Arrows depict HPAT5 signal. (b) HPAT2, HPAT3 and HPAT5 are significantly downregulated in human blastocysts injected with siRNAs compared to siScrambled controls (n = 3 blastocysts; data are shown with s.e.m.). (c) Blastomeres with knockdown of HPAT2, HPAT3 and HPAT5 during human embryo development did not contribute to ICM. The presence of ICM was validated with OCT4 and SOX2 staining. The ICM is highlighted by a yellow dashed circle. (d) Fluorescence-positive ICM in blastocysts with HPAT knockdown and control blastocysts.

Supplementary Figure 3

Primer validation and quality control of single-cell gene expression data.

(a) Histological sections stained with hematoxylin and eosin from teratomas derived from established iPSCs (iPSCs that resulted from derivation from BJ fibroblasts are termed fully established iPSCs and were used as the last time point for collection (see b). (b) Tracking of morphological changes of BJ fibroblasts during mRNA reprogramming with the Yamanaka factors. Depicted are the days at which cells were collected. Fibroblasts transfected with GFP only for five consecutive days are shown as well with GFP signal (images are representative). (c) Representative example of a dilution series for all 96 assays. C_t values were plotted as a function of the dilution factors (1:2) on a log scale. Linear regression analysis is depicted by the red line. Eight assays with $R^2 < 0.97$ were excluded, thus leaving 88 assays. (d) Distribution histogram of calculated primer efficiencies for 88 DELTAgene assays estimated from the slopes of standard curve plots. The average efficiency is 1.02 with s.d. = 0.06. (e) Quantile-quantile plot with experimentally estimated efficiencies (y axis) and the values expected for a normal distribution with mean efficiency = 1.02 and s.d. = 0.06 (x axis). The black line indicates the values expected for a normal distribution (y = x). Efficiency values that were derived from plots with three points in the standard curve are depicted in blue. Values derived from plots with >3 points in the standard curve are depicted in red. (f) Microscopic view of two capture sides on the C1 Single-Cell Auto Prep System microfluidic chip. The left capture side has no cell, and the right capture side has one captured cell (red arrow). (g) Representative example of primer specificity evaluation using melting curve analysis (here with HPAT2). The graph shows the relative change in fluorescence signal (EvaGreen) over the temperature range for all 96 cells on a single array. The area in red depicts false positive signals with incorrect melting curve temperatures (determined with bulk RNA and based on the melting curve temperature provided by Fluidigm). The area in green depicts the correct melting curves. Data outside the correct melting curve were set to 0. (h) Correlation analysis of mean Ct values generated 96 cells of three dynamic IFC arrays (single cells of (i) BJ fibroblasts, (ii) BJ fibroblasts transfected with mRNA encoding GFP for 2 d, (iii) BJ fibroblasts transfected with mRNA encoding GFP for 5 d). Genes that were detected in at least 20% of the 96 cells for each dynamic IFC array are considered. Shown are all three comparisons. Outliers are shown in green (GFP) and red. The assays in red (total of six) were excluded from subsequent analysis due to a non-correlative pattern among the arrays, leaving the 82 assays that are listed in Supplementary Table 2. i, Schematic overview of the quality assessment before normalization of single-cell gene expression. Nine dynamic IFC arrays (96.96 Fluidigm chips) were used for gene expression analysis. Two GFP control chips along with one fibroblast chip were used for correlation analysis (h) followed by initial quality assessment. Processed chips were used for a second round of quality assessment, resulting in 578 normalized single cells.

Supplementary Fig. 4

Supplementary Figure 4

Single-cell gene expression analysis during nuclear reprogramming and reactivation of HPAT expression during *in vitro* transdifferentiation from fibroblasts into neurons.

(a-c) Heat map plot of single-cell gene expression of different markers during nuclear reprogramming. Single cells are in rows. Genes are in columns. Fibroblast markers decrease over time, and pluripotency-specific markers, including selected HPATs, increase over

time as cell progress toward iPSCs (n = 87, 85, 72, 70, 86, 83 and 95 for fibroblasts, day 2, day 5, day 7, day 10, day 12 and iPSCs, respectively). Normalization was performed accordingly (the **Supplementary Note** provides details). White color indicates no expression. (d) PCA of 578 single cells collected at different time points during nuclear reprogramming. (e) Heat map and unsupervised clustering for 578 single-cell gene expression values resulted in clustering of novel genes implicating a similar biological context during reprogramming. Samples are color-coded according to the specific gene groups (horizontal) and the day at which single cells were collected (vertical). (f) The pluripotency marker *POU5F1* (red) and *HPAT2* (red; representative of all HPATs in this study) were exclusively expressed in H9 cells (hESCs) but not in (i) cDNA from colon, liver and lung (endoderm) and (ii) during neuronal transdifferentiation from fibroblasts (gray; samples collected at day 5 and day 30 are labeled iN-D5 and iN-D30, respectively) or cDNA from brain) (all ectoderm). *EN2* and *PAX6*, included as ectoderm control markers, were detected during neuron differentiation and in brain samples (n = 3; data shown with s.e.m.). (g) Heat map of bicluster analysis illustrating a different bicluster within each plot (**Supplementary Table 3**). Three different algorithms for bicluster calculation were applied, resulting in the identification of five clusters, four clusters and 16 clusters.

Supplementary Fig. 5

8

Overexpression and silencing constructs for *HPAT2*, *HPAT3* and *HPAT5*, NANOG ChIP-seq and regulation of *HPAT5* during hESC differentiation.

(a) Validation of siRNAs targeting *HPAT2*, *HPAT3* and *HPAT5*, respectively, in hESCs. Gene expression and *P* values were measured relative to siGlo control 48 h after transfection (n = 9). Orange color depicts expected gene downregulation. (b) Validation of the overexpression vectors. BJ fibroblasts were transfected with *HPAT2*, *HPAT3* and *HPAT5*. Gene expression and *P* values were measured 48 h after transfection relative to those in GFP-transfected fibroblasts (n = 9). Blue color depicts expected gene upregulation. (c) ChIP-qPCR analysis in H9 cells (hESCs) using NANOG. Signals were quantified using primer sets specific to a subset of HPATs or two 'negative' intergenic, non-repetitive regions. Two enhancers around *SOX2* are included as positive controls (n = 3; data are shown with s.e.m.). (d) Three snapshots of the UCSC browser (genome location indicated) aligned with the NANOG-binding region for *HPAT2*, *HPAT3* and *HPAT5* from ChIP-seq analysis. (e,f) Overexpression constructs and validation of the *HPAT5*-OE and mCherry-OE lines. *HPAT5* was significantly upregulated in hESC-OE cells compared to control cells. mCherry protein expression was also confirmed. n = 3; data are sgiwb with s.e.m. (g) Increase in differentiation markers representing all three germ layers significantly repressed in *HPAT5*-OE cells. *P* values are calculated for comparison of the mCherry and *HPAT5*-OE lines on the same days.

Supplementary Fig. 6

Supplementary Figure 6

Protein microarray with HPAT2, HPAT3 and HPAT5.

(a) Formaldehyde agarose RNA gel of the Cy5-labeled lincRNAs before hybridization to the protein array. (b) Representative image of a ProtoArray and fluorescence intensity for *HPAT2* and *HPAT3* (positive) and *HPAT5* (negative) on OCT4 protein in duplicate. (c) Heat map of HPAT2-, HPAT3- and HPAT5-binding proteins with RISC proteins and OCT4 highlighted (*z* score > 2.5). (d) Total number of candidate proteins identified with the three HPATs (with and without common RNA-binding proteins). (e) Validation of the findings by Lu *et al.* that HERV-H–derived lincRNAs (*HPAT2* and *HPAT3*) bind to specific OCT4, coactivators and mediators.

Supplementary Figure 7

Loss-of-function analyses in hESCs.

(a) Predicted let-7 binding sites in *HPAT5* transcript. Shown is *HPAT5* with embedded TEs along the genomic length (black line). Exons are shown as gray boxes. TEs are shown as colored boxes underneath. let-7 binding sites are within a SINE element (Alu). Bases in red are point mutations and confer HPAT5 specificity. (b) Gene expression analysis of endogenous pre-let-7 and mature let-7 in

fibroblasts. n = 3; data are shown with s.e.m. (c) Schematic overview of the *HPAT5* locus in genomic DNA from subcloned hESCs that were treated with CRISPR pairs 2 and 5 (gRNA2/5). Forward and reverse primers (in red) were designed to amplify a region of genomic DNA that is inside the deleted *HPAT5* locus. (d) Agarose gel illustrating successful derivation of the *HPAT5*-knockout hESC line. Genomic DNA from hESCs (passage 4 after subcloning) did not result in specific amplification. The controls included negative control (treatment only with one CRISPR arm, gRNA2), wild-type hESCs and no-template control (NT). (e) Gene expression analysis of endogenous *HPAT5* in hESCs. n = 3; data are shown with s.e.m. (f) Endogenous let-7 levels do not reach the levels in differentiated cells during 48 h of hESC differentiation. Endogenous let-7 levels are significantly increased 48 h after differentiation with bFGF removal (tenfold). The levels of endogenous let-7 are still significantly higher in human fibroblasts (100-fold) compared to differentiated hESCs. *HPAT5* knockout increases endogenous let-7 levels to ones similar to those found in hESCs differentiated for 24 h. Overexpression of let-7 in hESCs results in a -50-fold increase compared to human fibroblasts. let-7 levels were normalized to Hs-RNU6-2. n = 3; data are shown with s.e.m. (g) Differentiation of hESCs into secondary fibroblasts followed by episomal reprogramming into iPSCs. (h) Percentage of AP- and TRA-1-81–positive cells in *HPAT5*-WT and *HPAT5*-KO cells 25 d after reprogramming. n = 3; data are shown with s.e.m. (i) Endogenous let-7 and *HPAT5* levels during nuclear reprogramming at day 10. n = 3; data are shown with s.e.m.

Supplementary Fig. 8

Supplementary Figure 8

HPAT5 regulates let-7 in hESCs during differentiation.

(a) Heat map of differentially expressed genes (P < 0.05) after let-7 overexpression in four different samples). (b–d) Enrichment of let-7 seed sits in transcripts that were downregulated in hESC-*HPAT5*-KO cells. Overexpression from *HPAT5*-WT transcript rescued let-7-mediated differentiation. The Word cluster plot shows sequences in genes ranked by differential expression, after let-7 transfection. Each dot represents a word, summarizing *z* scores, and enrichment specificity indices of the enrichment profiles of negatively correlated 6- and 7-mer words. Triangles annotate known seed sites of human miRNAs. (i) A zoomed-in view (top) from the cluster plot. (e) Endogenous *HPAT2*, *HPAT3* and *HPAT5* expression in hESCs with let-7 overexpressed. *n* = 3; data are shown with s.e.m. (f)

Immunoblot confirming specific AGO2 pulldown. OE, overexpression. n = 3 samples; data are shown with s.e.m.

The primate-specific noncoding RNA HPAT5 regulates pluripotency during human

preimplantation development and nuclear reprogramming

Jens Durruthy-Durruthy, Vittorio Sebastiano, Mark Wossidlo, Diana Cepeda, Jun Cui, Edward J. Grow, Jonathan Davila, Moritz Mall, Wing Wong, Joanna Wysocka, Kin Fai Au, and Renee A. Reijo Pera

Supplementary Note inventory (as PDF)

The following Supplementary Note is merged in one PDF file:

- 1) Supplementary Tables 1-4
- 2) Supplementary Note
- 3) Supplementary References

Supplementary Tables 1-8

HPAT	LTR/ERV elements [%]	Fraction of HERV-H elements [%]*	Bases masked [%]	Length of genomic locus of HPAT [bp]
HPAT1	72.24	66.02	78.33	11334
HPAT2	96.07	100	93.42	7671
HPAT3	22.05	100	45.71	27573
HPAT4	17.21	100	43.14	14035
HPAT5†	91.36	0	97.01	6287
HPAT6	6.70	100	71.55	20308
HPAT7	50.16	55.09	75.12	17553
HPAT8	99.64	92.44	99.64	6714
HPAT9	41.41	100	74.57	29820
HPAT10	38.51	100	54.74	11181
HPAT11	4.93	100	57.75	12027
HPAT12	36.73	100	76.90	7380
HPAT13	37.69	92.83	52.01	21313
HPAT14	36.00	63.64	36.00	1036
HPAT15	97.94	100	97.94	5781
HPAT16	6.88	0	31.38	18694
HPAT17	49.38	51.71	66.23	25174
HPAT18	97.62	100	99.89	5640
HPAT19	56.60	100	72.02	7613
HPAT20	4.63	0	75.79	14359
HPAT21	88.84	100	88.84	4220
HPAT22	53.66	0	59.39	2145
HPAT23	65.84	100	67.34	8130
Controls	Found ERV class 1 repeats [%]	Fraction of HERV-H elements [%]*	Bases masked [%]	Length of genomic locus of HPAT [bp]
NANOG	0.00	0	30.91	6661
POU5F1	1.56	0	29.82	6337
SOX2	0.00	0	4.06	2512

Supplementary Table 1 - Sequence features of 23 HPATs on a genomic level.

Supplementary Table 1. Sequence features of 23 *HPATs* on a genomic level. All *HPATs* share repeats from the LTR/ERV class with the majority being HERV-H elements. Control genes are included for comparison. * Fraction extracted from column 2. † Contained large fraction of HUERS-P1 elements. Analysis was performed with RepeatMasker (<u>www.repeatmasker.org</u>).

Supplementary T	able 2 – Assays	s that passed	quality test	s and used	d for single	-cell gene
expression analy	sis; Primer seq	uences used i	in this stud	ly.		

Gene	Category	Gene	Category	Gene	Category	Gene	Category
RPLP0 GAPDH HSP90AB1 ACTB HPRT1 POU5F1* SOX2* LIN28A* EGFP*	Internal/ External Control	LIN28A DNMT3B SOX2 TERT NANOG ZFP42 TDGF1 POU5F1 UTF1 SALL4	Pluripotency Marker [†]	GeneCategoryBPTFCBX7DNMT1EEDGLPG9AP300EZH2JARID2KDM3BMBD3EpigeneticMCRS1RegulatorMLL2RING1BBRG1SNF2HHP1TAF1TET1THAP11WDR5	HPAT1 HPAT2 HPAT3 HPAT4 HPAT5 HPAT6 HPAT7 HPAT8 HPAT9	AT1 AT2 AT3 AT4 AT5 AT6 AT7 AT8 AT9	
CD13 COL1A1 PDGFRB CD90 VIM	Fibroblast Marker	CDH1 CDKN2A GRB2 LEFTY2 LMNB1 MAPK1 MAPK3 P53	Differentiation Pathways		HPAT10 Novel TE- HPAT12 derived HPAT14 lincRNAs** HPAT15 HPAT16 HPAT17 HPAT18 HPAT19 HPAT20 HPAT21 HPAT22 HPAT23		
BUB1 CDC20 CDKN1A LATS2 MAD2L1 RBL1	Pluripotent Cell Cycle Regulator	CDX2 EpCAM TROP2 KRT7 TEAD4	Trophectoderm [†]	PRMT1		TIFAT23	

Supplementary Table 2. Assays that passed quality tests and used for single-cell gene expression analysis. Genes were selected based on literature data and to aid to examine putative functions of novel genes related to pluripotency establishment and/or maintenance. *Assays designed in order to exclusively detect exogenous transcripts used during iPSC derivation. **Assays are the 21 most abundant expressed previously identified¹³. † Assays used for single-cell analysis in human embryos.

Supplementary Table 3 - Bi-cluster and correlation analysis on single cells during reprogramming

Bicluster method by Cheng <i>et al.</i> (2000)	Genes	# of cells
Bicluster C1 (43 x 96)	BPTF, CBX7, CD90, CDKN1A, DNMT1, EED,	96
. ,	G9A, GLP, GRB2, HP1, HPAT1, HPAT6-8,	
	HPAT10, HPAT12, HPAT14-15, HPAT17-18,	
	HPAT21-23, JARID2, KDM3B, LATS2, MAD2L1, MAPK1, MCRS1, MLL2,	
	NANOG,	
	NPM1, P300, P53, PDGFRB, SALL4, SNF2H,	
	TAF1, TDGF1, TERT, VIM, WDR5, ZFP42	
Bicluster C2 (13 x 48)	BRG1, BUB1, CDC20, CDKN2A, EZH1, HPAT5, LEFTY2, LMBN1, MBD3,	48
	RBL1, TET1, THAP11, UTF1	
Bicluster C3 (7 x 33)	CD13, COLA1A, HPAT2, HPAT4, HPAT9, LIN28A, POU5F1	33
Bicluster C4 (5 x 87)	CDH1, DNMT3B, HPAT3, MAPK3, SOX2	87
Bicluster method by Murali <i>et al.</i> (2003)	Genes	# of cells
Bicluster X1 (18 x 242)	CBX7, HPAT1, HPAT4, HPAT6, HPAT7, HPAT8, HPAT9, HPAT10, HPAT12,	242
	HPAT14, HPAT15, HPAT17, HPAT18, HPAT22, HPAT23, P53, TERT, ZFP42	
Bicluster X2 (4 x 178)	MAD2L1, MAPK1, RBL1, UTF1	178
Bicluster X3 (5 x 104	CDH1, DNMT3B, HPAT3, HPAT5, HPAT21	104
Bicluster X4 (4 x 78)	HPAT2, NANOG, POU5F1, SALL4	78
Bicluster X5 (4 x 75)	CD13, CDKN1A, COL1A1, EED	75
Bicluster X6 (3 x 82)	BRG1, GRB2, SNF2H	82
Bicluster X7 (2 x 88)	HP1, WDR5	88
Bicluster X8 (2 x 76)	CD90, PDGFRB	76
Bicluster X9 (2 x 72)	MLL2, P300	72
Bicluster X10 (2 x 71)	LMNB1, MCRS1	71
Bicluster X11 (2 x 71)	BUB1, EZH2	71
Bicluster X12 (2 x 69)	LIN28A, NPM1	69
Bicluster X13 (2 x 69)	BPTF, TET1	69
Bicluster X14 (2 x 61)	DNMT1, GLP	61
Bicluster X15 (2 x 56)	TAF1, THPA11	56
Bicluster X16 (2 x 56)	CDC20 G9A	56

Supplementary Table 3-1. Bi-cluster analysis with CC and Xmotif method on single-cells. Two methods are described by Cheng *et al.*⁵⁷ and Murali *et al.*⁵⁸, respectively. Number of bi-clusters (first column) and their respective collection of genes (second column) and number of cells (third column). Novel genes HPAT2, 3, and 5, highlighted in orange, are found in bi-clusters correlated to key pluripotency markers.

Fibroblast				
Gene 1	Gene 2	Pearson cor. Coef. R ²		
CD13	PDGFRB	0.7244301		
CDKN2A	LEFTY2	0.7206901		
DNMT1	WDR5	0.7192214		
VIM	SNF2H	0.7161610		
PDGFRB	CD90	0.6758941		
BUB1	CDC20	0.6609234		
BUB1	LMNB1	0.6589819		
MAD2L1	LMNB1	0.6563781		
NANOG	TDGF1	0.6545420		
BUB1	MAD2L1	0.6498815		
SNF2H	GRB2	0.6392659		
COL1A1	UTF1	0.6242778		
GRB2	MAPK1	0.6165660		
CD13	COL1A1	0.6118486		
VIM	GRB2	0.6112345		
		Da	ay 2	
Gene 1	Gene 2	Pearson cor. Coef. R ²		
GRB2	NPM1	0.7715967		
VIM	NPM1	0.7477494		
CD90	DNMT1	0.7264469		
MBD3	NPM1	0.7262332		
CD13	VIM	0.7181578		
BUB1	LMNB1	0.7110734		
VIM	WDR5	0.7108301		
LIN28A	SOX2	0.7063501		
MBD3	SNF2H	0.7032002		
SNF2H	NPM1	0.6956402		
VIM	DNMT1	0.6793156		

		0.6709972	
EZHZ	RDLI	0.0708873	
COLIAI	PDGFRB	0.6670295	
SNF2H	GRB2	0.6662780	
BRG1	NPM1	0.6581776	
		Da	ay 5
Gene 1	Gene 2	Pearson cor. coef. R ²	
	SOX2	0.0525119	
	30A2	0.9555116	
BPIF	P300	0.8615977	
CD90	P300	0.8471875	
BPTF	JARID2	0.8333670	
CD13	PDGFRB	0.8260145	
TAF1	CDKN2A	0.8194652	
GBB2	NPM1	0 8088202	
CD90	BDTE	0.8003200	
		0.0003200	
PDGFRD	DPTF	0.7912487	
P300	JAIRD2	0.7670918	
P300	MLL2	0.7628003	
VIM	BPTF	0.7594642	
SNF2H	NPM1	0.7588008	
CDKN2A	LEFTY2	0.7530967	
G9A	KDM3B	0 7528663	
83/	REMOD	0.7020000	
0			iy /
Gene 1	Gene 2	Pearson cor. coef. R ²	
HPAT12	HPAT17	0.9390666	
SOX2	POU5F1	0.9104285	
LIN28A	POU5F1	0.8665226	
HPAT12	ΗΡΔΤ4	0 7564206	
		0.7095055	
		-0.7203033	
		0.7028077	
MAD2L1	NPM1	0.7017917	
MAD2L1	HPAT4	-0.6962021	
CD13	PDGFRB	0.6899112	
NANOG	UTF1	0.6736726	
VIM	P300	0.6410589	
BRG1	THAP11	0.6333262	
COL1A1	PDGEBB	0.6072682	
BPTE	P300	0.6015609	
	1 000	0.0010000	
SNE2H		1 5000/115	
SNF2H	NPM1	0.5990415	
SNF2H		0.5990415 Da	y 10 Bafaranaaa
SNF2H Gene 1	Gene 2	0.5990415 Da Pearson cor. coef. R ²	y 10 References
Gene 1 SOX2	Gene 2 POUF51	0.5990415 Da Pearson cor. coef. R ² 0.9652009	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang
Gene 1 SOX2	Gene 2 POUF51	0.5990415 Da Pearson cor. coef. R ² 0.9652009	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³
Gene 1 SOX2 HPAT23	Gene 2 POUF51 HPAT14	D.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel
Gene 1 SOX2 HPAT23 THAP11	Gene 2 POUF51 HPAT14 CDKN2A	Da Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel
Gene 1 SOX2 HPAT23 THAP11 HPAT6	Gene 2 POUF51 HPAT14 CDKN2A HPAT14	0.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300	Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MI L2	0.5990415 Pearson cor. coef. R² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Jiang <i>et al.</i> (2013) ⁶⁴
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGE1	Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1	0.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6923927 0.6429327	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Jiang et al. (2013) ⁶⁴ Novel
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN24	Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEETY2	0.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6203397 0.6120327	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Jiang et al. (2013) ⁶⁴ Novel
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANCC	Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEFTY2 CDC22	0.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6203397 0.6125083 0.6125083 0.6125083	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Jiang et al. (2013) ⁶⁴ Novel Kim <i>et al.</i> (2014) ⁶⁵ .*
Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEFTY2 CDC20	0.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6203397 0.6125083 0.6118823 0.6118823	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Jiang et al. (2013) ⁶⁴ Novel Kim <i>et al.</i> (2014) ^{65,*} Novel
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11	NPM1Gene 2POUF51HPAT14CDKN2AHPAT14MLL2CDH1LEFTY2CDC20GRB2	0.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6220397 0.6125083 0.6118823 0.6087451	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Jiang et al. (2013) ⁶⁴ Novel Kim <i>et al.</i> (2014) ^{65,*} Novel Novel
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1	Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEFTY2 CDC20 GRB2 EED	0.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6203397 0.6125083 0.6118823 0.6087451 0.6057788 0.6057788	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Jiang et al. (2013) ⁶⁴ Novel Kim <i>et al.</i> (2014) ^{65,*} Novel Jin et al. (2009) ^{66,*}
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED	Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11	0.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6203397 0.6125083 0.6118823 0.6087451 0.6057788 0.6048661	y 10 References Rizzino $(2013)^{5^9}$, Fong <i>et al.</i> $(2011)^{6^0}$, Chew <i>et al.</i> $(2005)^{6^1}$, Wang <i>et al.</i> $(2012)^{6^2}$, Chambers <i>et al.</i> $(2009)^{6^3}$ Novel Novel Novel Jiang et al. $(2013)^{6^4}$ Novel Kim <i>et al.</i> $(2014)^{6^5,*}$ Novel Jin et al. $(2009)^{6^6,*}$ Dejosez et al. $(2008)^{6^7,*}$
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A	D.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.62203397 0.6125083 0.6118823 0.6087451 0.6057788 0.6024900	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Jiang et al. (2013) ⁶⁴ Novel Kim <i>et al.</i> (2014) ^{65,*} Novel Jin et al. (2009) ^{66,*} Dejosez et al. (2008) ^{67,*} Robert et al. (2002) ⁶⁶
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 GRB2	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1	0.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6221004 0.6203397 0.6118823 0.6087451 0.6057788 0.6048661 0.6024900 0.6013000	y 10 References Rizzino $(2013)^{59}$, Fong <i>et al.</i> $(2011)^{60}$, Chew <i>et al.</i> $(2005)^{61}$, Wang <i>et al.</i> $(2012)^{62}$, Chambers <i>et al.</i> $(2009)^{63}$ Novel Novel Novel Jiang et al. $(2013)^{64}$ Novel Kim <i>et al.</i> $(2014)^{65,*}$ Novel Novel Novel Novel Notel Jin et al. $(2009)^{66,*}$ Dejosez et al. $(2008)^{67,*}$ Robert et al. $(2002)^{69}$ Zhao et al. $(2013)^{69}$, Fujimoto et al. $(1996)^{70}$
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 EED DNMT1 GRB2 NANOG	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED	0.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6203397 0.6125083 0.6118823 0.6087451 0.6057788 0.6048661 0.6024900 0.6013000 0.6010966 0.6010966	y 10 References Rizzino $(2013)^{59}$, Fong <i>et al.</i> $(2011)^{60}$, Chew <i>et al.</i> $(2005)^{61}$, Wang <i>et al.</i> $(2012)^{62}$, Chambers <i>et al.</i> $(2009)^{63}$ Novel Novel Novel Jiang et al. $(2013)^{64}$ Novel Kim <i>et al.</i> $(2014)^{65,*}$ Novel Novel Jin et al. $(2009)^{66,*}$ Dejosez et al. $(2008)^{67,*}$ Robert et al. $(2002)^{66}$, Fujimoto et al. $(1996)^{70}$ Denholtz et al. $(2013)^{71}$, Villasante et al. $(2011)^{72}$
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 GRB2 NANOG HPAT6	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 LLEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23	D.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.62203397 0.6125083 0.6118823 0.6087451 0.6057788 0.6024900 0.6013000 0.6010966 0.5551024 0.502402	y 10 References Rizzino $(2013)^{59}$, Fong <i>et al.</i> $(2011)^{60}$, Chew <i>et al.</i> $(2005)^{61}$, Wang <i>et al.</i> $(2012)^{62}$, Chambers <i>et al.</i> $(2009)^{63}$ Novel Novel Novel Jiang et al. $(2013)^{64}$ Novel Kim <i>et al.</i> $(2014)^{65,*}$ Novel Jin et al. $(2009)^{66,*}$ Dejosez et al. $(2008)^{67,*}$ Robert et al. $(2002)^{68}$ Zhao et al. $(2013)^{69}$, Fujimoto et al. $(1996)^{70}$ Denholtz et al. $(2013)^{71}$, Villasante et al. $(2011)^{72}$ Novel
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 GRB2 NANOG HPAT6	NPM1Gene 2POUF51HPAT14CDKN2AHPAT14MLL2CDH1LEFTY2CDC20GRB2EEDTHAP11CDKN2ANPM1EEDHPAT23	D.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.62203397 0.6125083 0.6118823 0.6087451 0.6057788 0.6024900 0.6013000 0.6010966 0.5551024 Da	Y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Jiang et al. (2013) ⁶⁴ Novel Kim <i>et al.</i> (2014) ^{65,*} Novel Jin et al. (2009) ^{66,*} Dejosez et al. (2008) ^{67,*} Robert et al. (2002) ⁶⁶ Zhao et al. (2013) ⁶⁹ , Fujimoto et al. (1996) ⁷⁰ Denholtz et al. (2013) ⁷¹ , Villasante et al. (2011) ⁷² Novel
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 GRB2 NANOG HPAT6	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23	D.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6203397 0.6125083 0.6118823 0.6087451 0.6057788 0.6024900 0.6013000 0.6010966 0.5551024 Da	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Jiang et al. (2013) ⁶⁴ Novel Kim <i>et al.</i> (2014) ^{65,*} Novel Novel Novel Jin et al. (2009) ^{66,*} Dejosez et al. (2008) ^{67,*} Robert et al. (2002) ⁶⁸ Zhao et al. (2013) ⁶⁹ , Fujimoto et al. (1996) ⁷⁰ Denholtz et al. (2013) ⁷¹ , Villasante et al. (2011) ⁷² Novel Y 12 Potenzence
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 EED DNMT1 GRB2 NANOG HPAT6 Gene 1	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 ML2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23	D.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6223097 0.6125083 0.6118823 0.6087451 0.6048661 0.6024900 0.6013000 0.6013000 0.6010966 0.5551024 Da Pearson cor. coef. R ²	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Jiang et al. (2013) ⁶⁴ Novel Kim <i>et al.</i> (2014) ^{65,*} Novel Novel Jin et al. (2004) ^{66,*} Dejosez et al. (2008) ^{67,*} Robert et al. (2008) ^{67,*} Robert et al. (2002) ⁶⁶ Zhao et al. (2013) ⁵⁹ , Fujimoto et al. (1996) ⁷⁰ Denholtz et al. (2013) ⁷¹ , Villasante et al. (2011) ⁷² Novel y 12 References
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 EED DNMT1 GRB2 NANOG HPAT6 Gene 1 PDGFRB	NPM1Gene 2POUF51HPAT14CDKN2AHPAT14MLL2CDH1LEFTY2CDC20GRB2EEDTHAP11CDKN2ANPM1EEDHPAT23Gene 2CD90	D.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6203397 0.6125083 0.6118823 0.6087451 0.6057788 0.6048661 0.6013000 0.6010966 0.5551024 Da Da Pearson cor. coef. R ² 0.8149248	y 10 References Rizzino $(2013)^{59}$, Fong <i>et al.</i> $(2011)^{60}$, Chew <i>et al.</i> $(2005)^{61}$, Wang <i>et al.</i> $(2012)^{62}$, Chambers <i>et al.</i> $(2009)^{63}$ Novel Novel Novel Jiang et al. $(2013)^{64}$ Novel Kim <i>et al.</i> $(2014)^{65,*}$ Novel Novel Jin et al. $(2009)^{66,*}$ Dejosez et al. $(2008)^{67,*}$ Robert et al. $(2003)^{66}$, Fujimoto et al. $(1996)^{70}$ Denholtz et al. $(2013)^{69}$, Fujimoto et al. $(1996)^{70}$ Denholtz et al. $(2013)^{71}$, Villasante et al. $(2011)^{72}$ Novel y 12 References Hewitt <i>et al.</i> $(2012)^{73}$
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 GRB2 NANOG HPAT6 Gene 1 PDGFRB LIN28A	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23 Gene 2 CD90 POU5F1	D.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.62203397 0.6125083 0.6118823 0.6087451 0.6024900 0.6013000 0.6010966 0.5551024 Da Pearson cor. coef. R ² 0.8149248 0.8149248 0.8149248	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Jiang et al. (2013) ⁶⁴ Novel Kim <i>et al.</i> (2014) ^{65,*} Novel Novel Jin et al. (2009) ^{66,*} Dejosez et al. (2008) ^{67,*} Robert et al. (2002) ⁶⁶ Zhao et al. (2003) ⁶⁹ , Fujimoto et al. (1996) ⁷⁰ Denholtz et al. (2013) ⁷¹ , Villasante et al. (2011) ⁷² Novel Y 12 References Hewitt <i>et al.</i> (2012) ⁷⁸ Yu <i>et al.</i> (2007) ⁷⁴ , Qiu <i>et al.</i> (2010) ⁷⁵
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 GRB2 NANOG HPAT6 CDGFRB LIN28A LIN28A LIN28A	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 ML2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23 Gene 2 CD90 POU5F1 SOX2	D.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6221004 0.6203397 0.6118523 0.6017788 0.6057788 0.6024900 0.6013000 0.6010966 0.5551024 Da Pearson cor. coef. R ² 0.8149248 0.7726876 0.7512026	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Vovel Vovel Vovel Vovel Vovel Vovel Vovel Vovel Vovel Vovel Vovel Vovel Novel Novel Schert et al. (2009) ^{66,*} Dejosez et al. (2008) ^{67,*} Robert et al. (2002) ⁶⁸ Zhao et al. (2013) ⁶⁹ , Fujimoto et al. (1996) ⁷⁰ Denholtz et al. (2013) ⁷¹ , Villasante et al. (2011) ⁷² Novel y 12 References Hewitt <i>et al.</i> (2012) ⁷³ Yu <i>et al.</i> (2007) ⁷⁴ , Qiu <i>et al.</i> (2010) ⁷⁵ Qiu <i>et al.</i> (2010) ⁷⁴ , Cimadamore <i>et al.</i> (2013) ⁷⁶
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 EED DNMT1 GRB2 NANOG HPAT6 Gene 1 PDGFRB LIN28A SOX2	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 ML2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23 Gene 2 CD90 POU5F1 SOX2 POU5F1	Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6223397 0.6118823 0.6057788 0.6048661 0.6024900 0.6013000 0.6013000 0.8149248 0.7726876 0.7512026 0.7510157	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Novel Novel Kim <i>et al.</i> (2013) ⁶⁴ Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Stane et al. (2003) ^{66,*} Denholtz et al. (2003) ^{67,*} Robert et al. (2003) ^{67,*} Robert et al. (2003) ⁶⁹ , Fujimoto et al. (1996) ⁷⁰ Denholtz et al. (2013) ⁶⁹ , Fujimoto et al. (2011) ⁷² Novel y 12 References Hewitt <i>et al.</i> (2012) ⁷³ Yu <i>et al.</i> (2007) ⁷⁴ , Qiu <i>et al.</i> (2010) ⁷⁵ Qiu <i>et al.</i> (2013) ⁶⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 GRB2 NANOG HPAT6 Gene 1 PDGFRB LIN28A LIN28A SOX2	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23 Gene 2 CD90 POU5F1 SOX2 POU5F1	D.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6221004 0.6203397 0.6125083 0.6118823 0.6087451 0.6057788 0.6013000 0.6010966 0.5551024 Da Da Pearson cor. coef. R ² 0.8149248 0.7512026 0.7510157	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Jiang et al. (2013) ⁶⁴ Novel Kim <i>et al.</i> (2014) ^{65,*} Novel Novel Jin et al. (2009) ^{66,*} Dejosez et al. (2008) ^{67,*} Robert et al. (2008) ^{67,*} Robert et al. (2008) ^{67,*} Robert et al. (2003) ⁶⁹ , Fujimoto et al. (1996) ⁷⁰ Denholtz et al. (2013) ⁶⁹ , Fujimoto et al. (2011) ⁷² Novel y 12 References Hewitt <i>et al.</i> (2012) ⁷³ Yu <i>et al.</i> (2017) ⁷⁴ , Qiu <i>et al.</i> (2010) ⁷⁵ Qiu <i>et al.</i> (2017) ⁷⁴ , Cimadamore <i>et al.</i> (2013) ⁷⁶ Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 GRB2 NANOG HPAT6 Gene 1 PDGFRB LIN28A SOX2 COL1A1	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23 Gene 2 CD90 POU5F1 SOX2 POU5F1 PDGFRB	D.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.62203397 0.6125083 0.6118823 0.6087451 0.6024900 0.6013000 0.6010966 0.5551024 Da Pearson cor. coef. R ² 0.8149248 0.726876 0.6942359	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Vovel Vovel Vovel Kim <i>et al.</i> (2013) ⁶⁴ Novel Jin et al. (2014) ^{65,*} Dejosez <i>et al.</i> (2008) ^{67,*} Robert <i>et al.</i> (2009) ^{66,*} Dejosez <i>et al.</i> (2008) ^{67,*} Robert <i>et al.</i> (2009) ^{66,*} Zhao <i>et al.</i> (2013) ⁶⁹ , Fujimoto <i>et al.</i> (1996) ⁷⁰ Denholtz <i>et al.</i> (2013) ⁶⁹ , Fujimoto <i>et al.</i> (2011) ⁷² Novel Y 12 References Hewitt <i>et al.</i> (2012) ⁷³ Yu <i>et al.</i> (2012) ⁷⁴ , Qiu <i>et al.</i> (2010) ⁷⁵ Qiu <i>et al.</i> (2010) ⁷⁴ , Cimadamore <i>et al.</i> (2013) ⁷⁶ Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Takahira <i>et al.</i> (2007) ⁷⁷ , Hewitt <i>et al.</i> (2011) ⁷⁸
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 GRB2 NANOG HPAT6 OGRE 1 PDGFRB LIN28A SOX2 COL1A1 COL1A1	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23 Gene 2 CD90 POU5F1 SOX2 POU5F1 PDGFRB CD90	D.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6221004 0.6203397 0.6125083 0.6118823 0.6057788 0.6057788 0.6024900 0.6010966 0.5551024 Da Pearson cor. coef. R ² 0.8149248 0.7726876 0.7512026 0.7510157 0.6942359 0.6309951 0.6309951	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Novel Vovel Vovel Vovel Vovel Vovel Vovel Novel Pejosez et al. (2008) ^{67,*} Robert et al. (2009) ^{66,*} Dejosez et al. (2008) ^{67,*} Robert et al. (2009) ⁶⁸ Zhao et al. (2013) ⁶⁹ , Fujimoto et al. (1996) ⁷⁰ Denholtz et al. (2013) ⁶⁹ , Fujimoto et al. (2011) ⁷⁰ Denholtz et al. (2013) ⁷¹ , Villasante et al. (2011) ⁷² Novel Y 12 References Hewitt <i>et al.</i> (2012) ⁷³ (Constanting <i>et al.</i> (2012) ⁷³ (Constanting <i>et al.</i> (2007) ⁷⁷ , Hewitt <i>et al.</i> (2011) ⁷⁸ Hewitt <i>et al.</i> (2012) ⁷³
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 GRB2 NANOG HPAT6 Gene 1 PDGFRB LIN28A LIN28A SOX2 COL1A1 COL1A1 COL1A1 LIN21	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 ML2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23 Gene 2 CD90 POU5F1 SOX2 POU5F1 PDGFRB CD90 THAP11	Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6203397 0.6125083 0.6118823 0.6087451 0.6057788 0.6048661 0.6024900 0.6013000 0.6010966 0.7512026 0.7510157 0.6942359 0.6309951 0.6030955 0.60309551 0.6030955 0.60309551 0.6030955 0.60309551 0.6030955 0.6030955 0.6030955 0.6030955 0.6030955 0.6030955 0.6030955 0.603055 0.603055 0.603055 0.603055 0.605	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Novel Novel Kim <i>et al.</i> (2013) ⁶⁴ Novel Novel Novel Novel Novel Novel Novel Novel Schae et al. (2009) ^{66,*} Dejosez et al. (2008) ^{67,*} Robert et al. (2002) ⁶⁶ Zhao et al. (2013) ⁶⁹ , Fujimoto et al. (1996) ⁷⁰ Denholtz et al. (2013) ⁶⁹ , Fujimoto et al. (1996) ⁷⁰ Denholtz et al. (2013) ⁷¹ , Villasante et al. (2011) ⁷² Novel y 12 References Hewitt <i>et al.</i> (2012) ⁷³ Yu <i>et al.</i> (2007) ⁷⁴ , Gim adamore <i>et al.</i> (2013) ⁷⁶ Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2011) ⁷⁸ Hewitt <i>et al.</i> (2012) ⁷³ Novel
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 GRB2 NANOG HPAT6 GRB2 NANOG HPAT6 Gene 1 PDGFRB LIN28A SOX2 COL1A1 CDLA1 CDLA1	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23 Gene 2 CD90 POU5F1 SOX2 POU5F1 SOX2 POU5F1 VUSF1 VDGFRB CD90 THAP11	D.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.62203397 0.6125083 0.6118823 0.6087451 0.6024900 0.6013000 0.6010966 0.5551024 Da Pearson cor. coef. R ² 0.8149248 0.7726876 0.7512026 0.7510157 0.6942359 0.6309951 0.6214731 0.60214731	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Jiang et al. (2013) ⁶⁴ Novel Kim <i>et al.</i> (2014) ^{65,*} Novel Jin et al. (2009) ^{66,*} Dejosez et al. (2008) ^{67,*} Robert et al. (2002) ⁶⁶ Zhao et al. (2013) ⁶⁹ , Fujimoto et al. (1996) ⁷⁰ Denholtz et al. (2013) ⁶⁹ , Fujimoto et al. (2011) ⁷² Novel y 12 References Hewitt <i>et al.</i> (2012) ⁷³ Yu <i>et al.</i> (2012) ⁷³ , Cimadamore <i>et al.</i> (2013) ⁷⁶ Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁵² , Chambers <i>et al.</i> (2009) ⁶³ Takahira <i>et al.</i> (2012) ⁷³
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 GRB2 NANOG HPAT6 ODMT1 GRB2 NANOG HPAT6 Gene 1 PDGFRB LIN28A SOX2 COL1A1 CDL1A1 UTF1 CD90 PDTF	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23 Gene 2 CD90 POU5F1 SOX2 POU5F1 SOX2 POU5F1 VISF1 VISF1 VISF1 VISF1	D.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6221004 0.6203397 0.6125083 0.6118823 0.6087451 0.6024900 0.6013000 0.6010966 0.5551024 Da Pearson cor. coef. R ² Da 0.8149248 0.7726876 0.7510157 0.6942359 0.6309951 0.6214731 0.6047015 0.6047015	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Vovel Vovel Viet al. (2013) ⁶⁴ Novel Kim <i>et al.</i> (2014) ^{65,*} Novel Novel Novel Novel Jin <i>et al.</i> (2009) ^{66,*} Dejosez <i>et al.</i> (2002) ⁶⁶ Zhao <i>et al.</i> (2002) ⁶⁶ Zhao <i>et al.</i> (2002) ⁶⁶ Zhao <i>et al.</i> (2002) ⁶⁶ An <i>et al.</i> (2013) ⁶⁷ , Fujimoto <i>et al.</i> (1996) ⁷⁰ Denholtz <i>et al.</i> (2013) ⁷¹ , Villasante <i>et al.</i> (2011) ⁷² Novel Y 12 References Hewitt <i>et al.</i> (2012) ⁷³ Yu <i>et al.</i> (2012) ⁷⁴ , Cimadamore <i>et al.</i> (2013) ⁷⁶ Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Takahira <i>et al.</i> (2007) ⁷⁷ , Hewitt <i>et al.</i> (2011) ⁷⁸ Hewitt <i>et al.</i> (2012) ⁷³ Novel Hewitt <i>et al.</i> (2012) ⁷³
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 GRB2 NANOG HPAT6 OGRE 1 PDGFRB LIN28A LIN28A SOX2 COL1A1 UTF1 CD90 BPTF OPUGE1	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 ML2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23 Gene 2 CD90 POU5F1 SOX2 POU5F1 SOX2 POU5F1 VIM JARID2 JARID2	D.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6221004 0.6203397 0.6125083 0.6118823 0.6087451 0.6057788 0.6048661 0.6024900 0.6013000 0.6010966 0.5551024 Da Pearson cor. coef. R ² 0.8149248 0.7512026 0.7510157 0.6942359 0.6309951 0.6214731 0.6047015 0.5917150	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Novel Vovel Vovel Vovel Vovel Vovel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Y 12 References Hewitt <i>et al.</i> (2012) ⁷⁵ Qiu <i>et al.</i> (2012) ⁷⁴ , Qiu <i>et al.</i> (2010) ⁷⁵ Qiu <i>et al.</i> (2007) ⁷⁴ , Qiu <i>et al.</i> (2011) ⁷⁵ Qiu <i>et al.</i> (2012) ⁷³ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁷³ Takahira <i>et al.</i> (2007) ⁷⁷ , Hewitt <i>et al.</i> (2011) ⁷⁸ Hewitt <i>et al.</i> (2012) ⁷³ Novel Hewitt <i>et al.</i> (2012) ⁷³ Landry <i>et al.</i> (2008) ⁷⁹ , Gaspar-Maia <i>et al.</i> (2011) ⁸⁰ ,*
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 GRB2 NANOG HPAT6 Gene 1 PDGFRB LIN28A SOX2 COL1A1 COL1A1 CDL1A1 UTF1 CD90 BPTF CDKN2A	Gene 2 POUF51 HPAT14 CDKN2A HPAT14 ML2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23 Gene 2 CD90 POU5F1 SOX2 POU5F1 VIM JARID2 LEFTY2	Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6203397 0.6125083 0.6118823 0.6057788 0.6048661 0.6024900 0.610966 0.5551024 Da Pearson cor. coef. R ² 0.8149248 0.7726876 0.7510157 0.6942359 0.6309951 0.6214731 0.6047015 0.5917150 0.5746193	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Novel Novel Vovel Vovel Novel Y12 References Hewitt <i>et al.</i> (2012) ⁷³ Yu <i>et al.</i> (2013) ⁷¹ , Villasante <i>et al.</i> (2011) ⁷² Novel Y12 References Hewitt <i>et al.</i> (2012) ⁷³ Yu <i>et al.</i> (2012) ⁷³ Yu <i>et al.</i> (2013) ⁵⁶ , Fong <i>et al.</i> (2010) ⁷⁵ Qiu <i>et al.</i> (2013) ⁵⁶ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2011) ⁷⁸ Hewitt <i>et al.</i> (2012) ⁷³ Landry <i>et al.</i> (2008) ^{79,*} , Gaspar-Maia <i>et al.</i> (2011) ^{80,*} Kim <i>et al.</i> (2014) ^{65,*}
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 GRB2 NANOG HPAT6 OGRE 1 PDGFRB LIN28A SOX2 COL1A1 CDTF1 CDWN2A VIM	Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23 Gene 2 CD90 POU5F1 SOX2 SON51	D.3990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6221004 0.6203397 0.6125083 0.6118823 0.6087451 0.6057788 0.6013000 0.6010966 0.5551024 Da Pearson cor. coef. R ² 0.8149248 0.7726876 0.7512026 0.7510157 0.6942359 0.6030951 0.62214731 0.6047015 0.5917150 0.5745164	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Novel Jiang et al. (2013) ⁶⁴ Novel Kim <i>et al.</i> (2014) ^{65,*} Novel Novel Jin et al. (2009) ^{66,*} Dejosez et al. (2008) ^{67,*} Robert et al. (2009) ⁶⁶ Zhao et al. (2013) ⁶⁹ , Fujimoto et al. (1996) ⁷⁰ Denholtz et al. (2013) ⁶⁹ , Fujimoto et al. (2011) ⁷² Novel Y12 References Hewitt <i>et al.</i> (2012) ⁷³ Yu <i>et al.</i> (2007) ⁷⁴ , Qiu <i>et al.</i> (2010) ⁷⁵ Qiu <i>et al.</i> (2010) ⁷⁴ , Cimadamore <i>et al.</i> (2013) ⁷⁶ Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Takahira <i>et al.</i> (2007) ⁷⁷ , Hewitt <i>et al.</i> (2011) ⁷⁸ Hewitt <i>et al.</i> (2012) ⁷³ Novel Hewitt <i>et al.</i> (2012) ⁷³ Kim <i>et al.</i> (2012) ⁷³ Landry <i>et al.</i> (2014) ^{65,*} Gaspar-Maia <i>et al.</i> (2011) ^{80,*}
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 GRB2 NANOG HPAT6 DNMT1 GRB2 NANOG HPAT6 OLIAT COL1A1 COL1A1 UTF1 CD90 BPTF CDKN2A VIM CD90	Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23 Gene 2 CD90 POU5F1 SOX2 SNF2H	D.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6221004 0.6203397 0.6125083 0.6118823 0.6087451 0.6057788 0.6048661 0.6024900 0.6010966 0.5551024 Da Pearson cor. coef. R ² 0.8149248 0.7726876 0.7512026 0.7510157 0.6942359 0.6309951 0.6214731 0.6047015 0.5917150 0.5745164 0.5614012 Da	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Vovel Vovel Vovel Vovel Vovel Vovel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Penholtz et al. (2002) ⁶⁶ Zhao et al. (2002) ⁶⁶ , Fujimoto et al. (1996) ⁷⁰ Denholtz et al. (2013) ⁶⁷ , Villasante et al. (2011) ⁷² Novel Y 12 References Hewitt <i>et al.</i> (2012) ⁷³ Yu <i>et al.</i> (2012) ⁷⁴ , Cimadamore <i>et al.</i> (2013) ⁷⁶ Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Takahira <i>et al.</i> (2007) ⁷⁷ , Hewitt <i>et al.</i> (2011) ⁷⁸ Hewitt <i>et al.</i> (2012) ⁷³ Novel Hewitt <i>et al.</i> (2012) ⁷³ Landry <i>et al.</i> (2008) ^{78,*} , Gaspar-Maia <i>et al.</i> (2011) ^{80,*} Gaspar-Maia <i>et al.</i> (2011) ^{80,*}
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 GRB2 NANOG HPAT6 OGRE 1 PDGFRB LIN28A LIN28A SOX2 COL1A1 UTF1 CD90 BPTF CDKN2A VIM CD90 CD13	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 ML2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23 Gene 2 CD90 POU5F1 SOX2 POU5F1 PDGFRB CD90 THAP11 VIM JARID2 LEFTY2 SNF2H PDGFRB	D.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6221004 0.6203397 0.6125083 0.6118823 0.6087451 0.6057788 0.60057788 0.6048661 0.6024900 0.6010966 0.5551024 Da Pearson cor. coef. R ² 0.8149248 0.7726876 0.7512026 0.7510157 0.6942359 0.6309951 0.6214731 0.6047015 0.5917150 0.5745164 0.591867 0.598867	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Novel Vovel Vovel Vovel Vovel Vovel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel V12 References Hewitt <i>et al.</i> (2012) ⁷⁵ Qiu <i>et al.</i> (2013) ⁷⁴ , Qiu <i>et al.</i> (2010) ⁷⁵ Qiu <i>et al.</i> (2012) ⁷⁴ , Qiu <i>et al.</i> (2011) ⁷⁵ Qiu <i>et al.</i> (2012) ⁷⁴ , Cimadamore <i>et al.</i> (2013) ⁷⁶ Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Takahira <i>et al.</i> (2012) ⁷³ Hewitt <i>et al.</i> (2012) ⁷³ Novel Hewitt <i>et al.</i> (2012) ⁷³ Landry <i>et al.</i> (2014) ⁶⁵ . Gaspar-Maia <i>et al.</i> (2011) ^{80.*} Gaspar-Maia <i>et al.</i> (2011) ^{80.*} Hewitt <i>et al.</i> (2011) ⁷⁸ .
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 GRB2 NANOG HPAT6 OGH PDGFRB LIN28A SOX2 COL1A1 CDFF CDKN2A VIM CD90 BPTF CDKN2A VIM CD90 CD13 TDGF1	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23 Gene 2 CD90 POU5F1 SOX2 POU5F1 SOX2 POU5F1 SOX2 POU5F1 SOK2 POU5F1 SOK2 POU5F1 PDGFRB CD90 THAP11 VIM JARID2 LEFTY2 SNF2H PDGFRB TET1	D.3990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6221004 0.6203397 0.6125083 0.6118823 0.6087451 0.6057788 0.6013000 0.6010966 0.5551024 Da Pearson cor. coef. R ² D.8149248 0.7726876 0.7512026 0.7510157 0.6942359 0.6309951 0.6214731 0.6047015 0.5746193 0.5745164 0.5614012 0.5598867 0.5589469	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Jiang et al. (2013) ⁶⁴ Novel Kim <i>et al.</i> (2014) ^{65,*} Novel Novel Jin et al. (2009) ^{66,*} Dejosez et al. (2008) ^{67,*} Robert et al. (2002) ⁶⁶ Zhao et al. (2013) ⁶⁹ , Fujimoto et al. (1996) ⁷⁰ Denholtz et al. (2013) ⁶⁹ , Fujimoto et al. (2011) ⁷² Novel Y 12 References Hewitt <i>et al.</i> (2012) ⁷³ Yu <i>et al.</i> (2017) ⁷⁴ , Cimadamore <i>et al.</i> (2013) ⁷⁶ Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁷³ , Hewitt <i>et al.</i> (2011) ⁷⁸ Hewitt <i>et al.</i> (2012) ⁷³ Takahira <i>et al.</i> (2007) ⁷⁷ , Hewitt <i>et al.</i> (2011) ⁷⁸ Hewitt <i>et al.</i> (2012) ⁷³ Landry <i>et al.</i> (2014) ^{65,*} Gaspar-Maia <i>et al.</i> (2011) ^{80,*} Gaspar-Maia <i>et al.</i> (2011) ^{80,*} Gaspar-Maia <i>et al.</i> (2011) ^{80,*} Gaspar-Maia <i>et al.</i> (2011) ^{80,*} Hewitt <i>et al.</i> (2011) ⁷⁸
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 GRB2 NANOG HPAT6 OGRE 1 PDGFRB LIN28A SOX2 COL1A1 CDTF1 COKN2A VIM CD90 BPTF CDKN2A VIM CD90 CD13 TDGF1 NANOG	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23 Gene 2 CD90 POU5F1 SOX2 POU5F1 SOK2 SNF2H SNF2H SNF2H SNF2H SNF2H	D.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6221004 0.6203397 0.6125083 0.6118823 0.6087451 0.6024900 0.6013000 0.6010966 0.55551024 Da Pearson cor. coef. R ² 0.8149248 0.7726876 0.7512026 0.7510157 0.6942359 0.60214731 0.6047015 0.5917150 0.5745164 0.5745164 0.5614012 0.598867 0.5589469 0.5288758 0.5288758	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Novel Jiang et al. (2013) ⁶⁴ Novel Kim <i>et al.</i> (2014) ^{65,*} Dejosez et al. (2008) ^{67,*} Robert et al. (2009) ^{66,*} Dejosez et al. (2009) ^{66,*} Dejosez et al. (2009) ^{66,*} Dejosez et al. (2001) ⁶⁹ , Fujimoto et al. (1996) ⁷⁰ Denholtz et al. (2013) ⁶⁹ , Fujimoto et al. (1996) ⁷⁰ Denholtz et al. (2013) ⁶⁹ , Fujimoto et al. (2011) ⁷² Novel Y 12 References Hewitt <i>et al.</i> (2012) ⁷³ Yu <i>et al.</i> (2010) ⁷⁴ , Giu <i>et al.</i> (2010) ⁷⁵ Qiu <i>et al.</i> (2010) ⁷⁴ , Cimadamore <i>et al.</i> (2013) ⁷⁶ Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Takahira <i>et al.</i> (2007) ⁷⁷ , Hewitt <i>et al.</i> (2011) ⁷⁸ Hewitt <i>et al.</i> (2012) ⁷³ Novel Hewitt <i>et al.</i> (2012) ⁷³ Kim <i>et al.</i> (2012) ⁷³ Landry <i>et al.</i> (2011) ^{70,*} , Gaspar-Maia <i>et al.</i> (2011) ^{80,*} Gaspar-Maia <i>et al.</i> (2011) ^{80,*} Gaspar-Maia <i>et al.</i> (2011) ^{80,*}
SNF2H Gene 1 SOX2 HPAT23 THAP11 HPAT6 P300 TDGF1 CDKN2A NANOG THAP11 DNMT1 EED DNMT1 GRB2 NANOG HPAT6 DOGFRB LIN28A LIN28A SOX2 COL1A1 CDL1A1 UTF1 CD90 BPTF CDKN2A VIM CD90 CD13 TDGF1 NANOG	NPM1 Gene 2 POUF51 HPAT14 CDKN2A HPAT14 MLL2 CDH1 LEFTY2 CDC20 GRB2 EED THAP11 CDKN2A NPM1 EED HPAT23 Gene 2 CD90 POU5F1 SOX2 POU5F1 SOK2 POU5F1 SNF2H SNF2H PDGFRB TET1 SNF2H	D.5990415 Da Pearson cor. coef. R ² 0.9652009 0.8416919 0.6589637 0.6489457 0.6221004 0.6221004 0.6203397 0.6125083 0.6118823 0.6057788 0.6057788 0.6057788 0.6010966 0.5551024 Da Pearson cor. coef. R ² Da 0.8149248 0.7726876 0.7512026 0.7510157 0.6942359 0.6309951 0.6214731 0.6047015 0.5917150 0.5746193 0.5745164 0.5614012 0.5598867 0.589469 0.5288758	y 10 References Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Novel Novel Novel Novel Vovel Vovel Vovel Vovel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel 2hao et al. (2009) ^{66,*} Dejosez et al. (2009) ^{66,*} Dejosez et al. (2009) ^{66,*} Robert et al. (2002) ⁶⁸ Zhao et al. (2013) ⁶⁹ , Fujimoto et al. (1996) ⁷⁰ Denholtz et al. (2013) ^{67,*} Robert et al. (2013) ^{67,*} Robert et al. (2013) ⁷¹ , Villasante et al. (2011) ⁷² Novel Y 12 References Hewitt <i>et al.</i> (2012) ⁷³ Yu <i>et al.</i> (2007) ⁷⁴ , Gina damore <i>et al.</i> (2013) ⁷⁶ Rizzino (2013) ⁵⁹ , Fong <i>et al.</i> (2011) ⁶⁰ , Chew <i>et al.</i> (2005) ⁶¹ , Wang <i>et al.</i> (2012) ⁶² , Chambers <i>et al.</i> (2009) ⁶³ Takahira <i>et al.</i> (2007) ⁷⁷ , Hewitt <i>et al.</i> (2011) ⁷⁸ Hewitt <i>et al.</i> (2012) ⁷³ Landry <i>et al.</i> (2008) ^{79,*} , Gaspar-Maia <i>et al.</i> (2011) ^{80,*} Kim <i>et al.</i> (2014) ^{65,*} Gaspar-Maia <i>et al.</i> (2011) ^{80,*} Raspar-Maia <i>et al.</i> (2011) ^{80,*} Novel Hewitt <i>et al.</i> (2011) ⁷⁸ Novel Sec

Gene 1	Gene 2	Pearson cor. coef. R ²	References		
HPAT2	HPAT3	0.8851197	Novel		
DNMT3B	JARID2	0.8550930	Assou <i>et al.</i> (2009) ⁸¹ , Pasini <i>et al.</i> (2010) ⁸² , Peng <i>et al.</i> (2009) ⁸³		
TDGF1	SALL4	0.8530899	Kidder <i>et al.</i> (2008) ⁸⁴		
SALL4	GRB2	0.8383334	Hamazaki <i>et al.</i> (2006) ⁸⁵ , Lanner <i>et al.</i> (2010) ⁸⁶		
SALL4	SNF2H	0.8313401	Kuijk <i>et al.</i> (2011) ⁸⁷		
SALL4	P300	0.8312009	Chitilian <i>et al.</i> (2014) ⁸⁸ , Zhong <i>et al.</i> (2009) ⁸⁹		
WDR5	GRB2	0.8280270	Ang et al. (2011) ⁹⁰ , Yang et al. (2014) ⁹¹ †, Lanner et al. (2010) ⁸⁶		
TDGF1	DNMT1	0.8266580	Vassena et al. (2011) ⁹² , Hochedlinger et al. (2009) ⁹³		
SOX2	SALL4	0.8266580	Tanimura et a. (2013) ⁹⁴ , Yang <i>et al.</i> (2008) ⁹⁵		
DNMT3B	SALL4	0.8210343	Yang <i>et al.</i> (2012) ⁹⁶ , Tan <i>et al.</i> (2012) ⁹⁷		
SNF2H	GRB2	0.8208503	Kuijk <i>et al.</i> (2011) ⁸⁷		
SALL4	G9A	0.8198704	Kuijk <i>et al.</i> (2011) ⁸⁷		
GRB2	NPM1	0.8194229	Johansson <i>et al.</i> (2010) ^{98,*}		
TDGF1	GRB2	0.8184948	Kuijk <i>et al.</i> (2011) ⁸⁷		
NANOG	POU5F1	0.8141164	Loh <i>et al.</i> (2006) ²⁹ , Wang <i>et al.</i> (2012) ⁶²		
	All 578 cells				
Gene 1	Gene 2	Pearson cor. coef. R ²	References		
DNMT3B	HPAT3	0.9168379	Novel		
DNMT3B	HPAT5	0.8865738	Novel		
TDGF1	HPAT3	0.8760132	Novel		
VIM	CDKN1A	0.8667649	Li <i>et al.</i> (2014) ⁹⁹ , Mergui <i>et al.</i> (2010) ¹⁰⁰		
DNMT3B	SALL4	0.8661937	Yang <i>et al.</i> (2012) ⁹⁶ , Tan <i>et al.</i> (2012) ⁹⁷		
SALL4	HPAT3	0.8618967	Novel		
HPAT5	HPAT3	0.8558339	Novel		
P300	MLL2	0.8554477	Jiang <i>et al.</i> (2013) ⁶⁴		
HPAT2	HPAT3	0.8403645	Novel		
DNMT3B	TDGF1	0.8390348	Tan <i>et al.</i> (2013) ⁹⁷		
CDH1	HPAT3	0.8378528	Novel		
TDGF1	SALL4	0.8301321	Kidder et al. (2008) ⁸⁴ , Vassena et al. (2011) ⁹²		
LIN28A	SOX2	0.8284545	Cimadamore <i>et al.</i> (2012, 2013) ^{76,101}		
DNTM3B	HPAT2	0.8235213	Novel		
DNMT3B	CDH1	0.8229433	Rahnama <i>et al.</i> (2009) ¹⁰² , Kwon <i>et al.</i> (2010) ¹⁰³		

Supplementary Table 3-2. Correlation analysis on single-cell populations. Top 15 correlated gene pairs (first two columns) for each collected single cell population during nuclear reprogramming and their correlation coefficient (third column). Novel genes HPAT2, 3 and 5, highlighted in orange, are found be among the top 15 correlated gene pairs late during reprogramming. Fourth column (day 10 and later stage) validates correlation analysis and shows previously reported (in)direct interactions between gene pairs. * are not directly associating both genes, though suggest putative interactions. † involve reported lincRNAs.

Supplementary Table 4 – Target-specific siRNA sequences

Target transcript	Sense siRNA sequence
HPAT2	CCCAGAUCUUCUCGGCUUAUU
	UCCCAAGGUCAUACCGCAAUU
	CAUCACGGACGCCGAGCUUUU
	GGAGGCAGGAGGAUCGCUUUU
HPAT3	GAAAUUUGGUGCCGUGACUUU
	GAGAAAGAUCCACCUACGAUU
HPAT5	UAACAAUAACCACGAGAUAUU
	GAGAAAGGGAGCCCGGAAAUU
	CAGGAAGACGCCAGAGCGAUU

Supplementary Table 4. Target-specific siRNA sequences used for knockdown experiments.

Supplementary Table 5 – refer to Excel file – ChIP analysis with NANOG

Supplementary Table 6 – refer to Excel file – Protein microarray analysis

Supplementary Table 7 – refer to Excel file – Prediction of miRNA binding sites

Supplementary Table 8 – refer to Excel file – Microarray and cWords analysis

Supplementary Note

Bi-cluster analysis on single cells

In an effort to retrieve subgroups within each cell population, we applied bi-cluster analysis on our high dimensional dataset. Bi-cluster analysis resolves local rather than global gene association patterns and identifies gene sets with related expression motifs across subsets of cells¹⁰⁴. We explored 3 different algorithms (Methods section for detail) for bi-cluster identification, as existing methods are extremely sensitive to parameter and data variation, thus constituting a challenge to rely solely on one method. The Plaid method defined by Lazzeroni and Owen⁵² assembled the data into five clusters (P1-P5) (Fig. 2d); the algorithm by Cheng and Church⁵⁷ identified four clusters (C1-C4, Supplementary Fig. 4, Supplementary Table 3) and the Xmotifs algorithm⁵⁸, generated 16 clusters (X1-X16, Supplementary Fig. 4j, Supplementary Table 3). The latter searches for genes with constant values over a set of different single cells, thus revealing "conserved gene expression motifs". We found that HPAT2, HPAT3 and HPAT5 were identified in all three algorithms with expression patterns highly correlative to key pluripotency markers including SALL4, POU5F1, SOX2, DNMT3B and NANOG. For instance, cluster X3 and X4 consisted of 104 and 78 cells, respectively, and correlated HPAT3/HPAT5 with CDH1/DNMT3B and HPAT2 with SALL4/POU5F1/NANOG, respectively. Cluster P1, P2, P4 and P5 included 111, 81, 94 and 24 cells, respectively, and collectively identified subpopulations that uniquely express HPAT2, HPAT3 and HPAT5 in a correlative manner to above mentioned key pluripotency markers, including SALL4. As internal validation, 83 cells grouped in cluster P3 were of fibroblast origin as they expressed fibroblast specific marker genes including CD13, COL1A1, VIM and PDGFRB.

Correlation analysis on single cells

We then reasoned that single-cell expression data could be used to identify pairs of genes with correlated expression and reveal regulatory linkages, as recently shown²⁵. Correlation analysis across all 578 cells revealed one group of genes (C1), that included five positively correlated

genes (CD13, CD90, COL1A1, VIM and PDGFRB) consistent with previous reports⁷³ (Fig. 2d). C2, a second group included POU5F1, SOX2 and LIN28A, known to be crucial for pluripotency establishment and maintenance^{59,63}; NANOG and TET1, crucial for pluripotency establishment and shown to physically interact with each other¹⁰⁵ positively correlated in group C3. In contrast, negative correlation was observed between POU5F1/SOX2/LIN28A (that maintain self-renewal and pluripotency in ESCs/iPSCs) and MAPK3 (C4), which upon activation, triggers differentiation ^{86,106}. Most interestingly, the majority of novel lincRNAs including HPAT2, HPAT3, and HPAT5 correlated positively with each other (group C5) and negatively with fibroblast specific markers (group C6) suggesting a common role during reprogramming. We located SALL4, CDH1 and DNMT3B within that same group validating our bi-cluster analysis. Among the top 15 most correlated gene pairs, HPAT3 correlated with DNMT3B, TDGF1, SALL4, HPAT5, HPAT2 and CDH1 (Supplementary Table 3) at late stages during reprograming, indicating coordinated expression and a central role of this particular novel transcript. See Supplementary Table 3 for top 15 correlated gene pairs for different time points of single-cell collection. Correlations that were found late during reprogramming (day 10 - iPSCs) were consistent with previous reports (references in fourth column).

Protein microarray assays

Protein microarrays are chips containing more than 9,400 human recombinant proteins spotted in duplicate. *HPAT-2, -3* and *-5* were *in vitro* transcribed (Supplementary Fig. 6a), labeled with Cy5 and independently probed on two human protein microarrays. We included *HPAT-2* and *-3*, both HERV-H-containing lincRNAs, to validate previous findings¹⁷ as well as to identify differences with *HPAT5*, We adopted a previously published protocol³⁵ for optimal labeling conditions such that 3 pmol dye per μ g RNA with an average efficacy of 1 dye molecule per 850 bp RNA was achieved to minimize modification of native RNA structures while yielding signal intensities that are readily visualized. Each RNA-species was probed in two technical replicates (denatured and non-denatured). By selecting for the most stringent RNA-protein binding events (minimum signal

above background of 2.5 fold, Z-score > 2), 68, 56 and 28 binding events for HPAT-2, -3 and -5, respectively were identified (Supplementary Fig. 6c). To further reduce the list of candidate RNAprotein interactions we removed common RNA binding-proteins that contained known RNA binding motifs (Additional Table 1 in Siprashvili et al.³⁵). Neither known pluripotency-associated proteins nor proteins related to chromatin modification complexes (such as PCR2) were among the remaining list (Supplementary Table 6) which confirms a recent report¹⁷ and possibly explains that no significant binding sites genome wide were found during ChIRP analysis. We then asked whether HPAT-2 and -3, both HERV-H derived lincRNAs, bind to OCT4 and other mediators as previously described. 6 out of 10 proteins that were used in this study were printed onto the protein array (Supplementary Fig. 6d). Notably, HPAT2 bound to all 6 proteins (OCT4, CDK8, MED6, MED12, MED21 and MED27), validating our approach. HPAT3 specifically bound to 3 out of 6 proteins including OCT4. This is in contrast to HPAT5, a non-HERVH derived lincRNA, that only bound to 1 out of 6 (CDK8) proteins, underlining that it represents a different class of lincRNA. Taken together our findings confirm previously published results, represent a large resource to study specific HPAT-protein interactions and suggest that each retroviral-derived lincRNA is likely to be implicated in numerous physiological pathways and belong to many phenotypic classes not necessarily related to pluripotency maintenance²⁰. Moreover our data indicate that HPAT5 that bound to the fewest number of proteins, of which most were common RNA binders, is distinct from HPAT2 and HPAT3.

Supplementary References

- 53 Bengtsson, M., Stahlberg, A., Rorsman, P. & Kubista, M. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. *Genome Res.* **15**, 1388-1392 (2005).
- 54 Pang, Z. P. *et al.* Induction of human neuronal cells by defined transcription factors. *Nature* **476**, 220-223 (2011).
- 55 Goff, L. A. *et al.* Ago2 immunoprecipitation identifies predicted microRNAs in human embryonic stem cells and neural precursors. *PLoS One* **4**, e7192 (2009).
- 56 Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. *Nat Methods* **5**, 877-879 (2008).
- 57 Cheng, Y. & Church, G. M. Biclustering of expression data. *Proc Int Conf Intell Syst Mol Biol* **8**, 93-103 (2000).
- 58 Murali, T. M. & Kasif, S. Extracting conserved gene expression motifs from gene expression data. *Pac Symp Biocomput*, 77-88 (2003).
- 59 Rizzino, A. Concise review: The Sox2-Oct4 connection: critical players in a much larger interdependent network integrated at multiple levels. *Stem Cells* **31**, 1033-1039 (2013).
- 60 Fong, Y. W. *et al.* A DNA repair complex functions as an Oct4/Sox2 coactivator in embryonic stem cells. *Cell* **147**, 120-131 (2011).
- 61 Chew, J. L. *et al.* Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. *Mol. Cell. Biol.* **25**, 6031-6046 (2005).
- 62 Wang, Z., Oron, E., Nelson, B., Razis, S. & Ivanova, N. Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. *Cell Stem Cell* **10**, 440-454 (2012).
- 63 Chambers, I. & Tomlinson, S. R. The transcriptional foundation of pluripotency. *Development* **136**, 2311-2322 (2009).
- 64 Jiang, H. *et al.* Regulation of transcription by the MLL2 complex and MLL complexassociated AKAP95. *Nat. Struct. Mol. Biol.* **20**, 1156-1163 (2013).
- 65 Kim, D. K., Cha, Y., Ahn, H. J., Kim, G. & Park, K. S. Lefty1 and lefty2 control the balance between self-renewal and pluripotent differentiation of mouse embryonic stem cells. *Stem Cells Dev* 23, 457-466 (2014).
- 66 Jin, B. *et al.* DNMT1 and DNMT3B modulate distinct polycomb-mediated histone modifications in colon cancer. *Cancer Res.* **69**, 7412-7421 (2009).
- 67 Dejosez, M. *et al.* Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. *Cell* **133**, 1162-1174 (2008).
- 68 Robert, M. F. *et al.* DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. *Nat. Genet.* **33**, 61-65 (2003).
- 69 Zhao, H. *et al.* Novel modeling of cancer cell signaling pathways enables systematic drug repositioning for distinct breast cancer metastases. *Cancer Res.* **73**, 6149-6163 (2013).
- 70 Fujimoto, J. *et al.* Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). *Proc. Natl. Acad. Sci. U. S. A.* **93**, 4181-4186 (1996).
- 71 Denholtz, M. *et al.* Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. *Cell Stem Cell* **13**, 602-616 (2013).
- 72 Villasante, A. *et al.* Epigenetic regulation of Nanog expression by Ezh2 in pluripotent stem cells. *Cell Cycle* **10**, 1488-1498 (2011).
- 73 Hewitt, K. J. *et al.* PDGFRbeta expression and function in fibroblasts derived from pluripotent cells is linked to DNA demethylation. *J. Cell Sci.* **125**, 2276-2287 (2012).
- 74 Yu, J. *et al.* Induced pluripotent stem cell lines derived from human somatic cells. *Science* **318**, 1917-1920 (2007).

- 75 Qiu, C., Ma, Y., Wang, J., Peng, S. & Huang, Y. Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. *Nucleic Acids Res.* **38**, 1240-1248 (2010).
- 76 Cimadamore, F., Amador-Arjona, A., Chen, C., Huang, C. T. & Terskikh, A. V. SOX2-LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors. *Proc. Natl. Acad. Sci. U. S. A.* **110**, E3017-3026 (2013).
- 77 Takahira, T. *et al.* Detection of COL1A1-PDGFB fusion transcripts and PDGFB/PDGFRB mRNA expression in dermatofibrosarcoma protuberans. *Mod. Pathol.* **20**, 668-675 (2007).
- 78 Hewitt, K. J. *et al.* Epigenetic and phenotypic profile of fibroblasts derived from induced pluripotent stem cells. *PLoS One* **6**, e17128 (2011).
- 79 Landry, J. *et al.* Essential role of chromatin remodeling protein Bptf in early mouse embryos and embryonic stem cells. *PLoS Genet* **4**, e1000241 (2008).
- 80 Gaspar-Maia, A., Alajem, A., Meshorer, E. & Ramalho-Santos, M. Open chromatin in pluripotency and reprogramming. *Nat. Rev. Mol. Cell Biol.* **12**, 36-47 (2011).
- 81 Assou, S. *et al.* A gene expression signature shared by human mature oocytes and embryonic stem cells. *BMC Genomics* **10**, 10 (2009).
- 82 Pasini, D. *et al.* JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. *Nature* **464**, 306-310 (2010).
- 83 Peng, J. C. *et al.* Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. *Cell* **139**, 1290-1302 (2009).
- 84 Kidder, B. L., Yang, J. & Palmer, S. Stat3 and c-Myc genome-wide promoter occupancy in embryonic stem cells. *PLoS One* **3**, e3932 (2008).
- 85 Hamazaki, T., Kehoe, S. M., Nakano, T. & Terada, N. The Grb2/Mek pathway represses Nanog in murine embryonic stem cells. *Mol. Cell. Biol.* **26**, 7539-7549 (2006).
- Lanner, F. & Rossant, J. The role of FGF/Erk signaling in pluripotent cells. *Development* 137, 3351-3360 (2010).
- 87 Kuijk, E. W., Chuva de Sousa Lopes, S. M., Geijsen, N., Macklon, N. & Roelen, B. A. The different shades of mammalian pluripotent stem cells. *Hum. Reprod. Update* **17**, 254-271 (2011).
- 88 Chitilian, J. M. *et al.* Critical components of the pluripotency network are targets for the p300/CBP interacting protein (p/CIP) in embryonic stem cells. *Stem Cells* **32**, 204-215 (2014).
- 89 Zhong, X. & Jin, Y. Critical roles of coactivator p300 in mouse embryonic stem cell differentiation and Nanog expression. *J. Biol. Chem.* **284**, 9168-9175 (2009).
- 90 Ang, Y. S. *et al.* Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. *Cell* **145**, 183-197 (2011).
- 91 Yang, Y. W. *et al.* Essential role of IncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. *Elife* **3**, e02046 (2014).
- 92 Vassena, R. *et al.* Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. *Development* **138**, 3699-3709 (2011).
- 93 Hochedlinger, K. & Plath, K. Epigenetic reprogramming and induced pluripotency. *Development* **136**, 509-523 (2009).
- 94 Tanimura, N., Saito, M., Ebisuya, M., Nishida, E. & Ishikawa, F. Stemness-related factor Sall4 interacts with transcription factors Oct-3/4 and Sox2 and occupies Oct-Sox elements in mouse embryonic stem cells. *J. Biol. Chem.* 288, 5027-5038 (2013).
- 95 Yang, J. *et al.* Genome-wide analysis reveals Sall4 to be a major regulator of pluripotency in murine-embryonic stem cells. *Proc. Natl. Acad. Sci. U. S. A.* **105**, 19756-19761 (2008).
- 96 Yang, J., Corsello, T. R. & Ma, Y. Stem cell gene SALL4 suppresses transcription through recruitment of DNA methyltransferases. *J. Biol. Chem.* **287**, 1996-2005 (2012).
- 97 Tan, M. H. *et al.* An Oct4-Sall4-Nanog network controls developmental progression in the pre-implantation mouse embryo. *Mol Syst Biol* **9**, 632 (2013).

- 98 Johansson, H. & Simonsson, S. Core transcription factors, Oct4, Sox2 and Nanog, individually form complexes with nucleophosmin (Npm1) to control embryonic stem (ES) cell fate determination. *Aging (Albany NY)* 2, 815-822 (2010).
- 29 Li, X. L. *et al.* A p21-ZEB1 complex inhibits epithelial-mesenchymal transition through the microRNA 183-96-182 cluster. *Mol. Cell. Biol.* **34**, 533-550 (2014).
- 100 Mergui, X. *et al.* p21Waf1 expression is regulated by nuclear intermediate filament vimentin in neuroblastoma. *BMC Cancer* **10**, 473 (2010).
- 101 Cimadamore, F. *et al.* SOX2 modulates levels of MITF in normal human melanocytes, and melanoma lines in vitro. *Pigment Cell Melanoma Res* **25**, 533-536 (2012).
- 102 Rahnama, F. *et al.* Epigenetic regulation of E-cadherin controls endometrial receptivity. *Endocrinology* **150**, 1466-1472 (2009).
- 103 Kwon, O. *et al.* Modulation of E-cadherin expression by K-Ras; involvement of DNA methyltransferase-3b. *Carcinogenesis* **31**, 1194-1201 (2010).
- 104 Dhillon, I. S. Co-clustering documents and words using bipartite spectral graph partitioning. *In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (San Francisco, California: ACM)*, pp. 269-274 (2001).
- 105 Costa, Y. *et al.* NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. *Nature* **495**, 370-374 (2013).
- 106 Kim, M. O. *et al.* ERK1 and ERK2 regulate embryonic stem cell self-renewal through phosphorylation of Klf4. *Nat. Struct. Mol. Biol.* **19**, 283-290 (2012).