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Note 1 — Quantitative descriptions of temporal scaling
Summary
This Note introduces the demographic terms we use to describe and quantify the phenomenon of
temporal scaling in our experimental data. We then relate our perspective to common alternative
approaches, specifically the proportional hazards (PH) model and parameterized regression
models.

Contents of Note 1

1.1 Definitions and terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Temporal scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Accelerated Failure Time vs Proportional Hazards . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Scaling and parametric models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 On the parametrization of the Gompertz hazard . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 The parametric form of wild-type C. elegans hazard . . . . . . . . . . . . . . . . . . . 6

1.1 Definitions and terminology

The empirical survival function Ŝ[t] reports the fraction of individuals remaining alive at time t. It
is an estimate of the continuous survival function S(t) from which experimental data are
sampled. Time (age) t is defined relative to a synchronization event that marks t = 0, which in
our case is the transition from L4 to adulthood as determined in Methods. In probabilistic
language, S(t) is a cumulative distribution; it reports the probability that an individual is still
alive at time t. If T is the random variable denoting the time of death, then S(t) = Prob(T > t).
The probability density function, or pdf, l(t) is the probability density that an individual dies
between t and t+ dt, l(t) = Prob(t < T < t+ dt) = −dS(t)/dt. This is also referred to as the
lifespan distribution. Lifespan distribution and survival function are related through the hazard
function h(t), which is the instantaneous rate of death events, or in probabilistic terms, the
conditional probability of dying between t and t+ dt, given survival up to t:
h(t) = Prob(t < T < t+ dt |T > t). The basic demographic equation in continuous time for
non-reproducing populations synchronized at t = 0 is then given by

l(t) = − d

dt
S(t) = h(t)S(t). (1)

The hazard, h(t) = −d logS(t)/dt, can be seen as playing the role of a time-dependent rate factor
in the survival kinetics, equation (1). The survival kinetics should not be confused with the aging
dynamics, which is some stochastic process that governs survival by determining h(t). In our
experiments we directly observe the survival kinetics, but not the aging process. In Fig. 1 of the
main text, we estimate h(t) from lifespan measurements and identify a striking regularity in the
way h(t) responds to interventions. This, then, allows us to infer properties of the aging dynamics
that generates h(t).

We occasionally refer to survival, hazard, and lifespan distribution as “endpoint statistics”
because the stochastic aging process ends in an absorbing boundary (death). In this sense,
lifespan is the first passage time of an individual process to this absorbing boundary [1].
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1.2 Temporal scaling
Temporal scaling refers to a situation in which the differences between lifespan distributions
corresponding to populations in a reference state 000 and a perturbed state 111 consist in a rescaling
of time, such that time t under condition 111 corresponds to time t/λ under condition 000 (Supp. Fig.
1-1), with λ a dimensionless factor:

S1(t) = S0(λ
−1t) or S1(λt) = S0(t) (2)

For example, if λ = 2, then 1 hour in system 111 corresponds to 1/2 hour in system 000. We chose the
definition of λ such that a λ > 1means that time has slowed down (lifespan is extended by a
factor of λ) in the new state and λ < 1means that time has accelerated (lifespan is shortened by a
factor of λ). Temporal scaling leaves the shape of l(t), S(t), and h(t) invariant. One aspect of
shape is the coefficient of variation, defined as the ratio of standard deviation to mean lifespan.

As an illustration, consider the Gompertz survival function for some reference state 000,
S0(t) = exp(−a(exp(b−1

0 t)− 1)). If an intervention alters the time scale b0 into b1, yielding
S1(t) = exp(−a(exp(b−1

1 t)− 1)), a dimensionless factor λ = b1/b0 rescales the time variable such
that equation (2) holds: exp(−a(exp(b−1

1 t)− 1)) = exp(−a(exp(b−1
0 λ−1t)− 1)).
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Supplementary Figure 1-1: Scaling of survival and hazard functions (I). We speak of temporal
scaling when two functions can be made identical by a dilation or contraction of the time axis. A:
Each value of the blue survival function at time t, S0, corresponds to the value of the red function
S1 at time λt: S0(t) = S1(λt). The point singled out in this example is the median and λ = 2. B: In
Fig. 1a of the main text, we show the scaling relation not for the survival function but the hazard
function instead. Temporal scaling in the hazard means that h1(t) = λ−1h0(λ

−1t) (see equation 3
below) or, equivalently, h1(λt) = λ−1h0(t). In a log-log plot, we first shift a point on log h0 (blue
curve) corresponding to a particular survival quantile, say the median (black dot), vertically by
− log λ (this is the λ−1h0(t) part on a log-log scale) and then horizontally along the time axis by
log λ to obtain the corresponding point of log h1 on the red curve (i.e. the h1(λt) part on a log-log
scale). This is the origin of the remark in the main text that any two hazard curves are shifted
by an “equal and opposite amount in magnitude and time.” These statements are independent of
any parametric form of the survival or hazard function. In this example we used for the purpose
of illustration the Weibull distribution with survival function S(t) = exp(−(t/β)α) and hazard
function h(t) = α/β (t/β)α−1, which is linear on a log-log scale.
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Using equation (2) in equation (1) yields:

− d

dt
S1(t) = h1(t)S1(t) ⇒ − d

dt
S0(λ

−1t) = h1(t)S0(λ
−1t)

set τ=λ−1t
=⇒ − d

dτ
S0(τ) = λh1(λτ)S0(τ) ⇒ h0(τ) = λh1(λτ). (3)

Hence, a rescaling of survival, S1(t) = S0(λ
−1t), is equivalent to a rescaling of the hazard as

h1(t) = λ−1h0(λ
−1t) (4)

and, by a similar argument, of the lifespan density as l1(t) = λ−1l0(λ
−1t). An intervention that

yields λ = 2 slows down the original system twofold with respect to survival, which is the same as
saying that the new system will exhibit half the hazard rate after twice the time.

1.3 Accelerated Failure Time vs Proportional Hazards
In survival analysis, equation (2) is known as an Accelerated Failure Time (AFT) model, in which
the lifespan random variable T of population 000, living at condition C0, is linearly transformed into
the random variable λT of population 111, living at condition C1. An AFT regression model with a
single categorical covariate can be expressed as:

log ti = βxiβxiβxi + εi, (5)

where ti is the observed lifespan of individual i,X an explanatory categorical variable and xixixi a
vector encoding this variable for individual i (e.g. whether it was living at C0 or C1); βββ is a vector of
effects to be estimated, and εi is a residual representing the logarithm of the lifespan of individual
i unexplained by the covariate. The relation to the scale factor λ is given by λ = exp(βxiβxiβxi).

A rescaling of the lifespan random variable T into a new random variable λT alters the expected
value of T , E(T ), into λE(T ) and the variance σ2(T ) into λ2σ2(T ). As a consequence, temporal
rescaling leaves the coefficient of variation σ(T )/E(T ) unchanged.

We apply the AFT model to link physical interventions in aging to their quantitative
consequences on lifespan. When AFT models provide an excellent fit across sets of lifespan
distributions, we conclude that the interventions producing such distributions result in temporal
scaling. Temporal scaling suggests that interventions alter lifespan by altering the timescale of an
aging process that determines the risk of death h(t).

This approach contrasts with the widely used proportional hazards (PH) framework, which takes
the perspective that interventions act directly on the risk of death, such that

log hi(t) = βxiβxiβxi + log h0(t), (6)

in which hi(t) is expressed in terms of a baseline hazard h0(t). In the case of two populations
(i = 0, 1 and assumed to consist of identical individuals), the PH approach thus quantifies the
consequences of exposure to condition 111 as a proportionality factor expβ [2].

In the special case that mortality follows a Weibull distribution, AFT and PH are mathematically
equivalent descriptions, because a power law is a homogenous function. Yet, even when data are
not well fit by a Weibull, PH and AFT models can both be reasonable characterizations of the
effect of interventions. Our preference for the AFT model over the PH model is founded on three
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Supplementary Figure 1-2: Scaling of survival and hazard functions (II). A: The panel shows
a synthetic situation (Weibull survival) analogous to Supp. Fig. 1-1a but with a tenfold slow-down
(λ = 10) in time from blue to red. In the blue population everything has already happened be-
fore something happens in the red population. For example, in our temperature experiments of
Fig. 1 in the main text, the scale factor between highest and lowest temperature is about 40 (!). As
in Supp. Fig. 1-1, the black dots indicate the survival median and we used a Weibull distribution
for illustration (thus the linear hazard in the log-log plot of panel B). B: The panel illustrates the
corresponding situation for the hazards. The solid lines (blue and red) depict the hazard trajec-
tory in the time interval starting when 1% (solid square) of the population have died and ending
when 99% (open square) have died. In this synthetic case, the mathematical functions continue
beyond these intervals (dotted lines) with extremely high or extremely low values, but seen from
an empirical standpoint there are no meaningful data outside the solid regime. Vastly increasing
the population size would only have a marginal effect on this picture. The red and blue empirical
hazard functions have effectively no overlap and can therefore not be quantitatively compared as
in equation (6), i.e. one hazard cannot be expressed in terms of the other as the baseline hazard.
There is no empirically justified sense in which they could be “proportional”. This is not the case
in situations characterized by relatively small effects, such as clinical drug applications, where the
PH framework is routinely applied.

observations: (1) We find that our interventions have a permanent effect on lifespan when
applied transiently early in life, before any deaths occur (Fig. 3b in the main text). This suggests
that interventions act on some process determining T rather than on h(t) directly. (2) In many of
our experiments, populations differ so much in their aging timescale that there is no time interval
during which both populations have survivors. While this presents no mathematical or
computational problem, since h1(t) = βh0(t) is well defined for all t, it does present an empirical
problem, since h0(t) and h1(t) cannot be measured for any overlapping t (Supp. Fig. 1-2). (3) The
parameter values obtained with the AFT model seem more physically realistic than those
obtained with the PH model. For example, if one were to compare compare a population at 20 ◦C
with one at 30 ◦C, the fold-increase in relative risk that we extrapolated for the PH model comes
in at 4.5× 105. It is hard to imagine how a physical intervention could directly impact risk ratios
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related to aging almost a 1, 000, 000-fold. It is more plausible that such an increase in risk is the
indirect consequence of altering 18-fold the timescale of an underlying physical process, as
assumed by the AFT model.

1.4 Scaling and parametric models
An often used method for characterizing the effect of interventions in aging is based on simple
parametric distributions, such as the Gompertz, Weibull, log-logistic and inverse Gaussian
distributions (see Note 1). For example, the Gompertz hazard has been used to classify
interventions in C. elegans and other model organisms according to their effects on the
parameters of the distribution [3–7]. Another function, quite common in the analysis of
engineered systems, is the Weibull distribution, see Table 1 below.

1.4.1 On the parametrization of the Gompertz hazard

The wide-spread use of Gompertz warrants a comment on its parametrization. Scaling in the
context of Gompertz fits is best understood using a different parametrization than the one
typically employed. In the parametrization h(t) = a exp(t/b) (for example [3,4]), the parameters
a and b are not independent, but a depends inversely on b. If b is interpreted as a time scale
parameter (or 1/b as a rate parameter), then a change from b to λb requires a change from a to
λ−1a, see equation 4. Another way of seeing this dependence is to calculate the survival function
associated with the parametrization in question: S(t) = exp(−ab(exp(t/b)− 1)). The argument of
the exponent should be a dimensionless quantity, which means that the time scale parameter b
should only occur in conjunction with the time variable t. For this to be the case, the factor ab
must be independent of b, which can be achieved by using a new parameter a′ = ab, and thus
h(t) = (a′/b) exp(t/b), where a′ is now a constant that is independent of b, with associated survival
function S(t) = exp(−a′(exp(t/b)− 1)). This second parameterization is common in some
statistical packages and areas of study, but does not seem to be widely used in studies of aging. In
the parametrization h(t) = a exp(t/b), any intervention that acts on bmust necessarily affect a,
confounding attempts to map effects to distinct parameters. Changes in the Gompertz a—vertical
drops in a lin-log plot—should be interpreted only after the dependence on b is accounted for.

1.4.2 The parametric form of wild-type C. elegans hazard

Our quantification of deviations from temporal scaling (Note 2) does not proceed by fitting
empiric data with simple parametric functions. This is a significant methodological advantage.
Nevertheless, it is useful to identify a “best” parametrized form for the C. elegans hazard function
when attempting to quantify hazard heterogeneity in the population (Note 3.2). To this end, we
surveyed several parametric hazards derived from the Gompertz, Weibull, log-logistic,
log-normal, and inverse Gaussian distributions, as well as Weibull and Gompertz hazards with a
frailty term. These functions are listed in Table 1. Model parameters were estimated in R using
the flexsurv package. Across several replicates containing between 650 and 1,200 wildtype
individuals at 20 ◦C, we confirmed previous observations [8,9] that neither the Gompertz nor the
Weibull hazard without frailty provide good fits for C. elegans populations (Extended Data Item
1a). However, in all cases the Weibull distribution performs distinctively better than the
Gompertz distribution (Extended Data Item 1b, c). The log-logistic and inverse Gaussian
distributions both predict an intrinsic deceleration of the population hazard, and for that reason
fit the data better than either the two-parameter Weibull or Gompertz distributions (Extended
Data Item 1b–c). We find that incorporating a frailty correction reconciled the Gompertz and
Weibull hazards with the experimental data; either frailty model provided excellent fits across all
replicates. In all cases, the Weibull model required a smaller frailty term σ2 (corresponding to the
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assumption of a lower degree of hidden heterogeneity between individuals) to match the data
than Gompertz (Extended Data Item 1b–d). This motivates our preference for the Weibull hazard
with frailty for data analysis and simulation whenever a parametric form is needed.

Gompertz: h(t | a, b) = a

b
exp

(
t

b

)

Gompertz with frailty: h(t | a, b, σ) =

a

b
exp

(
t

b

)
1 + σ2 a exp

(
t

b
− 1

)
Weibull: h(t |α, β) = α

β

(
t

β

)α−1

Weibull with frailty: h(t |α, β, σ) =

α

β

(
t

β

)α−1

1 + σ2

(
t

β

)α

Log-normal: h(t |µ, σ) =
ϕ

(
log t− µ

σ

)
σt

(
1− Φ

(
log t− µ

σ

))

Log-logistic: h(t |α, β) =

α

β

(
t

β

)α−1

1 +

(
t

β

)α

inverse Gaussian: h(t |µ, λ) =

√
λ

2πt3
exp

(
−λ(t− µ)2

2µ2t

)
1− Φ

(√
λ

t

(
t

µ
− 1

))
− exp

(
2λ

µ

)
ϕ

(
−
√

λ

t

(
t

µ
+ 1

))

Table 1: Distributions used for fitting. ϕ and Φ denote the PDF and CDF, respectively, of the
standard normal distribution; µ and σ denote the mean and standard deviation (in the case of
the log-normal, the mean and standard deviation of the logarithm of x); λ, α, and a are shape
parameters; β and b are scale parameters. In the case of frailty, individual hazards hi(t) are related
to a baseline hazard by a random factor Z that follows a Gamma distribution with mean 1 and
variance σ2.
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Note 2 — Quantifying temporal scaling
Summary
We quantify deviations from temporal scaling by applying a modified Kolmogorov-Smirnov (KS)
test to the residuals of Accelerated Failure Time (AFT) regression models (Fig. 1c-d). The KS test
we deploy was generalized to work with censored data by Fleming et al. [10]. Like the standard
KS procedure, it tests whether the AFT residuals come from the same underlying distribution, in
which case we conclude that all statistical differences between two sets of lifespan data are indeed
accounted for by a scale factor and the two distributions are therefore related by temporal scaling.
The KS test also provides a distance metric between survival curves. We note that many familiar
statistical methods for evaluating differences between lifespan distributions, for example the
log-rank test, perform poorly when survival curves cross, a situation perhaps rare in raw empiric
data but essentially guaranteed among AFT residuals which, by construction, will have nearly
identical means and differ only at higher moments.

Contents of Note 2

2.1 Adapting the Kolmogorov-Smirnov two-sample test . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Evaluating the performance of the generalized KS test . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Adapting the Kolmogorov-Smirnov two-sample test
We use the test statistic proposed by Fleming et al. [10] to confirm or reject the null hypothesis
that two survival datasets are sampled from the same underlying distributions (and thus related
by temporal scaling). This test statistic is also useful as a distance metric for clustering survival
curves (Extended Data Item 3).

We first fit two merged sets of lifespan data with the AFT model

log yi = βxiβxiβxi + ϵi (7)

where the categorical covariate xi codes for the experimental grouping of individuals, for example
plate ID or scanner ID, as detailed in our Statistical Methods section. The resulting residuals ϵi
are then grouped according to the experimental variable in which they differ, for example
genotype or environmental condition. Given populations a and b, we refer to the CDFs of these
residuals with Sϵ

a(t) and Sϵ
b(t), respectively, although these survival curves are never explicitly

calculated.

In the absence of censoring, the canonical Kolmogorov-Smirnov test involves estimating

Fa,b(t) = Sϵ
a(t)− Sϵ

b(t) (8)

and then computing the KS statistic

Da,b = sup |Fa,b(t)|, (9)

where sup is the supremum (maximum) function, to calculate a p-value pertaining to the null
hypothesis. Given the nature of the KS test and our AFT pre-treatment, the null hypothesis
affirms temporal scaling.
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Fleming et al. propose an analogous statistics for censored data, with

Ya,b(t) =

(
Sϵ
a(t) + Sϵ

b(t)

2

)
(βϵ

a(t)− βϵ
b(t)) , (10)

where βϵ[t] is the cumulative hazard at time t for each set of residuals, and the modified KS
statistic

Ȳa,b = sup |Ya,b(t)|. (11)

We will refer to Ya,b(t) as Y (t) and Ȳa,b as Ȳ when the two populations a and b are obvious from
context. Ȳ quantifies the degree of heteroscedasticity in the AFT covariateXi. A significant
p-value corresponding to Ȳ suggests a significant deviation from perfect scaling between the two
survival curves.

The p-value calculated from this modified KS test depends both on the significance level desired,
the Ȳ obtained, and on the fraction of animals remaining alive at the end of an experiment
(equation 2.4.iv in Flemming et al. [10]). Since this fraction is essentially zero in all experimental
(and simulated) data sets presented here, the KS p-value simplifies to exp(−2 ∗ Ȳ2). Accordingly,
any Ȳ ≥ 1.51 or Ȳ ≤ −1.51 will be significant at the p ≤ 0.01 level. Because of how Ȳ is defined,
any Y (t) rising above above 1.51 or below −1.51 indicates a significant deviation from temporal
scaling. We use this threshold throughout the Supplement when interpreting the values of Y (t)
and Ȳ .
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Supplementary Figure 2-1: Quantifying deviations from perfect scaling (schematic). a: To
quantify deviations from perfect scaling, we first apply an Accelerated Failure Time model, to ob-
tain the residuals of each curve (panel b). This removes any differences in time scale. If such
differences are all there is, we have perfect scaling, which is to say that both residuals come from
the same distribution. This is the null hypothesis that we test by quantifying the deviation from
perfect scaling using a generalized Kolmogorov-Smirnov (KS) test [10]. b: The KS test evaluates
the distance between two survival curves of AFT residuals (vertical gray bars) by assessing the prob-
ability of observing their maximal distance (arrow) by chance. This provides a way of quantifying
the overall deviation from perfect scaling between the two curves.

2.2 Evaluating the performance of the generalized KS test
To evaluate the sensitivity of the AFT+KS-test combination, we compared sets of simulated
lifespan distributions differing by progressively smaller parameter values (Fig. 2-2). In
populations of 1,500 individuals, the test statistic reliably identified changes in the Weibull α of
about 2.5 and increases in σ2 of about 0.6. In this case and in subsequent power calculations, we
censored 10% of death times to match the level typical in our experimental data.
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Supplementary Figure 2-2: Evaluating the AFT+KS-test combination with simulated data.
Sets of death times containing 1, 500 samples were drawn from a Weibull distribution with frailty
correction( (1.4). Baseline parameters were chosen to approximate those observed in the AFT
residuals of wild-type C. elegans lifespan distributions, α = 10, θ = 0.4, and β = 1 (α and β
refer to parameters of the Weibull distribution, not the AFT regression). Any change in the shape
parameter α or frailty parameter σ2 will cause simulated populations to deviate from the baseline
population, as is visible in the survival curves (panels a–b) and hazard plots (panels c–d) of the
AFT residuals calculated for each population. e–f: Each simulated population was compared to
the baseline population, plotting the generalized KS distance Y (t), equation (10). g–h: Compari-
son of each population to the baseline across replicate trials with a calculation of the modified KS
p-value to estimate the likelihood that observed differences occurred by chance. All values p > 0.2
were cropped at p = 0.2.
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Supplementary Figure 2-3: Power of the AFT+KS-test combination with simulated data. a:
The phase-space plot indicates the minimum population size required to detect a given effect size
(a difference in theWeibull α to the reference population) at a statistical power of 0.8 (a false nega-
tive rate of 0.2) and significance level (false positive rate) of 0.01. The blue (red) area indicates effect
and population size combinations that yield a statistical power greater (less) than 0.2. Populations
of 1, 000 individuals are required to detect differences in α of 2.5; increasing populations beyond
1, 500 individuals appears to yield diminishing returns. b: Similar conclusions can be drawn from
a phase-space plot for the frailty σ2. Increasing the population size beyond 1, 500 individuals is
met with diminishing returns in the capacity to discriminate differences in frailty. c, d: Same as in
panels a and b, but for a statistical power of 0.5, 0.8, 0.95 and 0.99. e, f: The AFT model preceding
the KS test can be run on different population size “units” afforded by the LifespanMachine: plates
(≈ 40 animals), whole scanners (≈ 320 animals), or the entire population. Here, each sample of
the same unit size is a categorical variable in the AFT regression. After running the regression on
all units, the residuals are pooled to form the distribution that is compared against the reference
distribution with the generalized KS test. Depending on whether the differences are in α (panel
e) or σ2 (panel f), pooled populations will be subject to different distortions. It is therefore mean-
ingful to check how such pooling impacts power. The results are shown in panels e and f for AFT
pre-processing on subpopulations that were small (40), medium (320) or large (750). The size of
subpopulation pooled does not have a big effect on power with regard to α (panel e), but it has
some effect with regard to frailty (panel f).

11



To assess the statistical power of the AFT+KS-test combination, we generated sets of simulated
death times as for Fig. 2-2, but varied the population size between 50 and 5, 000 individuals; the
Weibull α was varied between 4 and 18 and, separately, the frailty σ2 between 0 and 2.
Populations corresponding to each parameter set were compared to a baseline population of
equal size with Weibull α = 10 and σ2 = 0.4, which closely matches C. elegans distributions. The
p-value from each comparison was collected across 750 replicates. For each set of replicates and
each population size, the fraction of significant p-values (p ≤ 0.01) was then computed to estimate
the power of the KS test at each population size (Fig. 2-3). Fig. 2-3 shows the α or σ2 (the effect
size) that can be detected at a given population size with a given false negative rate. We found
that a minimum of 500 individuals per population were required to detect even substantial
deviations from temporal scaling, but that increasing population sizes beyond 1,500 individuals
provided diminishing returns in statistical power. As expected, substantial increases in
population size were required to achieve greater statistical power: decreasing the false-negative
rate of the test from 0.5 (half of all true deviations from survival curve shape are missed) to 0.05
(5% of all true deviations from survival curve shape are missed) required at least 2.5-fold larger
populations at any effect size.
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Note 3 — Heterogeneity and deviations from temporal scaling
Summary
We observe a change in hazard shape when animals are transferred from what we might call the
“low temperature regime” (LTR, 20 ◦C–30 ◦C) to the “high temperature regime” (HTR, 30 ◦C–35
◦C), across the 30 ◦C mark. This change appears to break scaling due to an increased deceleration
of the hazard function in the HTR as compared to the LTR (Fig. 1d, e of the main text). A
deceleration of the hazard can be accounted for in terms of “hidden” (i.e. not measured)
heterogeneity also known as “frailty” in the demographic literature [11]. Such an approach
distinguishes hazard functions that pertain to individuals from the hazard function that pertains
to the population. From this perspective, an increased hazard deceleration could be due to an
increased heterogeneity in the population. Furthermore, if heterogeneity were due to differences
between individuals that nonetheless conform with a temporal rescaling of their aging process,
the population hazard would still be affected in a way that deviates from temporal scaling.
However, such a deviation would be incidental rather than fundamental. Heterogeneity of this
kind might be an unavoidable side-effect of our experimental protocols, and a possible candidate
are temperature inhomogeneities in our apparatus. We therefore sought to quantify the
magnitude in heterogeneity that would be required to explain the change in hazard shape
observed between 25 ◦C and 33 ◦C. We first quantify heterogeneity using a parametrized hazard
function and then map it to a corresponding heterogeneity in temperature, since heterogeneity of
this nature would be consistent with scaling at the individual level. The results of this analysis
suggest that temperature inhomogeneities in our apparatus are unlikely to account for the change
in hazard across the 30 ◦C transition. We cannot exclude other sources, some of which may be
compatible with scaling of individual hazards, others may not. In sum, our experimental data do
not allow us to adjudicate whether the change in hazard we observe is or is not a true scale
breaker, but they suggest rejecting the hypothesis that potential temperature inhomogeneities in
our apparatus are the cause of the change in hazard shape across the 30 ◦C transition.

Contents of Note 3

3.1 Background: Weibull heterogeneity (frailty) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Quantifying heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Background: Weibull heterogeneity (frailty)
In the demographic literature,“frailty” refers to unobserved (in the sense of not measured)
heterogeneity among individuals within a population [11]. The assumption is often made that
individuals or subpopulations differ from one another with respect to hazard in a fashion that can
be characterized by a PH model:

hi(t) = Zi h0(t), (12)

where hi(t) is the hazard of individual i, h0(t) is the common baseline hazard, and Zi is the value
of a random variable Z, often assumed to follow a Gamma distribution with mean 1 and variance
σ2.

It has been shown (see any textbook, such as [1]) that under these assumptions the population
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hazard h(t) behaves like

h(t) =
h0(t)

1 + σ2H0(t)
, (13)

whereH0(t) is the cumulative baseline hazard,H0(t) =
∫ t
0 h0(τ)dτ .

For example, if the hazard follows a Weibull form, α/β(t/β)α−1, the individual hazards in the
frailty model just described become:

hi(t |α, β) =
α

Z
− 1

α
i β

 t

Z
− 1

α
i β

α−1

(14)

In this case, the proportional frailty model, equation (12), is equivalent to a model in which
individual differences (Zi) multiply the timescale parameter β: in a Weibull frailty model, hidden
heterogeneity within a population impacts lifespan through temporal scaling. The Weibull with
frailty population-level hazard is listed in Table 1.

3.2 Quantifying heterogeneity
A deceleration in population hazard has been noted in model organisms and in human
populations [6,9, 12, 13]. Several distinct but mutually non-exclusive explanations for the
phenomenon have been offered. One explanation invokes heterogeneity, which can give rise to a
hazard deceleration because the more frail individuals die early, leaving a population with a
declining hazard rate. This type of heterogeneity could be intrinsic to populations, or be produced
by some extrinsic environmental heterogeneity, for example the slight temperature differences
we can measure across different regions of our imaging apparatus [8]. Heterogeneity due to
temperature differences at different locations in our apparatus would cause deviations from
temporal scaling at the population level even though they only cause temporal rescaling at the
individual level.

An alternative explanation is that Markov processes with an absorbing boundary (death) have, in
general, absorption (hazard) rates that become constant in the long time limit, even if all
individuals are identical initially. Such stochastic processes represent aging as a decline in a
physiological state space. They reach a quasi-stationary distribution over physiological
states [1, 14–16], which causes the hazard to level off. All examples in Supplementary Note 6, in
which we illustrate scaling at the process level, exhibit this phenomenon. In particular, the
inverse Gaussian distribution arises from a class of first-passage time models
(drift-diffusion) [15] that fit our C. elegans data reasonably well. A Weibull model with frailty
provides a better fit to our empiric data (Extended Data Item 1b–d), but a small frailty correction
to the Gaussian model would entirely remove this advantage.

We next set out to determine whether the changes we observe in hazard curve shape could be
reasonably explained by temperature heterogeneity. If the heterogeneity required to produce the
observed degree of hazard deceleration were improbably large, we might reject that hypothesis.

In our data sets, the largest deviation from temporal scaling produced by temperature occurs at
30 ◦C. To estimate the magnitude of change in environmental heterogeneity required to explain
this deviation from temporal scaling, we compared populations held at 25 ◦C and at 33 ◦C (Fig.
1d) by fitting both with a Weibull model with a frailty correction term (section 3.1). Instead of
estimating model parameters independently for each populations and then comparing them, we
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apply a single model to both populations simultaneously and quantify changes between them as
relative factors. This enables more meaningful confidence intervals and therefore more
informative estimates for the significance of differences. Our model represented the two curves as

h25◦(t |α, β, σ) =

α

β

(
t

β

)α−1

1 + σ2

(
t

β

)α h33◦(t |α, β, σ,∆α,∆σ2) =

α∆α

β

(
t

β

)α∆α−1

1 + σ2∆σ2

(
t

β

)α∆α
(15)

with∆α and∆σ2 representing the effect of high temperature on the shape and scale of the curve.

We estimated model parameters using a maximum likelihood approach (R-package flexsurv).
At 25 ◦C, α = 10.5 (95% confidence interval ci = [10.2− 10.9]) . At 33 ◦C populations exhibited a
10% decrease in α, with∆α = 0.91 (95% ci = [0.86− 0.96]). At 33 ◦C exhibited a large increase in
σ2, relative to 25 ◦C, with∆σ2 = 2.7, (95% ci = [2.2− 3.38]). A model assuming a fixed σ2 across
temperatures (∆σ2 = 1) provided a substantially worse fit (AIC = −7385) to the data than a
model assuming a fixed α across temperatures (∆α = 1, AIC = −7461). Were the difference in
survival curve shape caused by only a single parameter, it is more likely to result from an increase
in σ2.

To map the magnitude of this increase in σ2 to a biologically informative scale, consider that
frailty (the distribution of the Zi in equation 14) acts multiplicatively on the timescale β and can
thus be interpreted as a distribution of individual scale factors λi in the population. A larger σ2

suggests that individuals experience a greater diversity in their individual λi, as shown in
Extended Data Item 8 a. At each set point, 25 ◦C and 33 ◦C, the data in Fig 4.b of the main text
allow us to convert this heterogeneity into a corresponding distribution of temperatures
accounting for the distribution of λi (and thus the estimated σ2). This approach suggests that a
relatively small heterogeneity in temperature is sufficient to explain σ2 (Extended Data Item 8 b):
at 25 ◦C only 25% of individuals would need to experience a temperature 0.18 ◦C less than
average and only 25% would need to experience a temperature 0.10 ◦C greater than average. To
explain the increased σ2 at 33 ◦C, only 25% of individuals would need to experience a
temperature 0.37 ◦C less than average, and only 25% would need to experience a temperature
0.31 ◦C greater than average.

Although these temperature differences seem small, we need to consider that the AFT algorithm
used to estimate the σ2 already accounts for any difference in temperature between scanners and
between plates. Thus, these differences would have to correspond to thermal gradients within
each plate. Seen from this angle, the putative temperature differences suddenly seem unlikely
large. In addition, since individuals more or less randomize their location on plates over time, it
seems improbable that a temperature gradient (of however unlikely magnitude) could produce a
substantive heterogeneity-effect. We conclude, therefore, that static temperature heterogeneity
does not account for the observed deviations from temporal scaling between populations held at
25 ◦C and 33 ◦C. Other sources of heterogeneity, for example a differential induction of the
heat-shock response among individuals [17], must be invoked. Some might be compatible with
temporal scaling at the individual level, others not.

Our frailty model assumes a baseline Weibull hazard. To determine whether our quantification of
heterogenity depended on the specific model used, we ran a simulation that artificially injected
heterogeneity into experimental lifespan distributions. We randomly selected 56, 000 death times
from AFT-residuals of the data collected at 25 ◦C (Figure 1.d) and multiplied each sample by a
random number drawn from a Gamma distribution corresponding to the increase in σ2 observed
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between populations at 25 ◦C and 33 ◦C (the∆σ2 of Eq. 15). If the difference in shape observed
between 25 ◦C and 33 ◦C shown in Fig. 1d of the main text resulted exclusively from an increase in
frailty, then the distribution of the so-transformed residual death times should be equivalent to
that measured at 33 ◦C. This is indeed what we see (Extended Data Item 8 c, d), suggesting that
the deviations from perfect temporal scaling between 25 ◦C and 33 ◦C are consistent with an
increase in heterogeneity within populations.

In final analysis, temperature differences within our apparatus seem not to account for the
heterogeneity we observe across the 30 ◦C transition. It is therefore possible (though not certain)
that whatever causes this heterogeneity is reflective of changes in mechanistic aspects of the
stochastic aging process and thus breaks temporal scaling at the individual level.
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Note 4 — The effect of transient perturbations
Summary
In Figure 1 of the main text, we identify interventions that, when applied throughout life, produce
a temporal scaling of lifespan distributions. For such interventions, we derive expressions that
predict the effects on the lifespan distribution when these interventions are applied transiently.
We highlight the specific case where interventions are applied before any deaths occur in a
population, in which case interventions are predicted to produce a temporal shift of the lifespan
distribution of the affected population relative to a control. We then explain how these
predictions are met by the experimental data presented in Fig. 3 of the main text.

Contents of Note 4

4.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 No switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.5 Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.6 The effect of switching on distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Intuition
We observe that diverse interventions produce a temporal scaling of lifespan distributions.
Perhaps the simplest way for such scaling to come about would be if, throughout adulthood, all
changes within a small time increment dt of those aspects of C. elegans physiology that determine
the risk of death in control individuals occurred within a rescaled time increment λdt in exposed
individuals. The intervention would then be producing a temporal scaling of a stochastic aging
process that determines risk and generate, through this rescaled process, a correspondingly
rescaled lifespan distribution. In other words, the cumulative physiological decline of individuals
under intervention would accrue on a rescaled timescale (faster or slower, depending on the value
of λ) than for individuals in the control population. This speed-up or slow-down in the
physiological decline process determining risk would have to occur even if specific underlying
molecular mechanisms changed as a result of the intervention.

If at some point the intervention were stopped and conditions reverted to those of control
animals, then, from that moment onward, no additional differences would accumulate between
populations. However, the existing differences would persist, making an exposed population
“older” or “younger” (in terms of risk) than the control population, and, as a result, causing its
lifespan distribution to be shifted, not scaled, toward earlier or later chronological times,
respectively, compared to the control.

Within any population some individuals live longer than others. In our experiments, we leverage
this variation within apparently homogeneous populations to test whether interventions are in
fact rescaling a lifelong stochastic process that determines lifespan. We show that the variation in
lifespan observed within homogenous populations is indeed shifted to a predictable extent by
interventions that produce a temporal scaling of the underlying stochastic aging process. We
explain the extent of this shift informally in the caption to Fig. 4-1; we derive it formally for
expected lifespan in sections 4.2–4.5 and for the case of distributions in section 4.6).
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Supplementary Figure 4-1: On shifting lifespan distributions. The distributions of a control
population and a population that is transiently subject to an intervention will undergo a shift rela-
tive to each other, provided the intervention causes a rescaling of the lifespan distribution if applied
throughout life. Consider a control population P0 always held at conditionC0 and a test population
P1 held atC1 for T time units, say from time t = 0 to t = T . As far as the aging process that governs
risk of death is concerned, T time units pass for P0, while T/λ units pass for P1. (The scale factor
λ has the same definition as in Note 1 and the main text. However, in our experiments we switch
from a perturbed situation to a control and express time T in the exposed population relative to the
control population; as a result, time T is divided by λ.) At time T , P1 is switched to the same condi-
tion as P0. From that moment on, both age at the same speed, maintaining the temporal difference
between control and exposed population: T (1−1/λ). For illustration, consider two biased random
walks, RW1 andRW2, in a physiologic state space that governs risk. Over time, RW1 andRW2 drift
towards the absorbing boundary at 0. RW2 proceeds twice as fast as RW1 and both walks started
in the same state. The plot shows the probability distributions over live states of these rescaled
walks at two times. At time 10, the parameter values of RW1 are changed to those of RW2. Because
of the scaling assumption, 5 time units ago the distribution over states for RW2 must have been
exactly the same that RW1 has at the switching time 10 (blue curve). Thus, from time 10 onward,
the switched RW1will evolve exactly like RW2, but with a delay of 5 time units, i.e. a pure shift (e.g.
orange curve).

4.2 Definitions
Throughout this Note, Y denotes the lifespan random variable. To predict the consequences of
transient interventions on mean lifespan, we need the notion of a conditional mean lifespan. The
condition will be used in section 4.4 to represent the switching time. The mean residual lifespan
(mrl) at time t, E(Y − t |Y > t), is the expected remaining lifespan of an individual that is alive at
time t. Since the expectation of the (linearly) transformed random variable Y − t is the
expectation of Y minus t, we can state:

E(Y − t |Y > t) = E(Y |Y > t)− t. (16)

where E(Y |Y > t) is the conditional expectation of lifespan (computed at age zero) given
survival at t: E(Y |Y > t) =

∫∞
t τ l(τ)dτ/S(t), where l(t) is the probability density function and

S(t) is the survival function. To declutter notation, let us write l̄(t) for E(Y − t |Y > t). Fig. 4-2
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illustrates these notions graphically using the drift-diffusion process (section 6.2) as the
underlying aging model.
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Supplementary Figure 4-2: Mean residual lifespan at time t, l̄(t), and conditional expected
lifespan E(Y |Y > t) according to the diffusion-drift aging process with lifespan distribution (31)
and survival (32).

4.3 No switching
First we consider the scenario in which individualsW1 andW0 are held throughout life at
environmental conditions C1 and C0, respectively. (We shall use the indices 0 and 1 to refer to
these conditions.) If we assume that scaling (equation 2) holds, then at time t,W1 will have
covered t/λ time units in its aging process compared toW0, who has covered t time units. With
this assumption, the mrl functions l̄1(t) and l̄0(t) ofW1 andW0, respectively, can be related to
each other:

l̄1(t) =

∫∞
t τ l1(τ)dτ

S1(t)
− t =

∫∞
t τ/λ l0(τ/λ)dτ

S0(t/λ)
− t =

∫∞
t/λ x l0(x)λdx

S0(t/λ)
− t (17)

= λ

[∫∞
t/λ x l0(x)dx

S0(t/λ)
− t

λ

]
(18)

= λl̄0(t/λ) (19)

where, as before, li(t), i = 0, 1 are the probability density functions and Si(t), i = 0, 1 the survival
functions. We make use of temporal scaling in the second equality; in the third we make the
variable transform x = τ/λ; in the fourth we pull out λ. We therefore derive a scaling relation
between mean residual lifespans: l̄1(t) = λl̄0(t/λ).

We can also calculate the difference in mean residual lifespan,∆(t), between the populations
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always living at C0 and C1:

∆(t) = l̄1(t)− l̄0(t) = λl̄0(t/λ)− l̄0(t) = λ (E0(Y |Y > t/λ)− t/λ)−E0(Y |Y > t) + t

= λE0(Y |Y > t/λ)− t− E0(Y |Y > t) + t (20)
= λE0(Y |Y > t/λ)− E0(Y |Y > t) (21)

∆(t) is pictured in Fig. 4-3 (left panel) for the case considered in Fig. 4-2. For early times t when
the expected conditional lifespan does not effectively change, i.e. before any deaths occur in either
population, we can write E0(Y |Y > t/λ) ≈ E0(Y |Y > t) ≈ E0(Y ) and thus approximate the
difference in mean remaining lifespan between the two populations by the simple relationship
∆(t) ≈ (λ− 1)E0(Y ). For early times,∆(t) is independent of t: ∆(t) = E1(Y )− E0(Y ), and thus
E1(Y ) = λE0(Y ), which is but the scaling relation for the mean life expectancy. This is illustrated
on the left panel of Fig. 4-3 for the case λ = 2.

4.4 Switching
Now consider the scenario whereW1 is switched at time τ from condition C1 to the condition C0

at whichW0 is held. At τ ,W1 will have progressed in its lifespan by τ/λ relative toW0, but after
the switch both are progressing along the same process with the same speed. In this scenario, the
difference in mrl is:

∆(τ) = l̄0(τ/λ)− l̄0(t) = E0(Y |Y > τ/λ)− τ/λ− E0(Y |Y > τ) + τ (22)
= E0(Y |Y > τ/λ)− E0(Y |Y > τ) + τ(1− 1/λ). (23)

For early switch time τ , before any individuals have died in either population,
E0(Y |Y > τ/λ) ≈ E0(Y |Y > τ). In this case,

∆(τ) = τ(1− 1/λ). (24)

For late times τ , E0(Y |Y > τ/λ) grows like τ/λ andE0(Y |Y > τ) like τ . Thus∆(τ)will converge
to τ/λ− τ + τ − τ/λ = 0. Indeed, a situation in which the population on condition C0 is switched
after everyone in it has died will be indistinguishable from one in which no switching occurred at
all. In that case, the mean remaining lifespans are not related by a shift, but by scaling.

4.5 Predictions
Equation (24) makes three predictions: (1) interventions early in life produce temporal shifts in
lifespan distributions; (2) the magnitude of the shift increases proportionally with the time τ at
which the switch occurs; and (3) the magnitude of the shift is inversely proportional to the scale
factor λ that relates the environmental conditions before and after the switch. These predictions
are illustrated in supplementary Fig. 4-3. All three predictions depend on the temporal scaling
assumption made in the first step of equation (23). Since they appear to be in excellent agreement
with the data presented in Fig. 3 of the main text and the Extended Data Item 5, we conclude that
temporal scaling is an appropriate characterization of the effect that temperature has on C.
elegans aging.

4.6 The effect of switching on distributions
The general analysis of switching experiments in the previous section did refer to mean residual
lifespan. The scale and shift factors we calculated for the mean residual lifespan also hold for the
residual lifespan distribution by virtue of our assumption of temporal scaling. However, it is
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Supplementary Figure 4-3: Mean residual lifespan differences as a function of switch time
τ (left and middle) and λ (right). Left panel: l̄1(τ) − l̄0(τ) vs τ , without switching. This is the
difference in mean residual lifespan at τ ofW1 always at condition C1 andW0 always at condition
C0. Middle: l̄0(τ/λ) − l̄0(τ) vs τ , with switching from condition C1 with λ = 2 to condition C0 at
time τ . Right: Difference in mean residual lifespan when switching occurs at the times indicated
(τ = 2, 3, 4, 10) vs 1/λ, where λ is the scale factor of conditionC1 relative toC0. The slope is−τ , and
the intercept is τ , when τ is small enough that E(Y |Y > τ) = E(Y |Y > τ/λ) ≈ E(Y ). If λ is very
large, such that E(Y |Y > τ) ≈ τ but E(Y |Y > τ/λ) ≈ E(Y ), the intercept becomes E(Y ) (and the
slope is still −τ ). This is the case when λ is such that one can transfer W1 before any member of
its population, P1, has died, but after all members of the population P0 (represented by W0) have
died. The underlying aging model is the drift-diffusion process with lifespan distribution (31) and
survival (32); section 6.2. See Fig. 4-2 for the survival function.

useful to numerically illustrate the situation for the full lifespan distribution.

For the purpose of illustration we use a simple drift-diffusion aging model. Consider two
populations P1 and P0 that age according to equation 30 with parameters C1 = {µ1, σ

2
1} and

C0 = {µ0, σ
2
0}, respectively. We switch P1 from C1 to C0 at time τ . Let the lifespan distribution of

the shifted population be p
1

τ→0
(X(t) = 0 |X(0) = c):

p
1

τ→0
(X(t) = 0 |X(0) = c) =

=

{∫∞
0 p0(X(t) = 0 |X(τ) = v)p1(X(τ) = v |X(0) = c) dv if t ≥ τ

p1(X(t) = 0 |X(0) = c) if t < τ
(25)

=

{∫∞
0 p0(X(t− τ) = 0 |X(0) = v)p1(X(τ) = v |X(0) = c) dv if t ≥ τ

p1(X(t) = 0 |X(0) = c) if t < τ
(26)

In (26) we made use of the fact that the process is time-homogeneous.
p0(X(t− τ) = 0 |X(0) = v) and p1(X(t) = 0 |X(0) = c) are given by (31) and
p1(X(τ) = v |X(0) = c) by (39). The integral can be expressed in “closed” form using error
functions, but the lengthy expression is not particularly informative to write down explicitly. It is
more useful to only present the result graphically, Fig. 4-4.
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all the time, while P1 is switched from low T to high T in different simulated experiments at times
τ = 40, 60, 65, 80, 90. The blue distribution is the resulting lifespan distribution for all of P1. If
the change in T occurs before any member of P1 has died (up to about τ = 50 in this example),
one obtains a shift in the distribution relative to P0, as seen in the case of τ = 40. When the
switch occurs at τ = 90 (rightmost), there is nothing to switch, because all members of P1 have
already died, yielding P1’s original lifespan distribution—a scaling relative to P0. In between, P1’s
distribution will be piecewise—one piece resulting from any deaths that have occurred at low T
before P1 was switched and the other piece resulting from the deaths that occurred at high T after
the switch. The piece of P1’s lifespan distribution at high T is a shifted version of the corresponding
piece of P0, while the piece coming from low T is a scaled version. The shift factors are the same as
calculated for the mean residual lifespan case, τ(1− 1/λ), regardless of the specific aging model.

Note 5 — Temporal scaling in phenomenological causal models
Summary
A mechanistic grounding of temporal scaling is hard to achieve at present, because little is known
about the causes of death in C. elegans and the processes that lead up to them (such as bacterial
pathogenesis [18] or germ-line proliferation [19], both of which seem to kill late in life). In this
section we explore the conditions for temporal scaling in the context of an aging process that
renders animals increasingly susceptible to the proximate causes that kill them. We analyze two
types of phenomenological models. One type explores the failure of systems consisting of
independent parts (“competing risks” model); the other explores the failure of networks
consisting of interdependent parts (dependency network model). We numerically explore the
constraints that each type of model places on temporal scaling, the main empirical phenomenon
we observe in C. elegans. The dependency model in particular illustrates the concept of an
emergent state variable whose dynamics determines lifespan. It also suggests how interventions
that affect only a part of a system nonetheless impact the dynamics of the overall state variable in
a fashion that produces temporal scaling. The two models we discuss here can be seen as
quantitative versions of the schematics shown in Extended Data Item 9.
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5.1 Competing risk models
We first consider the possibility that animals might die from one of several possible causes that
occur independently of one another. In the statistics literature, this assumption forms the basis of
competing risks models [20]. In reliability theory, this assumption corresponds to an architecture
in which systems rely on multiple critical components that operate in series, i.e. a “weakest-link”
model. Both views posit that individuals/systems remain alive as long as no component has
failed, and, conversely, that the first component to fail causes the entire system to fail. If each
component i has survival function Si(t), i = 1, . . . , n, where n is the number of components, and
hazard function hi(t), i = 1, . . . , n, the survival and risk functions of the whole system, S(t) and
h(t), respectively, will be:

S(t) =

n∏
i=1

Si(t) and h(t) =

n∑
i=1

hi(t) (27)

Obviously, systems made of strong components (i.e. components with greater mean lifespans)
will fail later than systems made of weak components. It is also evident that systems with fewer
components will last longer, all else being the same, than systems with a greater number of
components, as each additional component introduces an additional possibility of failure. A
component that is substantially weaker than all the others (S1(t) ≪ Si(t) for all t and all i > 1)
will dominate the failure statistics of the system: S(t) ≈ S1(t).

We explored the impact of parameters of the competing risks model with numerical simulations,
summarized in Fig. 5-1. First, we considered the simple case where all components have the same
distribution of failure times Si(t), specifically a log-normal distribution (Fig. 5-1a). In this case,
the system’s behavior conforms with Extreme Value Theory (EVT) for minima bounded below by
zero (as is the case with lifespans). A central result of EVT is that the survival distribution S(t) of
a system consisting of a large number of components with independently and identically
distributed (iid) failure time distributions will take the form of a Weibull distribution [21]. The
Weibull distribution will arise regardless of the specific form of the probability density of failure
describing the components.

In simulations, we confirmed that when the total number of components is small, increasing the
number of components will shorten lifespan in a manner that deviates significantly from
temporal scaling (Fig. 5-1b, c). Such a change is therefore inconsistent with our experimental
results. When the total number of components is large, changes in the number of components
have little effect on lifespan. This again disagrees with our experimental findings, where we show
that substantial lifespan increases occur by temporal scaling. Additionally, any intervention that
breaks the iid assumption will be inconsistent with our experimental results: Even with large
numbers of components (i.e. independent death causes), for example n = 50, we observe that
altering the shape of the risk of one single cause shortens lifespan in a manner that deviates from
temporal scaling (Fig. 5-1g–i). This will be true in particular for any system whose competing
death causes are not iid to begin with. Were any intervention to emphasizes one cause over any
other, it would distort the overall lifespan distribution accordingly. In summary, we conclude that
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Supplementary Figure 5-1: Independent competing risks. a: We presume a series of inde-
pendent death causes (vital components) with log-normal distribution. Reducing the number of
causes from two (black) to one (red) extends lifespan, while increasing the number of causes de-
creases lifespan (green-purple). b: As seen from the AFT residuals, altering the number of causes,
yields a change in survival shape. c: The generalized KS-test confirms the significance of these
changes; values of |Ȳ| greater than 1.51 (gray line) correspond to a significant difference in shape
(p < 0.01). d: The same model as in panel a but all components failing according to a Weibull
distribution with a frailty correction chosen to match experimental data. As before, changing the
number of components will increase or decrease the mean lifespan (panel e), but with little effect
on the survival curve shape (panel f). g: Assuming again a log-normal failure time distribution for
each component and fixing the number of components at 50, we alter the µ parameter of a single
component, changing its mean lifespan while keeping its coefficient of variation fixed. Changing µ
0.9-fold or less shortens the lifespan of affected populations (green-red), but increasing it 1.2-fold
or more has little effect, as the remainder of shorter-lived components dominate. h–i: Decreasing
the lognormal µ of a single component by 0.8-fold or less produces statistically significant devia-
tions from perfect temporal scaling. j–l: If component failure follows a Weibull distribution with
no frailty correction, decreasing the time scale β of a single component changes lifespan without
producing any deviation from temporal scaling. m–o: When a frailty term is incorporated to al-
low the reference population to better match C. elegans data, significant deviations from temporal
scaling can be seen at large effect sizes if the frailty term σ is not changed in proportion to the scale
factor β. See text for details.

to reconcile our experimental data with a competing risks model requires that interventions alter
the risk profiles associated with all independent causes of death in exactly the same manner.

There is one exception to the iid assumption, however. If the failure risks of all components
happened to be Weibull risks, then an intervention that affected only the time scale parameter of
a subset of such components would still exhibit temporal scaling at the systems level, (Fig. 5-1j–l),
which would remain consistent with our experimental data showing scaling. Incorporating a
frailty term so that the reference population more closely matches our empiric data requires that
the frailty term σ2 also be scaled in proportion with the Weibull β, or else significant deviations
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from temporal scaling are produced (Fig. 5-1m–o; Note 6.4). Altering the number of components
would produce effects consistent with our experimental data (Fig. 5-1d–f). All this reflects the
fact that the sum of Weibull risks that only differ in their time scale parameters is still a Weibull
risk. With regard to interpreting our experimental results, a component Weibull scenario would
not be very helpful, as it still requires an explanation of why each system component exhibits an
extreme value distribution (Weibull). This distribution arises from a large number of
independent components that exhibit identically distributed failure times. It is not obvious why
all biological risk factors should meet such criteria. Moreover, it is unclear why an intervention
on any so-structured risk factor would affect only its time scale parameter. Finally, while
lifespan-shortening interventions might be consistent with our results, any substantial increase in
average lifespan would require that the risk profiles of many components be rescaled by the same
intervention.

We believe the competing risks case to be overly simplistic. Indeed, for interventions to produce
temporal scaling within a competing risks framework they would have to affect the likelihood of
all death causes to the same extent. This would be the case, however, if there was a physiological
state variable of the kind we postulate, whose stochastic decline determined lifespan.

5.2 Interdependency networks
It seems unlikely that C. elegans die from causes that are independent. Interdependence is an
essential aspect of life, as organ systems, tissues, cellular components and biochemical pathways
all depend on each other. Although we do not understand these dependencies at a detail that
allows us to suggest mechanistic models, progress might be made at a more abstract level by
considering a recent aging model based on a dependency network [22].

In the Vural-Morrison-Mahadevan (VMM) model [22], nodes (representing functional units like
cells, metabolic networks, organ systems) provide each other with physiological functions. A
node has two states: functional or failed. A node fails with an intrinsic failure probability and,
additionally, when a majority of nodes it depends upon have failed. This interdependency is
represented as a set of directed edges that weave the nodes into a network. An arrow i → j means
that node i contributes to maintaining the functionality that node j provides. Nodes may also
have an intrinsic repair probability. The network fails as a whole when less than a specified
fraction of nodes remains functional. The time to failure is the lifespan of an individual (network).

The VMMmodel requires that networks are initially connected, meaning that each node must
depend on at least one other node, and each node must have at least one dependent. A node is
subject to spontaneous (intrinsic) failure with a constant probability. Failed nodes can be
repaired, again with a constant probability. A node experiences an extrinsic failure when more
than half the nodes it depends upon have failed. This latter mechanism can cause networks to
collapse by cascading failures. The entire network represents an individual. It fails when 99% of
its nodes have failed. The model behavior is not sensitive to this threshold, as most networks
collapse completely once more than 50% of nodes have failed.

AFT regression models and KS tests both assume that death times are not discretized. In order to
use these statistical tools to analyze the results of simulations, we implemented the VMMmodel
as a continuous-time Monte Carlo simulation [23]. We confirmed (data not shown) that our
continuous-time version matched the behavior of the discrete version in [22].

Vural et al. demonstrate that specific parameter sets can cause interdependency models to yield
hazard functions that correspond closely to empiric estimates of C. elegans lifespan distributions.
Here, we do not address whether the VMMmodel fits our empiric data, because in Note 1.4 we
show that a broad class of functions can provide reasonable fits to experimental data. Instead, we
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Supplementary Figure 5-2: Interdependency networks. a, d: Vural et al. [22] describe de-
pendency networks with random and scale-free connectivity. See text for details. b–c: Random
dependency networks exhibit a binomial distribution of incoming edges (number of neighbors on
which any given node depends) and outgoing edges (number of neighbors that depend on any given
node). e–f: Scale-free networks exhibit a power-law distribution of incoming and outgoing edges.

examine VMMmodels to determine which changes to network architecture and failure dynamics,
if any, are capable of producing a temporal scaling of lifespan distributions.

5.2.1 Homogeneous interventions

We find that most changes to VMM network architecture and failure dynamics, including changes
to the number of nodes, the initial number of failed nodes, or the number of dependencies per
node, either do not produce a substantial effect on lifespan or alter lifespan distributions in a
manner not consistent with temporal scaling (Fig. 5-3). In contrast, changes to the rate of
intrinsic failure or repair of all nodes by the same factor produced a temporal rescaling of
mortality statistics (Fig. 5-3). Regardless of how interdependent the nodes might be, a universal
change of intrinsic failure rates simply speeds up or slows down the overall system dynamics. This
temporal rescaling of system dynamics then produces a temporal rescaling of mortality statistics.

These results were consistent across both random and scale-free network architectures, and
across multiple random permutations of network dependencies.
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Supplementary Figure 5-3: Temporal scaling in interdependency networks. We recapitulate
the perturbations by Vural et al. [22] for the purpose of studying their effect on temporal scaling.
Populations were simulated by generating 1, 500 random networks of the same size with the same
underlying distribution of node degrees and with all nodes sharing the same rate parameters. Each
network underwent a continuous-time Monte Carlo analog of the dynamics defined in Vural et al.
. Nodes fail (or are repaired) with a constant probability and subject to the majority rule described
in the text. The lifespan of the network is the time it takes for all nodes to fail. a: Changing the
number of nodes that constitute individuals did not alter the average lifespan of populations. b:
However, it does alter the characteristic shape of population survival curves as can be see in he
AFT-resisuals. c: All changes to the network size yielded a KS test statistic greater than 1.51 (grey
lines), corresponding to a statistically significant (p < 0.01) deviation from perfect temporal scal-
ing. d: Increasing the fraction of (randomly chosen) nodes that have failed at the outset did shorten
the average lifespan of the population. e–f: Yet, it produced significant deviations from perfect
scaling. g: Increasing the interdependence within networks only marginally increased lifespan.
h–i: This intervention showed no significant deviation from temporal scaling. j: Changing the
net failure rate of each node altered lifespan. k–l: As expected, such a homogeneous intervention
produced perfect temporal scaling.

5.2.2 Heterogeneous interventions

We asked whether modifying the failure rate of only a subset of nodes would break temporal
scaling. Such a change might mimic interventions in C. elegans that act only on a subset of
lifespan determinants. We found that a two-fold increase in the failure rate of any fraction of

27



nodes altered lifespan distributions in a manner consistent with temporal scaling, with the
magnitude of the scale factor depending on the fraction of nodes affected (Fig. 5-4). These results
were consistent across both random and scale-free network architectures, and across multiple
random permutations of network dependencies.
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Supplementary Figure 5-4: Scaling of heterogeneous interventions in dependency networks.
We investigated the effect of interventions that alter only a subset of all nodes. In populations
of 1, 500 random networks, we increased the failure rate of a subset of nodes, thus “weakening”
this subset. a: Not surprisingly, increasing the fraction of weakened nodes decreased network
lifespan. b, c: Very surprisingly, the AFT residuals and the generalized KS test statistic indicated
no significant deviations from temporal scaling (p < 0.01, gray lines)

We sought to explain this surprising result using the model introduced in the main text: that
diverse interventions produce temporal scaling because they influence a single system-wide state
variable that determines the risk of death. In VMM networks, networks collapse when the
fraction of nodes still operational (henceforth the operational node fraction) drops below a
minimum threshold. At the start of each simulation, this operational node fraction begins high
and then exhibits an almost linear decline for a long period, decreasing steadily until a
catastrophic failure [22] occurs. The operational node fraction, therefore, makes an obvious
candidate for a state variable with which to describe the risk of death (network collapse). A
reliability model [24] posits that aging is a decrease in the number of redundant system

28



components over time; perhaps older C. elegans have fewer functioning parts.
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Supplementary Figure 5-5: State variables in dependency networks. a: The panel shows
the dynamics of the fraction of functioning nodes (operational node fraction) in the entire sys-
tem (black), the weakened subnetwork (red) and the non-weakened subnetwork (blue). All times
were plotted as a fraction of lifespan, allowing the results of 500 simulations to be overlaid (colored
circles) and summarized by a LOESS regression model (lines). b: As in panel a, but the quantity
shown is the fraction of functional links per node (operational link fraction). All three subnetworks
are indistinguishable with regard to this quantity. c,d: To better characterize the diversity within
a population of the quantities tracked in panels a and b, we collected their value immediately be-
fore system collapse, leading to the death of the individual network, and plotted their cumulative
distribution function.

Despite its intuitive appeal, we find that the operational node fraction is not the best state variable
with which to describe the dynamics of VMM network aging. In Fig. 5-5, we show individual
trajectories of the state variable that correspond to the lifespan distributions in Fig. 5-4, where
half of the nodes operate with a two-fold increased failure rate. We find that the operational node
fraction calculated specifically for the subsets of “weak” and “strong” nodes diverge over time.
The operational node fraction of the entire network, as a state variable describing network
dynamics, does not capture this divergence. Furthermore, though all networks exhibited a low
operational node fraction immediately prior to network collapse, this fraction was highly variable,
limiting its predictive value with regard to the timing of network collapse.

A different systemic property, the average fraction of dependencies remaining operational across
all nodes (henceforth the operational link fraction), appears to be better suited. In VMM
networks, a node fails when the fraction of nodes it depends on drops below 50% of its initial
value. The operational link fraction might therefore be a useful state variable with which to
characterize the rate of dependency-induced failure events in a network. We find that the
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operational link fractions calculated for the subsets of “weak” and “strong” nodes do not diverge
over time (Fig. 5-5d). While “weak” and “strong” nodes differ in their intrinsic failure
probabilities, they are equally likely to have “weak” or strong” neighbors and therefore both
groups must exhibit equivalent operational link fractions at all times. This makes for a systemic
property that is consistent across all subnetworks. It also exhibits much less variability
immediately prior to network collapse than the operational node fraction. This suggests that the
operational link fraction is more predictive of lifespan than the operational node fraction (Fig.
5-5d).

5.3 Conclusions
In this study of dependency networks, we accomplish three tasks. First, we provide an example of
how a single state variable, such as the operational link fraction, can describe the state of a
complex system and predict its risk of collapse. Second, we illustrate that such a state variable
can have a simple dynamics governed by a single time scale despite emerging from a complex
network of heterogeneous components. Finally, we highlight one way in which interventions
acting only on a subset of a system might produce a temporal scaling in the mortality statistics.

In our simulations of interdependency networks, temporal scaling phenomena arise from the
basic assumption that nodes remain operational as long as any 50% of their dependencies remain
operational. Because the dependencies of a node are fungible and contribute equivalently to a
node’s operation, the consequences of local perturbations can be distributed across the whole
network. We do not know how such a homogeneity might arise in C. elegans.

Note 6 — Vitality/Resilience models based on diffusion
Summary
In this section, we explore how our experimental findings relate to a specific type of stochastic
process often invoked to describe aging phenomenologically: random walks and diffusion in a
physiological state space [1, 15]. In the context of these models, we explore the constraints that
temporal scaling places on the effects of interventions on model parameters. A concrete process
model also enables us to explore the sensitivity of temporal scaling to violations of these
constraints and to gain intuition on how large populations would have to be to detect such
violations with the statistical tools that we used to analyze our data.

Contents of Note 6
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6.1 Semi-infinite random walk
The aging processX(t) considered here is continuous in time t and has infinitely many discrete
states i = 0, 1, 2 . . . with an absorbing boundary at 0. At time t = 0 the random walker starts in
state i: X(0) = i. The probabilities of moving up or down the state space are β1 and β−1,
respectively, independent of i. If β−1 > β1, absorption occurs with certainty.
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The lifespan distribution (probability density of absorption times), p(X(t) = 0 |X(0) = i) is given
by [1,25] (Fig. 6-1):

p(X(t) = 0 |X(0) = i) = i

(
β−1

β1

) i
2 1

t
exp(−(β−1 + β1)t) Ii(2t

√
β−1β1), t > 0 (28)

with Ii(x) the modified Bessel function (of the first kind) of order i, for which an integral
representation is Ii(x) = (1/π)

∫ π
0 exp(x cos θ) cos(iθ)dθ.

To rescale time in the survival curve requires multiplying each rate parameter β−1 and β1 with the
same factor λ−1. Consider the survival function S(t):
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Supplementary Figure 6-1: A: Lifespan density: l(t) ≡ p(X(t) = 0 |X(0) = 20) with β−1 = 1.5
and β1 = 1. as per equation (28). B: Survival: S(t) ≡ 1−

∫ t
0 p(X(τ) = 0 |X(0) = 20)dτ . C:Hazard:

l(t)/S(t). The hazard decelerates (in fact, asymptotes to a constant) because the process attains a
quasi-stationary distribution over the states j > 0, qj = limt→∞ p(X(t) = j |X(t) > 0, X(0) = i),
with q1 = (1−

√
β1/β−1)

2 and qj = q1 j (β1/β−1)
(j−1)/2, ∀j > 1. As t → ∞, the hazard asymptotes

to h(∞) = β−1q1 = (
√

β−1 −
√
β1)

2, which, for the values used in this example, is .0.0505 . . . D:
Log-log plot of C. If we were to multiply β−1 and β1 by 2, the survival curve B would look exactly
the same up to a rescaling of the time axis by 1/2.
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S1(t) = 1−
∫ t

0
p(X(τ) = 0 |X(0) = i)dτ (29a)

= 1− i

(
λ−1β−1

λ−1β1

) i
2
∫ t

0

1

τ
exp(−(β−1 + β1)λ

−1τ) Ii(2
√

β−1β1λ
−1τ)dτ (29b)

integration by substitution: set τ ′ = λ−1τ, dτ ′ = λ−1dτ . . .

= 1− i

(
β−1

β1

) i
2
∫ λ−1t

0

1

λτ ′
exp(−(β−1 + β1)τ

′) Ii(2
√

β−1β1τ
′)λdτ ′ (29c)

= 1− i

(
β−1

β1

) i
2
∫ λ−1t

0

1

τ
exp(−(β−1 + β1)τ) Ii(2

√
β−1β1τ)dτ (29d)

= S0(λ
−1t) (29e)

Likewise for the probability density (28):
p1(X(t) = 0 |X(0) = i) = λ−1p0(X(λ−1t) = 0 |X(0) = i).

6.2 Drift-diffusion process
The random walk with continuous state space is a drift-diffusion process with initial value c, drift
coefficient −µ (µ > 0), and diffusion coefficient σ2:

X(t) = c− µ t+ σW (t), (30)

whereW (t) is a Wiener process, defined byW (0) = 0 and increments that are independent and
normally distributed with E{W (s+ t)−W (t)} = 0 and Var{W (s+ t)−W (t)} = s. In terms of
increments: P (W (s+ t) ∈ [y, y + dy] |W (t) = x) = N((y − x)/

√
t, 0, 1)/

√
t, whereN(x, 0, 1) is the

density of the standard normal distribution. Eqn. (30) is sometimes written as a stochastic
differential equation, dX(t) = −µdt+ σ dW (t), with initial conditionX(0) = c.

The lifespan distribution p(X(t) = 0 |X(0) = c) is an inverse Gaussian [1]:

p(X(t) = 0 |X(0) = c) =
c

σ
√
2π

1

t3/2
exp

[
−(c− µt)2

2σ2t

]
. (31)

The survival function is S(t) = 1−
∫ t
0 p(X(t) = 0 |X(0) = c):

S(t) = Φ

(
c− µt

σ
√
t

)
− exp

(
2cµ

σ2

)
Φ

(
−c− µt

σ
√
t

)
(32)

with Φ(x) the cumulative standard normal distribution, Φ(x) = (1/
√
2π)

∫ x
−∞ exp(−t2/2)dt.

Rescaling time means multiplying µ and σ2 with the same factor λ−1:

S1(t) = Φ

(
c− µλ−1t

σ
√
λ−1t

)
− exp

(
2cµ

σ2

)
Φ

(
−c− µλ−1t

σ
√
λ−1t

)
= S0(λ

−1t). (33)
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Supplementary Figure 6-2: Detecting deviations from perfect scaling. a: The plot shows the
parameter combinations (µ, σ) for which we can detect significant deviation from scaling relative
to a reference set (µ0 = 0.049, σ0 = 0.036) with a given statistical power (color) for population
size 1, 000. See text for details. Contour colors indicate increasing power. The area between the
blue (inner) contours, corresponds to parameter combinations with a less than 20% probability,
at p < 0.01, of detecting a deviation from scaling using our approach. Parameter combinations
outside the red (outer) contours have a greater than 80%probability, at p < 0.01, of being detected.
The dotted curve plots the line along which populations exhibit a coefficient of variation equal to
that of the reference population (point 1) b: We plot the same results in terms of the coefficient of
variation of lifespan vs the mean lifespan 1/µ, instead of directly the process parameters. (Scaling
implies a constant coefficient of variation.) c: The panel shows survival curves corresponding to
the marked positions 1 and 2 in panels a–b. d: The panel shows the corresponding AFT residuals
on which we ran the Kolmogorov-Smirnov test. e–f: As in panels c and d, but for the marked
positions 3 and 4 in panels a–b.

6.3 Statistical power and sensitivity of scaling in drift-diffusion processes
The drift-diffusion process we describe in section 6.2 exhibits a first passage time distribution
that is the so-called inverse Gaussian distribution, equation (31). Without loss of generality, we
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can fix c = 1. The mean lifespan then is given by µ−1, its variance is σ2/µ3, and its coefficient of
variation is σ/√µ. One can see that, to produce temporal scaling, a change from µ to µ/λmust be
accompanied by a corresponding change from σ to σ/

√
λ.

The extent to which our combined experimental and statistical approach can constrain
drift-diffusion models depends on its capacity to detect deviations from scaling, which in turn
depends on the size of the changes in each parameter and the size of the populations used to
detect them. In other words, the issue is not to detect just changes in, say, µ (a wilcoxon or
log-rank will work well even with relatively small populations of a hundred individuals), but to
detect disproportionate changes in µ relative to a given σ. This requires much larger population
sizes. Figure 6-2 shows the results for a population size of 1, 000, which corresponds to our typical
experiments.

In Figure 6-2, the parameters µ and σ always refer to the parameters of the drift and diffusion
component of the process. (The mean and the standard deviation of the inverse Gaussian then
are 1/µ and 1/σ.) We generated a reference sample (µ0, σ0) of 1, 000 death times sampled from an
inverse Gaussian probability density with (process) parameters µ = 0.049 and σ = 0.036. These
parameters were obtained by fitting an inverse Gaussian to our experimental data to obtain
realistic parameters. (This parametric form is not the best fit for our experimental data—we
prefer a Weibull distribution; but the inverse Gaussian provides a reasonable fit, as seen in
Extended Data Item 1a–d.) We then generated sets (µ, σ) of 1, 000 death times each, sampled
from inverse Gaussians whose µ and σ parameters were systematically varied over a range
(µ ∈ [0.025− 0.1] and σ ∈ [0.017− 0.071]). We compared each parameter setting (µ, σ) to (µ0, σ0)
using the AFT+KS combination (section 2.1) to calculate a p-value with which each pair (µ0, σ0)
and (µ, σ) could be said to exhibit a significant deviation from perfect scaling at a significance
level 0.01. By generating 750 replicates of each comparison, we determined the fraction of
significant p-values, which provides us with an estimate of the statistical power at population size
1, 000, and thus the effect sizes that can be distinguished.

Because we apply the same statistical test to evaluate temporal scaling in both simulated models
and experimental data, figure 6-2 can be used to assess our ability to draw strong inferences from
our data. The only assumption we make here is that C. elegans lifespan distributions can be
reasonably approximated by inverse Gaussian distributions.

Given a population of 1, 000 individuals, we ask how much the drift parameter µ of a
drift-diffusion process must change, at constant σ, for our statistical approach to reliably detect
deviations from perfect scaling at a significance 0.01 and power 0.8. The answer from Fig. 6-2 is
that the drift parameter must be altered to shorten or extend lifespan by about two-fold or more.
Tests for smaller effects will yield a higher rate of type II errors, and thus be less reliable.
Increasing population sizes to 5, 000 individuals (requiring heroic efforts in the lab) would allow
one to identify deviations from perfect scaling resulting from a constant σ when lifespan is altered
only 0.5-fold.

This simulation suggests that, were aging determined by a Wiener process with drift, a fixed σ can
be reasonably excluded for interventions that have a large effect on lifespan, for example exposure
to tBuOOH at 1.5mM, exposure to live bacteria (main Fig. 1 g-h), exposure to temperatures above
27 ◦C (main Fig. 1.b,c), and the daf-2(e1368) allele. For interventions with smaller effects on
lifespan, data obtained with the population sizes we consider serve to limit the magnitude with
which interventions affect σ. For example, in the case of hif-1(ia4), our data would constrain the
ratio of σ and µ in mutants to within 0.6 and 1.4 of wildtype. If this does not seem impressive,
remember that our data also exclude other types of change to the aging process that might occur
outside theWiener process model (for example a disproportionate change in one risk determinant
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as in Fig. 5-1d-f that produces a more prominent change in the survival distribution, e.g. a
deviation from the hazard function associated with an inverse Gaussian lifespan distribution).

This all serves to illustrate a more general point: when scaling interventions produce large effects
on lifespan (e.g. a 50% increase or decrease in a population comprising more than 1, 000
individuals), they can be used positively to suggest that the lifespan extension itself emerges from
a simultaneous effect on multiple aspects of the aging process, σ and µ in the present model or all
risk factors of equation (27). Interventions with smaller effects on lifespan are best interpreted as
providing limits on the magnitude of any disproportionate effect across the aging process, such as
causing a large change in σ without a corresponding change in µ, or adding or removing a risk
factor in equation (27).

6.4 Drift-diffusion process with drift heterogeneity
Here we consider the diffusion process of the previous section, but introduce hetergenity in the
drift coefficient µ. Let pµ(V (t) = v) be the probability of being in state v > 0 given a drift
parameter −µ chosen from a normal distribution with mean µ̄ > 0 and deviation σµ:

pµ(X(t) = v) =

∫ ∞

−∞
p(X(t) = v |µ) p(µ) dµ. (34)

A tedious calculation gives

pµ(X(t) = v) =
1√

2πt
(
σ2 + σ2

µt
) [1− exp

(
−2cv

σ2t

)]
exp

(
−(v − c+ µ̄t)2

2t(σ2 + σ2
µt)

)
(35)

Integrating over v > 0 yields the survival curve of the drift-diffusion process with drift
heterogeneity:

S(t) =

∫ ∞

0
pµ(X(t) = v) dv =

= Φ

 c− µ̄t√
t(σ2 + tσ2

µ)

− Φ

−
cσ2 + tµ̄σ2 + 2ctσ2

µ

σ2
√

t(σ2 + tσ2
µ)


× exp

(
−
σ2σ2(c− tµ̄)2 + (cσ2 + tσ2µ̄+ 2ctσ2

µ)
2

tσ2σ2(σ2 + tσ2
µ)

)
(36)

Again, temporal scaling obtains when the parameters σ2, µ̄, and σµ are scaled with λ−1. Note that
this agrees with our competing risk simulations in Fig. 5-1, where we present the phenomenon
quantitatively.

6.5 Strehler-Mildvan with vitality drift-diffusion
In 1960, Strehler and Mildvan proposed a now-prominent model of aging [26,27] that posits a
separation of the aging process from the proximate causes of death. The former generates the
(putatively) linear loss of vitality (represented by the physiological state variableX(t) in the
above processes), while the latter are events sampled from an age-independent distribution of
(internal or external) challenges that cause death when their magnitude exceeds the vitality of the
process at a given time.
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Specifically, the waiting time τ between challenges has exponential density, p(τ) = γ exp(−γτ).
Thus, P (τ ≥ t) = exp(−γt), t ≥ 0. The magnitudem of a challenge is also exponential with
parameter ν: p(m) = ν exp(−νm) and P (m ≥ M) = exp(−νM). If the vitality process V (t) is
deterministic, these assumptions imply for the hazard h(t) [27]:

h(t) = γ P (m ≥ V (t)). (37)

That is, h(t) is the average rate at which shocks occur (γ) times the probability that a shock kills.
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Supplementary Figure 6-3: Hazard function of Strehler-Mildvanmodel withwith vitality drift-
diffusion. A: The plots show equation (41) as a function of time and ν (blue: ν = 1; red: ν = 0.1;
green: ν = 0.001). Parameters: c = 20, µ = 1.5, σ2 = 1, γ = 1. B: The lin-log plots illustrate the
decidedly Gompertzian flavor of the model due to the imposed shock statistics.

We generalize equation (37) for the case in which vitalityX(t) is undergoing a drift-diffusion
process as in section 6.2:

h(t) = γ

∫ ∞

0
P (m ≥ v |X(t) = v) p(X(t) = v) dv. (38)

The probability density that a drift-diffusion process that started at location c is at location v > 0
at time t is given by [1]:

p(X(t) = v) =
1

σ
√
2πt

{
exp

(
−(v − c+ µt)2

2σ2t

)
− exp

(
2cµ

σ2

)
exp

(
−(v + c+ µt)2

2σ2t

)}
. (39)

By integrating eqn (39) over v we obtain the probability density that the process has not yet been
absorbed in state 0, which is the inverse Gaussian survival curve (32); p(X(t) = v) loses
probability into the absorbing state and we therefore need to have a separate term accounting for
the probability accumulating in the absorbing 0 state. As usual, the integral can be expressed in
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terms of cumulative standard normals (error functions):

h(t) = γ

∫ ∞

0
P (m ≥ v |X(t) = v) p(X(t) = v) dv (40)

= γ

[
exp

(
1

2
ν(−2c+ 2µt+ νσ2t)

)
×
{
Φ

(
c− (µ+ νσ2)t

σ
√
t

)
− exp

(
2c(µ+ νσ2)

σ2

)
Φ

(
−c+ (µ+ νσ2)t

σ
√
t

)}
+1− Φ

(
c− µt

σ
√
t

)
+ exp

(
2cµ

σ2

)
Φ

(
−c+ µt

σ
√
t

)]
. (41)

Therefore, for temporal scaling to occur in Strehler-Mildvan models, all parameters—µ, σ2, and
also the hit rate γ, but not ν, the parameter of the exponential density of hit magnitudes—must be
multiplied with λ−1.

References
[1] Aalen, O., Borgan, O. & Gjessing, H. Survival and Event History Analysis : A Process Point

of View (New York, NY : Springer New York, 2008).

[2] Cox, D. Regression Models and Life-Tables. Journal of the Royal Statistical Society, Series
B 34, 187–220 (1972).

[3] Atlan, H., Mique, l. J., Helmle, L. & Dolkas, C. Thermodynamics of aging in Drosophila
melanogaster. Mechanisms of Ageing and Development 5, 371––387 (1976).

[4] Mair, W., Goymer, P., Pletcher, S. & Partridge, L. Demography of dietary restriction and
death in Drosophila. Science 301, 1731–1733 (2003).

[5] Wu, D., Rea, S., Cypser, J. & Johnson, T. Mortality shifts in Caenorhabditis elegans:
remembrance of conditions past. Aging Cell 8, 666–675 (2009).

[6] Johnson, T. E., Wu, D., Tedesco, P., Dames, S. & Vaupel, J. W. Age-specific demographic
profiles of longevity mutants in Caenorhabditis elegans show segmental effects. J Gerontol
A (Biol Sci Med Sci) 56, B331–339 (2001).

[7] Samuelson, A., Carr, C. & Ruvkun, G. Gene activities that mediate increased life span of C.
elegans insulin-like signaling mutants. Genes Dev. 21, 2976–94 (2007).

[8] Stroustrup, N. et al. The Caenorhabditis elegans Lifespan Machine. Nature Methods 10,
665–70 (2013).

[9] Vanfleteren, J., De Vreese, A. & Braeckman, B. Two-parameter logistic and Weibull
equations provide better fits to survival data from isogenic populations of Caenorhabditis
elegans in axenic culture than does the Gompertz model. J Gerontol A Biol Sci Med Sci 53,
B393–403; discussion B404–398 (1998).

[10] Fleming, T. R., O’Fallon, J. R., O’Brien, P. C. & Harrington, D. P. Modified
kolmogorov-smirnov test procedures with application to arbitrarily right-censored data.
Biometrics 36, 607–625 (1980).

37



[11] Vaupel, J., Manton, K. & Stallard, E. The impact of heterogeneity in individual frailty on the
dynamics of mortality. Demography 16, 439–454 (1979).

[12] Vaupel, J. W. et al. Biodemographic trajectories of longevity. Science 280, 855–860 (1998).

[13] Baeriswyl, S. e. a. Modulation of aging profiles in isogenic populations of Caenorhabditis
elegans by bacteria causing different extrinsic mortality rates. Biogerontology 1, 53–65
(2010).

[14] Aalen, O. & Gjessing, H. K. Understanding the Shape of the Hazard Rate: A Process Point of
View. Statistical Science 16, 1––22 (2001).

[15] Weitz, J. & Fraser, H. Explaining mortality rate plateaus. Proc Natl Acad Sci USA 98,
15383–15386 (2001).

[16] Steinsaltz, D. & Evans, S. Quasistationary Distributions For One-Dimensional Diffusions
With Killing. American Mathematical Society 359, 1285–1324 (2007).

[17] Wu, D., Rea, S., Yashin, A. & Johnson, T. Visualizing hidden heterogeneity in isogenic
populations of C. elegans. Exp Gerontol. 3, 261–70 (2006).

[18] Garigan, D. et al. Genetic analysis of tissue aging in Caenorhabditis elegans: a role for
heat-shock factor and bacterial proliferation. Genetics 161, 1101–1112 (2002).

[19] Riesen, M. et al. MDL-1, a growth- and tumor-suppressor, slows aging and prevents
germline hyperplasia and hypertrophy in C. elegans. Aging 2, 98–117 (2014).

[20] Kalbfleisch, J. D. & Prentice, R. L. The Statistical Analysis of Failure Time Data. Second
Edition. Wiley Series in Probability and Statistics (Wiley, 2002).

[21] Rinne, H. The Weibull Distribution: A Handbook (Chapman and Hall/CRC, 2008), 1 edn.

[22] Vural, D. C., Morrison, G. & Mahadevan, L. Aging in complex interdependency networks.
Phys. Rev. E 89, 022811 (2014).

[23] Gillespie, D. Exact stochastic simulation of coupled chemical reactions. The Journal of
Physical Chemistry 81, 2340–2361 (1977).

[24] Gavrilov, L. & Gavrilova, N. The reliability theory of aging and longevity. Journal of
Theoretical Biology 213, 527–545 (2001).

[25] Heathcote, C. R. & Moyal, J. E. The RandomWalk [In Continuous Time] And Its
Application To The Theory Of Queues. Biometrika 46, 400–411 (1959).

[26] Strehler, B. & Mildvan, A. General Theory of Mortality and Aging. Science 132, 14–21
(1960).

[27] Wagner, P. Vitality heterogeneity in the Strehler-Mildvan theory of mortality. MPIDR
Working PapersWP-2011-012 (2011).

38


	Table of Contents
	Note 1 — Quantitative descriptions of temporal scaling
	Definitions and terminology
	Temporal scaling
	Accelerated Failure Time vs Proportional Hazards
	Scaling and parametric models
	On the parametrization of the Gompertz hazard
	The parametric form of wild-type C. elegans hazard


	Note 2 — Quantifying temporal scaling
	Adapting the Kolmogorov-Smirnov two-sample test
	Evaluating the performance of the generalized KS test

	Note 3 — Heterogeneity and deviations from temporal scaling
	Background: Weibull heterogeneity (frailty)
	Quantifying heterogeneity

	Note 4 — The effect of transient perturbations
	Intuition
	Definitions
	No switching
	Switching
	Predictions
	The effect of switching on distributions

	Note 5 — Temporal scaling in phenomenological causal models
	Competing risk models
	Interdependency networks
	Homogeneous interventions
	Heterogeneous interventions

	Conclusions

	Note 6 — Vitality/Resilience models
	Semi-infinite random walk
	Drift-diffusion process
	Statistical power and sensitivity of scaling in drift-diffusion processes
	Drift-diffusion process with drift heterogeneity
	Strehler-Mildvan with vitality drift-diffusion


