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S1. Proof of Lemma 1

Proof. Given that (nΣ̂ + hL) is invertible and h > 0, we have

Bias
(
β̂(h)

∣∣X) = E
(
β̂(h)

∣∣X)− β∗
= (nΣ̂ + hL)−1nΣ̂β∗ − (nΣ̂ + hL)−1(nΣ̂ + hL)β∗

= −(nΣ̂ + hL)−1hLβ∗,

which is equal to 0 if and only if Lβ∗ = 0. We know that

(nΣ̂ + hL)−1 � 1

λ0(nΣ̂ + hL)
I.

Therefore, ∥∥Bias(β̂(h))
∣∣X∥∥

2
= h

√
(Lβ∗)>(nΣ̂ + hL)−2(Lβ∗)

6 h

√
(Lβ∗)>

1

λ0(nΣ̂ + hL)
2 (Lβ∗)

=
h‖Lβ∗‖2

λ0(nΣ̂ + hL)
.

S2. Proof of Theorem 1

Proof. Under the null hypothesis H0 : β∗j = 0, we have∣∣γGj ∣∣ = h
∣∣(nΣ̂ + hL)−1L(β̃ − β∗)

∣∣
j

= h
∣∣ p∑
i=1

[
(nΣ̂ + hL)−1L

]
(j,i)

(β̃i − β∗i )
∣∣

6 h
∣∣∑
i:i 6=j

[
(nΣ̂ + hL)−1L

]
(j,i)

(β̃i − β∗i )
∣∣+ h

∣∣[(nΣ̂ + hL)−1L
]
(j,j)

β̃j
∣∣

6 h
∥∥[(nΣ̂ + hL)−1L

]
(j,−j)

∥∥
∞

∥∥β̃ − β∗∥∥
1

+ h
∣∣[(nΣ̂ + hL)−1L

]
(j,j)

β̃j
∣∣

Based on Bühlmann and van de Geer (2011), Chapter 6.12, with Gaussian design, if the Σ-

compatibility condition is met for the set S0 with compatibility constant φΣ, with probability

tending to 1, the condition is also met for Σ̂ with compatibility constant φΣ̂ > φΣ/2.
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Moroever, with hLasso �
√

log p/n and the Σ̂-compatibility condition for the set S0, with

probability tending to 1, we have ∥∥β̃ − β∗∥∥
1
6 4

hLassos0
φ2
Σ̂

.

Then, because s0 = O([n/ log p]ξ) and lim inf φ2
Σ̂
> d/2 > 0, we get∥∥β̃ − β∗∥∥

1
= Op

(( log p

n

) 1
2
−ξ
)
.

On the other hand, by Assumption A4,
(
(nΣ̂ + hL)−1hL

)
(j,j)

= Op
(
(n/ log p)1/2−ξ

)
. Thus

h
∣∣[(nΣ̂ + hL)−1L

]
(j,j)

β̃j
∣∣ =

∣∣[(nΣ̂ + hL)−1hL
]
(j,j)

∣∣∣∣β̃j − β∗j ∣∣ = Op(1),

and hence

Pr

(∣∣γGj ∣∣ 6 h
∥∥[(nΣ̂ + hL)−1L](j,−j)

∥∥
∞

( log p

n

) 1
2
−ξ
)
→ 1,

where the right hand side is ΓGj . We can thus write∣∣ẑGj ∣∣ =
∣∣ZG

j + γGj
∣∣

6
∣∣ZG

j

∣∣+ |γGj
∣∣

-asy.
∣∣ZG

j

∣∣+ ΓGj .

S3. Proof of Theorem 2

Proof. Given (12), conditional on X, the objective of PG
j 6 α is satisfied if

∣∣ẑGj ∣∣ > ΓGj +

q(1−α/2)

√
Var(ZG

j |X). According to Equation (6), this is equivalent of
∣∣β∗j + ZG

j + γGj
∣∣ >

ΓGj + q(1−α/2)

√
Var(ZG

j |X), which is satisfied if∣∣β∗j ∣∣− ∣∣γGj ∣∣− ∣∣ZG
j

∣∣ > ΓGj + q(1−α/2)

√
Var(ZG

j |X).

This holds with probability at least ψ if∣∣β∗j ∣∣− ∣∣γGj ∣∣ > ΓGj + q(1−α/2)

√
Var(ZG

j |X) + q(1−ψ/2).

We know that with probability tending to 1,
∣∣γGj ∣∣ 6 ΓGj . Therefore, conditional on X, we
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have PG
j 6 αL with probability tending to at least ψ, if∣∣β∗j ∣∣ > 2ΓGj + q(1−α/2)

√
Var(ZG

j |X) + q(1−ψ/2).

S4. Proof of Theorem 3

Proof. a) We note that PG
1 /P

GI
1 6 1 is equivalent of(∣∣ẑGI1

∣∣− ΓGI1

)
+
/
√

Var(ZGI
1 |X)(∣∣ẑG1 ∣∣− ΓG1

)
+
/
√

Var(ZG
1 |X)

6 1.

We first write out those components for the Grace test:

ẑG1 =
(
(X>X + hGnL)−1(X>y + hGnLβ̃)

)
1

=
(n+ hGn )x>1 y − (nρ+ hGn l)x

>
2 y + hGn β̃1(n+ hGn − nρl − hGn l2) + nhGn β̃2(l − ρ)

(n+ hGn )2 − (nρ+ hGn l)
2

;

ΓG1 =
∣∣∣hGn [(X>X + hGnL)−1L

]
(1,−1)

∣∣∣ ( log p

n

) 1
2
−ξ

=
∣∣∣hGn [(X>X + hGnL)−1L

]
(1,2)

∣∣∣ ( log p

n

) 1
2
−ξ

=
|nhGn l − nhGn ρ|

(n+ hGn )2 − (nρ+ hGn l)
2

(
log p

n

) 1
2
−ξ

;

Var(ZG
1 |X) = σ2

ε

[
(X>X + hGnL)−1X>X(X>X + hGnL)−1

]
(1,1)

= σ2
ε

(n3 + 2hGnn
2)(1− ρ2) + n(hGn )2(1 + l2 − 2lρ)

[(n+ hGn )2 − (nρ+ hGn l)
2]2

.

We can also write out those components for the GraceI test likewise with l = 0.

In the proof of Theorem 1, we have shown that Pr
(∥∥β̃ − β∗∥∥

1
6 4hLassos0/φ

2
Σ̂

)
→ 1.

With hLasso = O(log p/n), s0 = O([n/ log p]ξ) for some 0 6 ξ < 1/2, lim inf φΣ̂ > d/2 > 0,

and p = O(exp(nν)) for some 0 6 ν < 1, we have ‖β̃ − β‖1 = Op(1). Thus we get

β̃1 = β∗1 + Op(1), β̃2 = β∗2 + Op(1).

We also note that since our design matrix is scaled, we get

x>1 y = x>1 x1β
∗
1 + x>1 x2β

∗
2 + x>1 ε = nβ∗1 + nρβ∗2 + nE,

x>2 y = x>2 x1β
∗
1 + x>2 x2β

∗
2 + x>2 ε = nρβ∗1 + nβ∗2 + nE,
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where E ∼ N (0, σ2
ε/n) = Op(1).

Define kGn , hGn /n and kGIn , hGIn /n. With some algebra, We get(
|ẑG1 | − ΓG1

)
+√

Var(ZG
1 |X)

=

√
n
[
|(kGn + 1)2 − (ρ+ lkGn )2 + Op(1)| · |β∗1 | − (log p/n)1/2−ξ · |kGn (l − ρ)|

]
+

σε
√

(1 + 2kGn )(1− ρ2) + (kGn )2(1 + l2 − 2lρ)
.

(S1)

Similarly for the GraceI, we get(
|ẑGI1 | − ΓGI1

)
+√

Var(ZGI
1 |X)

=

√
n
[
|(kGIn + 1)2 − ρ2 + Op(1)| · |β∗1 | − (log p/n)1/2−ξ · |kGIn ρ|

]
+

σε
√

(1 + 2kGIn )(1− ρ2) + (kGIn )2
. (S2)

We observe that kGIn + 1 > 1 > |ρ| and kGn + 1 > |l|kGn + |ρ| > |ρ+ lkGn |. We plug in those

two inequalities into Equation (S1) and (S2). Hence, conditional on the design matrix X,

PG
1 /P

GI
1 6 1 with probability tending to 1 if

lim
n→∞

{[
(kGn + 1)2 − (ρ+ lkGn )2

]
· |β∗1 | − (log p/n)1/2−ξ · |kGn (l − ρ)|

}
+√

(1 + 2kGn )(1− ρ2) + (kGn )2(1 + l2 − 2lρ)

> lim
n→∞

{[
(kGIn + 1)2 − ρ2

]
· |β∗1 | − (log p/n)1/2−ξ · |kGIn ρ|

}
+√

(1 + 2kGIn )(1− ρ2) + (kGIn )2
.

Note that for any two real numbers f and g, f > g implies f+ > g+. Thus, conditional on

the design matrix X, PG
1 /P

GI
1 6 1 with probability tending to 1 if

lim
n→∞

[
(kGn + 1)2 − (ρ+ lkGn )2

]
· |β∗1 | − (log p/n)1/2−ξ · |kGn (l − ρ)|√

(1 + 2kGn )(1− ρ2) + (kGn )2(1 + l2 − 2lρ)

> lim
n→∞

[
(kGIn + 1)2 − ρ2

]
· |β∗1 | − (log p/n)1/2−ξ · |kGIn ρ|√

(1 + 2kGIn )(1− ρ2) + (kGIn )2
. (S3)

If we assume kGn = kGIn = k →∞, Inequality (S3) is satisfied if

lim
n→∞

[
(k + 1)2 − (ρ+ lk)2

]
· |β∗1 | − (log p/n)1/2−ξ · |k(l − ρ)|[

(k + 1)2 − ρ2
]
· |β∗1 | − (log p/n)1/2−ξ · |kρ|

×
√

(1 + 2k)(1− ρ2) + k2√
(1 + 2k)(1− ρ2) + k2(1 + l2 − 2lρ)

= lim
n→∞

[
(1− l2) + (2− 2lρ)/k + (1− ρ2)/k2

]
· |β∗1 | − (log p/n)1/2−ξ · |(l − ρ)/k|[

1 + 2/k + (1− ρ2)/k2
]
· |β∗1 | − (log p/n)1/2−ξ · |ρ/k|

×
√

1 + (2− 2ρ2)/k + (1− ρ2)/k2√
(1 + l2 − 2lρ) + (2− 2ρ2)/k + (1− ρ2)/k2

=
(1− l2)√

(1 + l2 − 2lρ)
> 1. (S4)

The last equality holds because p = O(exp(nν)) for some 0 6 ν < 1 implies that log p/n→ 0.
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For the ridge test, we assume hRn = O(1). Thus with some algebra we can similarly write

out the ridge test objective:

|ẑR1 |√
Var(ZR

1 |X)
=

√
n|1− ρ2 + Op(1)| · |β∗1 |
σε
√

(1− ρ2) + O(1)
. (S5)

b) Thus, conditional on X, we get PG
1 /P

R
1 6 1 with probability tending to 1 if

lim
n→∞

(
(kGn + 1)2 − (ρ+ lkGn )2

)
· |β∗1 | − (log p/n)1/2−ξ · |kGn (l − ρ)|√

(1 + 2kGn )(1− ρ2) + (kGn )2(1 + l2 − 2lρ)
>
√

1− ρ2 · |β∗1 |. (S6)

c) We also havePGI
1 /PR

1 6 1 with probability tending to 1 if

lim
n→∞

(
(kGIn + 1)2 − ρ2

)
· |β∗1 | − (log p/n)1/2−ξ · |kGIn ρ|√

(1 + 2kGIn )(1− ρ2) + (kGIn )2
>
√

1− ρ2 · |β∗1 |. (S7)

S5. Illustration of the Graph Structure in the Simulation Study

Figure S1 shows the graph structure used in the simulation study with 5 hub-satellite clusters.

In the simulation study, we use 50 such hub-satellite clusters.

[Figure 1 about here.]

S6. Additional Details for Analysis of TCGA Data

S6.1 Biological Evidence

In this section, we summarize some of the biological evidences in support of the association

between genes identified by the Grace and GraceR tests with the onset, progression and

severity of prostate cancer, as well as PSA level.

As pointed out in the main paper, the Grace and GraceR tests identify a number of

histone genes and histone deacetylase (HDAC) genes. Previous research indicates that histone

genes are associated with the occurrence, clinical outcomes and recurrence of prostate cancer

(Seligson et al., 2005; Ke et al., 2009). The pathological role of HDAC genes on the onset

and progression of prostate cancer have also been previously studied (Halkidou et al., 2004;

Chen et al., 2007; Abbas and Gupta, 2008).
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In addition to the highly connected histone and HDAC genes, the GraceR test also

identifies some disconnected genes. Prior works shows that the expression of ribonucleoside-

diphosphate reductase subunit M2 (RRM2) is associated with higher Gleason scores, which

correlate with the severity of prostate cancer (Huang et al., 2014). Protein arginine methyl-

transferase 1 (PRMT1) may also have an effect on the proliferation of prostate cancer cells

(Yu et al., 2009). Activation of olfactory receptors (OR) prevents proliferation of prostate

cancer cells (Neuhaus et al., 2009). Interferon-γ (IFNG) plays a role in the differentiation

of human prostate basal-epithelial cells (Untergasser et al., 2005). IFNG is connected to

the interleukin receptor 22 α1 (IL22RA1), the role of which related to prostate cancer

is unknown. However, several earlier studies point out the associations between prostate

cancer and several other interleukin receptors in the Janus kinase and signal transducer and

activator of transcription (JAK-STAT) activating family, including IL 6, 8, 11, 13 and 17

genes(Culig et al., 2005; Inoue et al., 2000; Campbell et al., 2001; Maini et al., 1997; Zhang

et al., 2012). Cell-division cycle genes (CDC) may also be associated with various cancers.

The association between collagen type 2 α1 (COL2A1) and prostate cancer is also not known,

but other collagen genes, including type 1 α2β1, type 4 α5 and α6, have been shown to be

associated with prostate cancer progression (Hall et al., 2008; Dehan et al., 1997). Although

the association between phosphate cytidylyltransferase 1 choline-α (PCYT1A) and prostate

cancer or PSA level is not known, Vaezi et al. (2014) shows that PCYT1A is a prognostic

factor in survival for patients with lung and head and neck squamous cell carcinomas.

S6.2 Stability of the Grace Test to the Tuning Parameter

Figure S2 shows the number of significant genes identified by the Grace test in the TCGA

data against various values of hG. The results indicate that the number of genes found by the

Grace test is relatively stable for a range of tuning parameters including the CV choice. On

the other hand, very few genes are identified when the tuning parameter is too small or too
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large. This is because, with small tuning parameters, the variance is large and thus no gene

is statistically significant. On the other hand, with large tuning parameters, the stochastic

bound Γj dominates ẑj. Note that above results of power do not contradict Theorem 3, which

shows the asymptotic power of the Grace test improves as we use larger hG. A vital condition

for Theorem 3 to hold is ‖β̃ − β‖1 = Op(1).

[Figure 2 about here.]

S6.3 Stability of the Grace Test to the Network

We examine whether the result of the Grace test on the TCGA data is sensitive to the

KEGG network structure. To this end, we randomly change the connectivity of m node

pairs in the KEGG network and form the new perturbed network G̃, |E∆Ẽ| = m, where

∆ is the symmetric difference operator between two sets. In other words, for m randomly

selected node pairs (ai, bi), i = 1, ...,m, if there is an edge (ai, bi) in the KEGG network, we

remove it in the perturbed network; otherwise, we add an edge in the perturbed network.

In our examination, m ranges from 10, 000 to 600, 000. Note that there are 38,541 edges in

the original KEGG network. We counted the number of genes that are significant using both

networks. The result shown in Figure S3 is an average of 50 independent replications.

[Figure 3 about here.]

S6.4 Prediction Performance

We also compare the prediction performance by Grace, GraceR, GraceI and lasso with tuning

parameters chosen by 10-fold CV, as well as ridge with h2 = 1. The result is shown in

Table S1. GraceR produced the smallest CV prediction error, followed closely by GraceI and

Grace. This result may indicate the KEGG network information is in fact informative in

prediction.

[Table 1 about here.]
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S7. Additional Simulation Studies with Extended NPE

We performed simulation studies with extended NPE ∈ {-225, -165, -70, -10, 0, 15, 135,

350, 600, 900, 1250, 1650, 2050, 3150}. These perturbations in the network correspond

to the spectral norm of perturbations ‖L−L∗‖2/‖L∗‖2 equal 0.85, 0.75, 0.50, 0.25, 0, 0.25,

0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00 and 2.65, respectively. The power and type-I error rates

are summarized in Figure S4, Table S2 and Table S3. Our conclusions on the simulation study

stated in the main paper do not change with this expanded version of simulation study.

[Figure 4 about here.]

[Table 2 about here.]

[Table 3 about here.]
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Figure S1. An illustration of the graph structure with 5 hub-satellite clusters.
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Figure S2. Number of genes identified by the Grace test in the TCGA data against the
tuning parameter of the Grace test, hG. The red dashed line corresponds to the choice made
by 10-fold CV (hG = exp(14.2)).
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Figure S3. Number of genes that are significant using both the KEGG network and the
perturbed network against the number of perturbed edges. The red dashed line represents
the number of genes identified by the Grace test with the KEGG network.
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Figure S4. Comparison of power and type-I error rates of different testing methods with
their 95% confidence bands. Testing methods include LDPE, ridge, GraceI, Grace and
GraceR. Filled circles (•) show powers, whereas crosses (×) are type-I error rates. Numbers
on x-axis for Grace and GraceR tests refer to the number of perturbed edges (NPE).
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Table S1
Prediction performance of the Grace, GraceR, GraceI(ridge regression with tuning parameter chosen by CV), ridge

(h2 = 1) and lasso. The performance metric is the sum of 10-fold CV prediction error (CVER).

Grace GraceR GraceI Ridge Lasso

CVER 3473 3411 3418 3917 3546
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Table S2
Mean power and the standard error for the LDPE test, ridge test, GraceI, Grace and GraceR tests with different R2

values.

R2 = 0.1 R2 = 0.2 R2 = 0.3

LDPE 0.181 (0.011) 0.274 (0.012) 0.343 (0.014)
Ridge 0.220 (0.016) 0.393 (0.018) 0.580 (0.019)
GraceI 0.493 (0.026) 0.769 (0.021) 0.868 (0.015)
Grace NPE = -225 0.623 (0.033) 0.853 (0.018) 0.918 (0.011)
Grace NPE = -165 0.720 (0.032) 0.918 (0.012) 0.959 (0.007)
Grace NPE = -70 0.780 (0.035) 0.974 (0.005) 0.985 (0.004)
Grace NPE = -10 0.839 (0.035) 0.986 (0.010) 0.998 (0.001)
Grace NPE = 0 0.813 (0.039) 1.000 (0.000) 1.000 (0.000)
Grace NPE = 15 0.760 (0.042) 0.947 (0.022) 0.989 (0.010)
Grace NPE = 135 0.506 (0.047) 0.791 (0.038) 0.920 (0.023)
Grace NPE = 350 0.431 (0.045) 0.732 (0.041) 0.873 (0.031)
Grace NPE = 600 0.328 (0.040) 0.719 (0.037) 0.906 (0.024)
Grace NPE = 900 0.337 (0.037) 0.609 (0.041) 0.791 (0.032)
Grace NPE = 1250 0.316 (0.036) 0.672 (0.038) 0.911 (0.017)
Grace NPE = 1650 0.376 (0.040) 0.688 (0.037) 0.859 (0.025)
Grace NPE = 2050 0.252 (0.037) 0.558 (0.042) 0.792 (0.032)
Grace NPE = 3150 0.312 (0.037) 0.622 (0.038) 0.845 (0.024)
GraceR NPE = -225 0.547 (0.033) 0.790 (0.023) 0.882 (0.015)
GraceR NPE = -165 0.606 (0.032) 0.831 (0.018) 0.923 (0.012)
GraceR NPE = -70 0.650 (0.032) 0.872 (0.018) 0.925 (0.013)
GraceR NPE = -10 0.722 (0.034) 0.904 (0.019) 0.959 (0.011)
GraceR NPE = 0 0.682 (0.038) 0.901 (0.020) 0.928 (0.017)
GraceR NPE = 15 0.702 (0.035) 0.887 (0.023) 0.958 (0.011)
GraceR NPE = 135 0.631 (0.037) 0.882 (0.025) 0.957 (0.013)
GraceR NPE = 350 0.628 (0.036) 0.878 (0.018) 0.940 (0.013)
GraceR NPE = 600 0.539 (0.036) 0.785 (0.028) 0.905 (0.017)
GraceR NPE = 900 0.490 (0.033) 0.781 (0.024) 0.875 (0.016)
GraceR NPE = 1250 0.515 (0.031) 0.822 (0.022) 0.909 (0.013)
GraceR NPE = 1650 0.585 (0.032) 0.821 (0.022) 0.890 (0.016)
GraceR NPE = 2050 0.450 (0.034) 0.748 (0.028) 0.876 (0.017)
GraceR NPE = 3150 0.442 (0.036) 0.767 (0.025) 0.864 (0.017)
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Table S3
Mean type-I error rate and the standard error for the LDPE test, ridge test, GraceI, Grace and GraceR tests with

different R2 values.

R2 = 0.1 R2 = 0.2 R2 = 0.3

LDPE 0.048 (0.0010) 0.048 (0.0010) 0.047 (0.0010)
Ridge 0.046 (0.0012) 0.048 (0.0013) 0.050 (0.0012)
GraceI 0.031 (0.0010) 0.027 (0.0009) 0.025 (0.0008)
Grace NPE = -225 0.026 (0.0013) 0.021 (0.0012) 0.019 (0.0010)
Grace NPE = -165 0.025 (0.0014) 0.020 (0.0013) 0.017 (0.0012)
Grace NPE = -70 0.027 (0.0021) 0.019 (0.0017) 0.014 (0.0013)
Grace NPE = -10 0.022 (0.0021) 0.015 (0.0017) 0.013 (0.0015)
Grace NPE = 0 0.024 (0.0021) 0.017 (0.0017) 0.011 (0.0013)
Grace NPE = 15 0.032 (0.0034) 0.031 (0.0031) 0.028 (0.0028)
Grace NPE = 135 0.040 (0.0073) 0.037 (0.0059) 0.029 (0.0042)
Grace NPE = 350 0.059 (0.0137) 0.051 (0.0102) 0.036 (0.0052)
Grace NPE = 600 0.060 (0.0156) 0.059 (0.0155) 0.040 (0.0083)
Grace NPE = 900 0.041 (0.0115) 0.038 (0.0101) 0.027 (0.0033)
Grace NPE = 1250 0.052 (0.0151) 0.045 (0.0111) 0.037 (0.0075)
Grace NPE = 1650 0.044 (0.0141) 0.045 (0.0125) 0.038 (0.0104)
Grace NPE = 2050 0.039 (0.0141) 0.035 (0.0112) 0.027 (0.0023)
Grace NPE = 3150 0.039 (0.0110) 0.027 (0.0024) 0.026 (0.0015)
GraceR NPE = -225 0.027 (0.0012) 0.023 (0.0011) 0.020 (0.0009)
GraceR NPE = -165 0.028 (0.0013) 0.023 (0.0011) 0.019 (0.0010)
GraceR NPE = -70 0.028 (0.0014) 0.022 (0.0014) 0.018 (0.0012)
GraceR NPE = -10 0.026 (0.0018) 0.020 (0.0015) 0.017 (0.0014)
GraceR NPE = 0 0.027 (0.0018) 0.022 (0.0016) 0.015 (0.0013)
GraceR NPE = 15 0.030 (0.0025) 0.026 (0.0025) 0.021 (0.0025)
GraceR NPE = 135 0.058 (0.0165) 0.041 (0.0112) 0.038 (0.0103)
GraceR NPE = 350 0.076 (0.0182) 0.059 (0.0152) 0.030 (0.0027)
GraceR NPE = 600 0.058 (0.0145) 0.054 (0.0139) 0.027 (0.0016)
GraceR NPE = 900 0.044 (0.0109) 0.040 (0.0099) 0.025 (0.0010)
GraceR NPE = 1250 0.057 (0.0125) 0.044 (0.0100) 0.034 (0.0071)
GraceR NPE = 1650 0.053 (0.0138) 0.047 (0.0122) 0.039 (0.0104)
GraceR NPE = 2050 0.045 (0.0111) 0.033 (0.0038) 0.025 (0.0009)
GraceR NPE = 3150 0.039 (0.0053) 0.029 (0.0017) 0.025 (0.0012)


