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Supplementary Note 1: Description of experimental data set

The experimental data set studied in the main text came from records of the Didinium-Paramecium
protozoan prey-predator system, which is the same data set studied in Ref. [1]. The detailed ex-
perimental conditions and related historical studies [2, 3, 4] are described in the Supplemental
Materials of Ref. [1]. The data can be found in Ref. [5] and downloaded from the web site:
http://robjhyndman.com/
tsdldata/data/veilleux.dat.

The length of the data set is L = 71, and we remove the first 10 data points to eliminate transient
behavior. For this top-down control system, the variables for the predator (Didinium) and the prey
(Paramecium) are denoted as x and y, respectively. The stronger driving variable is x. The time
series is normalized to having unit mean and variance.

Supplementary Note 2: Effect of measurement noise on detecting directed dynamical influ-
ence - additional examples

To better understand the behavior of the measureR in the CCM framework, we show in Figs. S1
and S2 R and the corresponding correlation coefficients, ρX|MY and ρY |MX , versus the noise ampli-
tude σ. Note that, Fig. 2(a) in the main text shows R versus σ but under a different parameter
setting (rx = 3.5 and ry = 3.8). Here, the results are for rx = ry = 3.8 in Fig. S1, where panel
(a) plots R versus σ and panel (b) shows how the corresponding correlation coefficients decay with
σ. Similar to the phenomenon described in the main text, for a given value of σ, a smaller value
of βx,y as compared with that of βy,x results in a larger value of R, due to the faster decay of the
correlation coefficientρY |MX . From Fig. 3 in the main text, representative structures of the attractor
manifold of the system for rx = ry = 3.8, we see that the faster decay in ρY |MX can be attributed to
the narrower structure of MX, as it can be relatively readily disturbed by noise. For the symmetric
case of βx,y = βy,x, the value of R fluctuates about zero as σ is increased.

Figures S2(a) and S2(b), respectively, plot R and the corresponding correlation coefficients
ρX|MY and ρY |MX versus σ for different values of the asymmetric noise ratio η. The parameters are
the same as Fig. 2(b) in the main text (rx = 3.8, ry = 3.5, βx,y = 0.05, and βy,x = 0.1). Since
βy,x > βx,y, x0 affects y0 more than the other way around, and a successful detection of directed

1



Supplementary Figure S1 | For CCM analysis of the predator-prey model system described in the
main text, (a) measure R as a function of the noise amplitude σ for different values of βx,y and
(b) the corresponding correlation coefficients ρX|MY (closed symbols) and ρY |MX (open symbols).
For (a) and (b), the values of βx,y are 0.01 (squares), 0.028 (circles), 0.046 (up triangles), 0.064
(down triangles), 0.082 (diamond), 0.1 (left triangles). Other parameters are η = 1, βy,x = 0.1, and
rx = ry = 3.8.
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Supplementary Figure S2 | For CCM analysis of the model predator-prey system in the main
text, (a) measure R as a function of the noise amplitude σ for different values of the asymmetry
ratio η, and (b) the corresponding correlation coefficients ρX|MY (closed symbols) and ρY |MX (open
symbols). The values of η are 2.7826 (circles), 1.6681 (squares), 1.2915 (up triangles), 1.0 (down
triangles), 0.7196 (diamond), 0.5 (pentagram), and 0.3727 (hexagon). Other parameters are βx,y =
0.05, βy,x = 0.1, rx = 3.8, and ry = 3.5.
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dynamical influence would yield positive values for R. As shown in Fig. S2(a) [or Fig. 2(b) in
the main text], in absence of noise (σ = 0), the value of R is about 0.0778, reflecting the directed
dynamical relationship correctly. As measurement noise is introduced, the value of R increases
with σ first, reaches a maximum, and then decreases, and this type of non-monotonic behavior
occurs for η > ηc = βx,y/βy,x. As shown in Fig. S2(b), both ρX|MY and ρY |MX decay with σ,
where ρX|MY is approximately independent of the value of η but ρY |MX depends sensitively on η.
As η is increased, the decay rate of the correlation coefficient ρY |MX in the small σ region increases.
Additionally, for a given value of σ, a larger value of η corresponds to larger effective noise on x(t),
resulting in a larger value for the ratio δy/δx. As a result, ρY |MX decays more rapidly, as shown in
Fig. S2(b). In fact, for large values of η (beyond ηc), both the non-monotonic behavior of R and
the overall increase of R with η observed in panel (a) can be attributed to the faster decay of the
correlation coefficient ρY |MX .

Figure S3 shows the reconstructed attractor manifolds of x and y for the two cases where there
is no intentional noise (a,b) and there is noise of amplitude σ = 0.005 (c,d). The parameters of
the system are set to be rx = 3.8 and ry = 3.5 so that, if the x and y variables are decoupled,
there is a chaotic attractor for x and a two-piece attractor for y. The attractor manifold of y consists
of two small, separated clusters [panel (b)]. For better visualization, we mark the two clusters in
MY with black and red (gray) colors, and colored the corresponding points (at the same instants of
time) in MX accordingly. We see that attractor manifold of x exhibits a pair of long curves close
to each other [panel (a)]. When a small amount of measurement noise is intentionally injected
into the time series, as shown in panel (c), the red (gray) and black clusters in MX merge at the
boundary, impacting the accuracy of cross mapping estimation of Y (t) based on MX, i.e., Ŷ (t)|MX.
In particular, in the merged region of the two clusters, as result of noise, a red (gray) point X(t′) in
the black cluster [marked by open circle pointed to by a red thick arrow in the inset of Fig. S3(c)]
may be selected as the neighbor of a black point X(t) (indicated by the black thick dashed arrow
in the inset). The point X(t′) is thus an incorrect neighboring point. Consequently, point Y (t′) in
the red (gray) cluster of MY [marked by open circle pointed to by a red thick arrow in Fig. S3(d)]
corresponding to X(t′) will be used to estimate the position of the point Y (t) (indicated by a black
thick dashed arrow). We see that Y (t′) is in fact far away from the black cluster of MY where the
actual point Y (t) is located. As the number of incorrectly estimated neighboring points is increased
due to noise-induced merging of the parallel clusters in MX, the accuracy of the estimated Y (t) will
decay dramatically. (The two correct neighboring points of X(t) and the two corresponding cross
mapping points in MX are indicated by thin black arrows.)
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Supplementary Figure S3 | For the model predator-prey system treated in the main text, recon-
structed phase space for Ŷ (t)|MX: attractor manifolds of x and y for σ = 0 (a,b) and σ = 0.005

(c,d). The two separated clusters of points in the phase space in panels (b,d) are labeled with red
(gray) and black colors, respectively, and the corresponding points (i.e, at the same time instant t)
in (a,c) are similarly colored in (b,d). Other parameters are rx = 3.8 and ry = 3.5.
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Supplementary Figure S4 | For the model predator-prey system subject to dynamical noise of
amplitude σ and asymmetry ratio η, measure R in the parameter plane (σ, η). We fix βy,x = 0.1

and choose a number of values of βx,y: (a) 0.01, (b) 0.02, (c) 0.05, and (d) 0.07. Other parameters
are rx = 3.8, ry = 3.5, N = 1000, Ex = Ey = 2, and τ = 1. The shaded region in each panel
indicates divergence of system dynamics due to large noise.
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Supplementary Note 3: Effect of dynamical noise on detection of directed dynamical influence

We study the effect of dynamical noise on detection of directed dynamical influence. Consider
the following two-dimensional coupled map system:

x(t+ 1) = x(t)[rx − rxx(t)− βx,yy(t)] + ησζxt ,

y(t+ 1) = y(t)[ry − ryy(t)− βy,xx(t)] + σζyt , (S1)

where βx,y, βy,x ∈ [0, 1] are the coupling parameters, rx, ry ∈ [0, 4], ζxt and ζyt are the white
Gaussian noise of zero mean and unit variance, η is the asymmetry ratio characterizing the bias
of noise on x relative to that on y, and σ is the noise amplitude. We calculate the value of the
measure R in the noise parameter plane (η, σ), as shown in Fig. S4. We obtain essentially the same
patterns as in Fig. 3, indicating that dynamical noise can also enhance the detectability of directed
dynamical influence. Dynamical noise, however, is intrinsic to the system dynamics and is thus
less susceptible to external adjustment/control as compared with measurement noise.
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