Engineered Protein Polymer-Gold Nanoparticle Hybrid Materials for Small Molecule Delivery

Min Dai^{1#}, Frezzo JA^{1#}, Sharma E¹, Chen R¹, Singh N¹, Yuvienco C¹, Caglar E², Xiao S², Saxena A², Montclare JK^{1,3,4*}

¹Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, USA

²Department of Biology, Brooklyn College and Graduate Center, City University of New York, Brooklyn, New York 11210, USA

³Department of Chemistry, New York University, New York, New York 10003, USA

⁴Department of Biochemistry, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA

[#]*These authors contributed equally*

***Corresponding author:** Montclare JK, Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, USA, Tel: 1-646-997-3679; E-mail: <u>montclare@nyu.edu</u>

CE ₁ -His ₆	MRGSHHHHHHGSACE LAATATATATATATATAACGD LAPQMLRELQET NAALQD VRLLRQQ VKEITFLKNT VMESDASGLQLLRQQ VKEITFLKNT VMESDASGLQL VKEITFLKNT VMESDASGLQV VKEITFLK
CE₁- <u>IEGR</u>	${\sf MRGSHHHHH} \\ {\sf H} \\ {\sf EGR} \\ {\sf ELAATATATATATATATATAACGDLAPQMLRELQETNAALQDVRLLRQQVKEITFLKNTVMESDASGLQLRQQVKEITFLKNTVMESDASGLQLRQQVKEITFLKNTVMESDASGLQLRQVKEITFLKNTVMESDASGLQLRQVKEITFLKNTVMESDASGLQLRQVKEITFLKNTVMESDASGLQLRQVKEITFLKNTVMESDASGLQLRQVKEITFLKNTVMESDASGLQLRQVKEITFLKNTVMESDASGLQLRQVKEITFLKNTVMESDASGLQLRQVKEITFLKNTVMESDASGLQVKEITFLKNTVMESDASGLQLRQVKEITFLKNTVMESDASGLQLRQVKEITFLKNTVMESDASGLQLRQVKEITFLKNTVMESDASGLQVKEITFLKNTVMESDASGLQVKEITFLKNTVKEITFLKNTVMESDASGLQVKEITFLKNTVMESDASGLQVKEITFLKNTVKEITFLKNTVMESDASGLQVKEITFLKNTVMESDASGLQVKEITFLKNTVMESDASGLQVKEITFLKNTVMESDASGLQVKEITFLKNTVMESDASGLQVKEITFLKNTVMESDASGLQVKEITFLKNTVMESDASGLQVKEITFLKNTVKEITFLKNTVMESDASGLQVKEITFLKNTVMESDASGLQVKEITFLKNTVKEITFLKNTVMESDASGLQVKEITFLKNTVKEITFLKNTVKEITFLKNTVKEITFLKNTVKEITFLKNTVKEITFLKNTVKEITFLKNTVKEITFLKNTVKEITFLKNTVKEITFLKNTVKEITFLKNTVKEITFLKNTVKEITFLKTKKTKTKTKTKTKTKTKTKTKTKTKTKTKTKTKTKT$
E ₁ C-His ₆	MRGSHHHHHHGSKPIAASAVPGVGVPGVGVPGFGVPGVGVPGFGVPGVEVPGVEVPLEGSELAATATATATATATAACGDLAPQMLRELQETNAAL
E₁C- <u>IEGR</u>	${\tt MRGS} {\tt HHH} {\tt H} {\tt H} {\tt E} {\tt G} {\tt R} {\tt A} {\tt S} {\tt A} {\tt V} {\tt G} {\tt V} {\tt G} {\tt V} {\tt G} {\tt V} {\tt G} {\tt G} {\tt V} {\tt G} {\tt G} {\tt G} {\tt V} {\tt G} {\tt G} {\tt V} {\tt G} {\tt G} {\tt G} {\tt V} {\tt G} {\tt G}$
CE₁-His ₆	DASGLQQATATATATATATAVDKPIAASAVPGVGVPGVGVPGFGVPGVGVPGFGVPGVEVPGVEVPLEGSGTGAKL
CE₁- <u>IEGR</u>	DASGLQQATATATATATATATAVDKPIAASAVPGVGVPGVGVPGFGVPGVGVPGFGVPGVEVPGVEVPLEGSGTGAKL
E ₁ C-His ₆	QDVRLLRQQVKEITFLKNTVMESDASGLQAATATATATATATATAVDLQPS
E₁C- <u>IEGR</u>	QDVRLLRQQVKEITFLKNTVMESDASGLQAATATATATATATATAVDLQPS

Figure S1. Alignment of protein sequences translated from DNAs that were verified by DNA sequencing at Eurofins. His tag cleavage site IEGR is highlighted with underline in CE_1 -IEGR and E_1C -IEGR.

Figure S2: 12% SDS-PAGE verified cleavage of CE_1 -IEGR and E_1 C-IEGR on IEGR site by Factor Xa. Molecular weight of CE_1 -IEGR and E_1 C-IEGR are 14150.95 and 13950.75 Da respectively. After His tag and IEGR site removal, molecular weight of CE_1 and E_1 C are 12441.08 and 12240.88 Da respectively.

Figure S3: Wavelength spectra of CE₁-His₆-GNP (blue), E_1 C-His₆-GNP (red), CE₁-(His₆ cleaved)-GNP (green) and E_1 C-(His₆ cleaved)-GNP (purple). The spectra for phosphate buffer supplemented with Factor XA cleavage buffer and GNP was subtracted from each spectra.

Figure S4: Protein size measurement. Micrographs of CE_1 -His₆-GNP (top) and E_1C -His₆-GNP (bottom) with protein particles highlighted (with black circle). Selected protein particles are analyzed for size measurements using Image.

Figure S5: Micrographs of CE_1 -His₆-GNP (upper panel) and E_1C -His₆-GNP (lower panel) samples with selected GNPs (with red circle, right side)) for size measurements using Image.

Figure S6: Size distribution of GNPs in each protein constructs. More than 130 particles were analyzed for both constructs. The average diameter of GNPs in E_1C -His₆-GNP is 3.5 ± 0.9 nm and 3.4 ± 0.9 nm in CE₁-His₆-GNP.

Figure S7: Temperature dependent wavelength scans of (a) CE_1 -His₆-GNP and (b) E_1C -His₆-GNP from 20°C to 95°C. Insets represent the temperature-dependent wavelength scans of the same protein in the absence of GNP templated-synthesis.

Figure S8: Secondary structure calculation using CDSSTR of (a) CE_1 -His₆, (b) CE_1 -His₆-GNP, (c) E_1C -His₆ and (d) E_1C -His₆-GNP at pH 8.0. The fraction of secondary structure ratios as a function of temperature for (e) CE_1 -His₆, (f) CE_1 -His₆ - GNP, (g) E_1C -His₆ and (h) E_1 C-His₆-GNP via CDSSTR.

Figure S9: Fluorescence, Ex: 420 nm; optical cutoff: 455 nm, of (a) CCM, (b) E_1C -His₆-GNP and (c) CE₁-His₆-GNP. Values following each data point represent the micromolar concentration of CCM.

	CE ₁ -His ₆	CE ₁ -His ₆ •GNP	E ₁ C-His ₆	E ₁ C-His ₆ •GNP
Concentration of protein	0.1621 mg/mL	0.1621 mg/mL	0.1818 mg/mL	0.1818 mg/mL
Concentration of NaCl	0.946 M	0.946 M	0.45 M	0.45 M

Table S1. Final concentration of protein and NaCl in samples for T_t measurement

	CE ₁ -His ₆	CE ₁ -His ₆ •GNP	CE ₁ -His ₆ -CCM1 ^a	CE ₁ -His ₆ -GNP-CCM2 ^a	CCM2 ^b
Conc. of protein	10	10	10	10	N/A
Conc. of CCM	N/A	N/A	4.27	46.32	46.32
	E ₁ C-His ₆	E ₁ C-His ₆ -GNP	E ₁ C-His ₆ -CCM3 ^a	E ₁ C-His ₆ -GNP-CCM4 ^a	CCM4 ^b
Conc. of protein	10	10	10	10	N/A
Conc. of CCM	N/A	N/A	1.58	40.1	40.1

^aCCM added in uptake experiment are equivalent to the loading capacities of each protein sample ^bFor CCM controls, the amount equivalent to P-GNP loading capacities was used

Table S2: Final concentration (μM) of each component in samples for cell uptake experiment.

	CE ₁ -His ₆	CE ₁ -His ₆ -GNP	CE ₁ -His ₆ -CCM1	CE ₁ -His ₆ -GNP -CCM2	CCM1	CCM2	Cell only
Abs.	2.07 ± 0.01	2.028 ± 0.01	2.046 ± 0.01	2.046 ± 0.01	1.999 ± 0.05	2.025 ± 0.02	2.045 ± 0.01
	E ₁ C-His ₆	E ₁ C-His ₆ -GNP	E1C-His6-CCM1	E ₁ C-His ₆ -GNP -CCM2	CCM1	CCM2	DMEM
Abs.	2.053 ± 0.00	2.042 ± 0.02	2.034 ± 0.02	2.042 ± 0.01	2.039 ± 0.00	2.044 ± 0.01	0.00 ± 0.00

 Table S3: MTS Assay after 4 Hour Treatment.

	CE ₁ -His ₆	CE ₁ -His ₆ -GNP	CE ₁ -His ₆ -CCM1	CE ₁ -His ₆ -GNP -CCM2	CCM1	CCM2	Cell only
Abs.	2.138 ± 0.01	2.051 ± 0.01	2.041 ± 0.00	2.026 ± 0.03	2.034 ± 0.02	1.999 ± 0.01	2.017 ± 0.05
	E ₁ C-His ₆	E ₁ C-His ₆ -GNP	E ₁ C-His ₆ -CCM1	E ₁ C-His-GNP -CCM2	CCM1	CCM2	DMEM
Abs.	2.119 ± 0.00	1.999 ± 0.02	2.034 ± 0.00	1.866 ± 0.15	1.974 ± 0.01	1.98 ± 0.04	0.00 ± 0.00

 Table S4: MTS Assay after 24 Hour Treatment.