
Electronic Supplementary Information

Crystallization, structural diversity and anisotropy effects in 2D arrays of icosa-

hedral viruses

M. Fukuto, Q. L. Nguyen, O. Vasilyev, N. Mank, C. L. Washington-Hughes, I. Kuzmenko,

A. Checco, Y. Mao, Q. Wang, and L. Yang

I. MEASURED ISOELECTRIC POINT OF TYMV

See Fig. S1.
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FIG. S1: The isoelectric point of TYMV was determined through zeta potential measurements on

TYMV in 10 mM citric acid solutions as a function of pH (±0.1), using a Zetasizer light scattering

set-up (Malvern corporation) as previously described [1]. The concentration of TYMV used was

0.015 mg/ml, the same as for most of the x-ray measurements. The data show that the isoelectric

point is pI = 3.6 ± 0.1, consistent with the previously reported values [2].

II. ADDITIONAL GISAXS DATA

See Fig. S2.
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FIG. S2: Low-resolution GISAXS patterns measured (A) at various solution pH at a fixed cationic

lipid fraction of 0.5 and (B) at different values of the cationic lipid fraction at pH 3.9 (0.015 mg/ml

TYMV).

III. NUMERICAL ANALYSIS FOR CRYSTALLINE 2D PACKING OF MODEL

VIRUS-SHAPED PARTICLES

Our x-ray measurements revealed 2D crystals of TYMV and their unit-cell dimensions,

but the details of the packing arrangements could not be resolved. To gain further insight

to the nature of the observed 2D crystals, we examine the structures of ordered 2D arrays

that can be generated numerically using a model virus-shaped particle.
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A. Geometric model for TYMV

The icosahedral TYMV particle (Fig. S3(a)) is characterized by knobs of two types: 12

pentagonal knobs (blue) along the 5-fold axes and 20 hexagonal knobs (green and yellow)

along the 3-fold axes. These knobs are denoted as “5knobs” and “3knobs,” respectively.

Our first task is to construct a simple geometrical model of the virus particle that can

be used to study 2D packing of virus-shaped particles. To this end, we represent the virus
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FIG. S3: (a) TYMV particle as viewed along a 2-fold axis. (b) The 3D model of the virus

particle. The magenta, blue, and green spheres represent the core, pentagonal knobs (“5knobs”),

and hexagonal knobs (“3knobs”), respectively. (c) Projections along the 2-fold axis of the virus

atoms [3, 4] (red dots), the core sphere (magenta), selected 5knob spheres (blue), and selected

3knob spheres (green). (d) Projections along the 2-fold axis of the virus atoms near the equatorial

(x-z) plane (|y| < 1 nm) and the equatorial cross-section of the model particle surface (line).

3

Electronic Supplementary Material (ESI) for Soft Matter
This journal is © The Royal Society of Chemistry 2013



particle three-dimensionally by a combination of spherical components (Fig. S3(b)-(d)).

The 5knobs (3knobs) are represented by spheres of radius a5 (a3) whose centers lie on the

icosahedral 5-fold (3-fold) axes at a distance R5 (R3) from the particle center, respectively.

The core of the particle is represented by a sphere of radius R. Comparison with the known

atomic coordinates of TYMV [3, 4] shows that the size and shape of the virus are well

captured by the following parameter choices: a5 = 3.6 nm, a3 = 4.2 nm, R5 = 12.04 nm,

R3 = 11.05 nm, and R = 13.0 nm. This is demonstrated in Fig. S3(c) and (d), which

compare projections of the virus atoms with the model particle.

B. Interaction potentials

To explore packing of the model particles through simulations, we define interparticle

interactions. For simplicity, we neglect the chemical and electrostatic heterogeneities of

the TYMV particle and employ a “homogeneous” interparticle potential whose anisotropic

nature arises solely from the particle shape. Specifically, we represent the 3D interaction

between two neighboring model particles by the sum of pair interactions between their

spherical components. The latter interactions are set such that they depend only on the

component radii and the inter-component distances; they are otherwise independent of the

component types (5knob, 3knob, or core). The interaction range chosen is short enough

that only the exterior surfaces of the model particle participate in the interactions.

Let Ri denote the radius of a component from one particle, Rj the radius of a component

from another neighboring particle, and rij = |~ri − ~rj | the center-to-center distance between

these two components. We consider two types of interactions:

• The hard-core repulsion with the inter-component potential

Uhc(rij) = θ(Ri + Rj − rij) (1)

where θ(x) =







0, x < 0

1, x > 0
is the Heaviside theta function. The interparticle potential

based on Eq. (1) is zero if the envelope surfaces of the two interacting particles do

not intersect and is non-zero for two intersecting particles. We use this potential to

determine the maximum possible packing densities for the model particles.
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FIG. S4: Examples of the Morse potential: (a) for fixed κ = 4 nm−1 and σij = R + a5, R + a3, 2R

for the core-5knob, core-3knob, and core-core interactions, respectively; (b) for κ = 2, 4, 6 nm−1

and fixed σij = R + a3 = 17.2 nm.

• The Morse potential for the inter-component interactions:

Um(rij) = U0 exp(κ(σij − rij))[exp(κ(σij − rij)) − 2], (2)

where κ sets the steepness of the potential and σij = Ri + Rj is the inter-component

distance at the potential minimum, corresponding to the two spherical components

making a stable contact. The potential is repulsive for rij < σij and attractive for

rij > σij . We use this potential to generate contact-optimizing packing arrangements

for the model particle through energy minimization.

Fig. S4(a) plots examples of the Morse potential for κ = 4 nm−1 and σij = R + a5, R +

a3, 2R for the core-5knob, core-3knob, and core-core interactions, respectively. Since the

interactions are treated as homogeneous (i.e., the same U0 and κ in Eq. (2) for all component

pairs), the potential profile is independent of the component types involved. Fig. S4(b) plots

the Morse potential for σij = R + a3 = 17.2 nm and κ = 2, 4, 8 nm−1. In general, smaller

values of κ lead to higher efficiency for the numerical minimization of the interaction energy.

Since the effective range for hydrophobic interactions should be about the size of the water

molecule (∼0.3 nm), we set κ = 4 nm−1 in the simulations to be described below.
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C. Constraints and parameterization for 2D crystal lattices

Our aim is to investigate ordered 2D packing of the model particles with well-defined

particle orientations. To facilitate the analysis, we impose the following constraints. First, we

assume that the particle centers are confined to the x-y plane such that no particles display

out-of-plane displacements along the z axis. The 3D nature of the interparticle interactions

is still preserved. Second, we assume that the vertical (normal-to-lattice) orientation of the

particle is fixed and consider only the following four cases:

(i) The particle’s 2-fold axis is aligned with the z axis.

(ii) The particle’s 3-fold axis is aligned with the z axis.

(iii) The particle’s 5-fold axis is aligned with the z axis.

(iv) The bisector between adjacent 3-fold and 5-fold axes is aligned with the z axis.

Physical plausibility of these possible orientations is discussed in the main text. With these

constraints, the model particle has 3 degrees of freedom: translation in the x-y plane and

rotation about the z axis. Since the particle is anisotropic, the interparticle interaction

depends on mutual particle orientation.

Third, we only consider 2D crystals with one-particle or two-particle unit cells:

• A crystal with an one-particle (1p) unit cell (see Fig. S5(a)) is characterized by the

two lattice constants a1 and a2, the lattice angle γ, and the in-plane orientation angle

of the particle φ. The area per particle is S = a1a2 sin(γ). Thus, for a given S, we can

characterize the structure of a 1p crystal by a set of three parameters {a1, γ, φ}.

• A crystal with a two-particle (2p) unit cell (see Fig. S5(b)) contains both the first

particle (red) with the in-plane orientation angle φ1 and the second particle (blue)

with the orientation angle φ2. For the 2p cell, the area per particle is given by S =

1

2
a1a2 sin(γ). Thus, for a given S, the structure of a 2p crystal is characterized by a

set of six parameters {a1, γ, φ1, φ2, x2, y2}, where (x2, y2) are the coordinates for the

center of the second particle.

For a given crystal structure, we compute the interaction energy per particle U by per-

forming the sum over all pairs of possible interactions that correspond to the infinite periodic
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FIG. S5: (a) One-particle (1p) crystal cell with lattice constants a1 and a2, lattice angle γ, and

particle orientation φ. (b) Two-particle (2p) crystal cell with lattice constants a1 and a2, lattice

angle γ, particle orientations φ1 and φ2, and location of the second particle (x2, y2).

structure. The analysis based on the hard-core repulsion (i.e., hard-core interactions of all

spherical components of the model particles) is used to generate densest-packing configura-

tions that can be achieved without intersection of the particle surfaces. The analysis based

on the Morse potential yields the states with the minimum interaction energy.

D. Densest-packing 1p crystals via the hard-core potential

We examine possible high-density packing arrangements by considering model particles

interacting via the hard-core repulsion (Eq. (1)). This potential returns 1 if the surfaces

of the two particles intersect and returns 0 otherwise. Our objective is to determine the

parameters (a1, γ, φ) for the 1p crystal cell that provides the minimum possible cell area

Smin under the condition U(S, a1, γ, φ) = 0, corresponding to non-intersecting particles. We

realize this through the following procedure:

1. For given (a1, φ), we examine the dependence of the energy U on the cell area S and

the lattice angle γ.

2. As a first step, we check if it is possible to obtain zero interaction energy for a pair
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of particles with the orientation φ and at the distance a1. If not, there is no ground

state U = 0 for the given (a1, φ) and we return to step 1. If yes, proceed to step 3.

3. For a large enough initial value St for the cell area, we search for a value γt that

provides U(St, a1, γt, φ) = 0. Such a set (St, γt) exists for large St due to step 2. Once

a set (St, γt) is found, proceed to step 4.

4. We decrease the area Snew

t → St − dS and search for a new value γnew

t that provides

U(Snew

t , a1, γ
new

t , φ) = 0. If such γnew

t exists, we set St = Snew

t and γt = γnew

t and repeat

this process (step 4). If U(Snew

t , a1, γ
new

t , φ) > 0 for any γnew

t , proceed to step 5.

5. At this point, we have U(St, a1, γt, φ) = 0 (no intersection of particle surfaces) but

U(Snew

t , a1, γ
new

t , φ) > 0 (some intersection) for the smaller area Snew

t = St − dS for

any γnew

t . Thus, the minimum area Smin = St is provided by the angle γ∗ = γt for the

given (a1, φ). This procedure defines Smin = S(a1, γ
∗, φ).

In general, there is a possibility that for a given Smin, multiple distinct values of γ∗ (cor-

responding to different cell geometries) may provide U = 0. We have checked for this

possibility by starting with different values of γt in step 3 and comparing the resulting Smin.
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FIG. S6: The 1p crystal parameters for maximum-density configurations as a function of a1, based

on the hard-core potential: (a) the minimum possible area per particle Smin; (b) the lattice angle

γ∗ that provides Smin; (c) the ratio a∗
2
/a1 that provides Smin. The curves (i), (ii), (iii), and (iv)

represent different vertical orientations of the particle, with its 2-fold, 3-fold, 5-fold, and bisector

axis aligned along the z axis, respectively.
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TABLE I: Parameters of the 1p crystal cell at local minima of the cell area Smin (Fig. S6(a)).

orientation Smin [nm2] a1 [nm] γ∗ [◦] φ∗ [◦] a∗
2
/a1

(i) 718.41 28.61 60.27 30.75 1.0107

(i) 718.11 28.88 60.49 91.35 0.9893

(ii) 679.84 28.025 60.01 9.04 0.9994

(iii) 699.20 27.800 60.62 170.05 1.0383

(iii) 699.20 28.610 61.53 51.55 0.9717

(iii) 699.50 28.880 60.60 70.55 0.9626

(iv) 728.76 28.61 62.05 64.22 1.0079

(iv) 727.86 28.88 62.08 178.19 0.9877

We find that the true Smin is given by only one distinct value of γ∗. Thus, the computational

procedure used identifies the unique cell geometry for Smin at given (a1, φ).

We have extracted the global Smin by repeating the above procedure for different sets of

(a1, φ). Fig. S6 summarizes the results for different vertical particle orientations (i), (ii),

(iii), and (iv), corresponding to the alignment of the icosahedral 2-fold, 3-fold, 5-fold, and

bisector axis along the z axis, respectively. Fig. S6(a) shows that several local minima Smin

exist as a function of a1. Table I lists the crystal cell parameters for the most prominent of

these minima. From Table I, the following observations can be made:

• The densest configurations consist of nearly hexagonal packing (γ∗ ∼ 60◦, a∗
2
/a1 ∼ 1.0).

• These configurations exhibit Smin = 680 to 728 nm2/particle, depending on the particle

orientation; that is, they are substantially denser than the observed 2D crystals (Sobs ≈

770 nm2/particle).

• The maximum possible density is Smin = 680 nm2/particle, obtained for the vertical

orientation of the particle’s 3-fold axis.

E. Ground states for 1p crystals via the Morse potential

The ground state of the system of particles interacting via the Morse potential (Eq. (2))

corresponds to the crystal lattice with the minimum interaction energy per particle. For a
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FIG. S7: The minimum energy Umin (via the Morse potential) as a function of the area/particle S

for 1p crystals with different vertical particle orientations (i), (ii), (iii), and (iv).

given area per particle S, the geometry of a 1p crystal is defined by the parameters {a1, γ, φ}.

We have identified a set of parameters (a∗
1
, γ∗, φ∗) that provides the minimal energy Umin =

U(a∗
1
, γ∗, φ∗) = min{a1,γ,φ} [U(a1, γ, φ)] by performing direct energy minimization on a grid

within ranges π/3 ≤ γ ≤ π/2,
√

S/ sin(γ) ≤ a1 ≤ 1.3
√

S/ sin(γ) (i.e., a2 ≤ a1 ≤ 1.7a2,

where a2 = S/[a1 sin(γ)]), and 0 ≤ φ ≤ π. Fig. S7 plots the minimal energy Umin as a

function of S for different vertical particle orientations (i)-(iv). It can be seen that each

Umin(S) curve displays well-defined local minima. The 1p crystal parameters {S, a∗
1
, γ∗, φ∗

1
}

for the local minima are listed in Table II, together with the cell aspect ratio a∗
2
/a∗

1
.

This analysis reveals:

• Most of the local-minimum 1p configurations are close to being rhombic (a∗
2
/a∗

1
∼

1). But most of these show large deviations in S and/or γ∗ as compared to the

experimentally observed rhombic crystal (SRh = 772 nm2/particle, a1 = a2 = 28.0

nm, and γ = 80◦).

• The local-minimum 1p configuration for orientation (ii) with S = 765 nm2/particle

(a∗
1

= a∗
2

= 28.0 nm, γ∗ = 78.0◦) is the most consistent with the observed rhombic

crystal. In this configuration, the particle’s 3-fold axis is oriented vertically; the anal-
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TABLE II: Parameters of the 1p crystal cell at local minima of the interaction energy Umin (Fig. S7).

orientation S [nm2] Umin a∗
1

[nm] γ∗ [◦] φ∗ [◦] a∗
2
/a∗

1

(i) 727 -13.1960 27.9415 70.46 170.00 0.9881

(i) 771 -13.1940 27.9386 88.50 9.01 0.9881

(i) 782 -11.2969 28.1893 83.51 74.41 0.9905

(ii) 677 -14.7016 27.9510 60.06 69.01 1.0000

(ii) 752 -9.0346 29.4675 60.00 158.74 1.0000

(ii) 765 -9.8197 27.9671 77.98 69.01 1.0000

(ii) 785 -7.9294 29.4629 72.32 141.26 0.9491

(iii) 697 -12.5759 28.5600 61.563 87.57 0.9717

(iii) 733 -14.2127 27.7510 72.02 81.98 1.0000

(iii) 770 -14.2129 27.7567 88.07 98.0 1.0000

(iv) 736 -9.5303 28.614 68.17 36.76 0.9683

(iv) 764 -10.0691 28.3692 76.47 45.04 0.9763

(iv) 786 -9.8885 28.4814 84.81 116.2 0.9729

ysis further shows that the in-plane particle orientation (φ∗ = 69.0◦) is such that one

of the particle’s equatorial 2-fold axes points toward the next-nearest neighbors. As

described in the main text, this configuration forms the basis for our model of the

observed rhombic crystal.

F. Ground states for 2p crystals via the Morse potential

Because of the anisotropic interparticle interactions, the additional degrees of freedom

in 2p crystals (Fig. S5(b)) are expected to result in lower interaction energies than for 1p

crystals. For this reason, we have performed numerical energy-minimization analysis on 2p

cells of particles interacting via the Morse potential (Eq. (2)). In this case, for a given area

per particle S = 1

2
a1a2 sin(γ), we search for minima of the interaction energy Umin in the

six-dimensional parameter space {a∗
1
, γ∗, φ∗

1
, φ∗

2
, x∗

1
, x∗

2
}. Note that the two basis particles

may have different orientations φ1 and φ2, and that the position of the second particle

(x2, y2) may deviate from the cell center. We used the following method for this analysis.
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For each given S, we randomly selected 40 000 initial points within intervals γ ∈ [π/3, π/2],

a1 ∈ [
√

2S/ sin(γ), 1.3
√

2S/ sin(γ)], φ1 ∈ [0, π], φ2 ∈ [0, π], rx ≡ 2x2/(a1 + a2 cos(γ)) ∈

[0.8, 1.2], and ry ≡ 2y2/(a2 sin(γ)) ∈ [0.8, 1.2], where a2 = 2S/(a1 sin(γ)), and the normalized

coordinates (rx, ry) measure the deviation of the second basis particle from the cell center,

at which (rx, ry) = (1, 1). Then we performed numerical minimization of the energy using

Nelder and Mead simplex algorithm using GNU Scientific Library.

Fig. S8 plots the extracted minimum interaction energy Umin for 2p cells (solid lines) as

a function of the area per particle S. For comparison, Fig. S8 also reproduces the results for

1p cells (dashed lines). As expected, for each vertical particle orientation (i)-(iv), the 2p cell

yields lower interaction energies than the 1p cell. The parameters for prominent local minima

in Umin(S) for the 2p cells are listed in Table III. For a centered 2p cell, i.e., if (rx, ry) = (1, 1),

the particle positions can be described in terms of an effective 1p cell, as shown in Fig.S9; the

corresponding 1p cell parameters are given by: a1p
1

= 1/2
√

(a1 + a2 cos(γ))2 + (a2 sin(γ))2,

a1p
2

= 1/2
√

(a1 − a2 cos(γ))2 + (a2 sin(γ))2, and γ1p = arcsin(S/(a1p
1

a1p
2

)). These parameters
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FIG. S8: The minimum energy Umin (via the Morse potential) as a function of the area/particle S

for 2p crystals (solid lines) and 1p crystals (dashed lines) with different vertical particle orientations

(i), (ii), (iii), and (iv).
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TABLE III: Parameters of the 2p crystal cell at local minima of the interaction energy Umin

(Fig.S8). For centered 2p cells ((rx, ry) = (1, 1)), the equivalent 1p-cell parameters {ap
1
, ap

2
, γp} are

provided.

orientation S [nm2] Umin γ∗ [◦] a∗
1

[nm] a∗
2
/a∗

1
rx ry γ1p [◦] a1p

1
[nm] a1p

2
[nm] a1p

2
/a1p

1

(i) 697.0 -12.1958 90.00 50.498 0.547 1.000 1.000 57.33 28.775 28.775 1.000

(i) 726.0 -13.2136 89.30 45.388 0.705 1.000 1.000 70.36 27.925 27.604 0.989

(i) 771.0 -13.2140 90.67 39.775 0.975 1.000 1.000 88.53 27.611 27.933 1.012

(ii) 677.0 -14.7468 90.00 48.428 0.577 1.000 1.000 60.00 27.960 27.959 1.000

(ii) 721.0 -12.2937 81.05 52.198 0.536 0.923 0.727 N/A N/A N/A N/A

(ii) 731.0 -11.3422 95.47 52.520 0.532 0.914 1.166 N/A N/A N/A N/A

(iii) 673.0 -18.1881 90.00 46.561 0.621 1.000 1.000 63.67 27.403 27.403 1.000

(iii) 714.0 -16.9638 90.00 44.346 0.726 1.000 1.000 71.97 27.402 27.402 1.000

(iii) 739.0 -16.9662 90.00 42.053 0.836 1.000 1.000 79.78 27.403 27.403 1.000

(iii) 770.0 -14.2158 90.00 39.900 0.967 1.000 1.000 88.10 27.757 27.756 1.000

(iv) 710.0 -11.4476 84.68 50.268 0.564 1.000 1.000 58.77 29.985 27.691 0.923

(iv) 730.0 -12.9751 78.29 53.824 0.515 1.000 1.000 53.89 32.671 27.656 0.847

(iv) 757.0 -12.8992 90.00 41.750 0.869 1.000 1.000 81.95 27.650 27.650 1.000

(iv) 773.0 -11.6667 90.00 40.533 0.941 1.000 1.000 86.52 27.829 27.828 1.000

are also listed in Table III where applicable.

From Fig. S8 and Table III, we conclude:

• Most of the local-minimum 2p configurations consist of centered 2p cells ((rx, ry) = 1)

and are nearly rhombic (a1p
2

/a1p
1

= 1).
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• The two highest-density 2p configurations are given by orientation (iii) with S = 673

nm2/particle and orientation (ii) with S = 677 nm2/particle. Both of these are close

to being hexagonally packed (γ1p ∼ 60◦, a1p
2

/a1p
1

= 1). Their densities and hexagonal

nature are consistent with the results based on the hard-core potential (Smin ≈ 680

nm2/particle; see Table I).

• Nevertheless, none of the local-minimum 2p configurations resembles the two exper-

imentally observed 2D crystals, namely, the (2 × 1) rectangular crystal (Srec = 767

nm2/particle, a2/a1 = 0.5, γ = 90◦) and the rhombic crystal (SRh = 772 nm2/particle,

a1p
2

/a1p
1

= 1.0, γ1p = 80◦).
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