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1 Materials and methods

MRI Data overview and acquisition

The imaging data defining the functional networks used in this work are from a previous
study in our group(9). We only summarize the most important characteristics here.

The sample consists of 15 healthy subjects (8 females), all right-handed, median age 25
(range 18-29). Subjects were asked to lie down in the scanner, close their eyes, and let their mind
wander without focusing on any one thing in particular, for the duration of 10 minutes. Subjects
were verified to stay awake. The scanner was a 3T General Electric MR750, with an 8-channel
head coil. Whole-brain coverage was used, with 3.4 x 3.4 x 4 mm voxel size, spiral acquisition,
and a TR of 2 s.

MRI Data processing

Functional images were motion-corrected, normalized to MNI space, interpolated to 2 mm
isotropic voxels, and smoothed at 6 mm FWHM using SPM5 (http://www.fil.ion.ucl.ac.uk/spm/).
The data were then high-pass filtered above 0.008 Hz, and physiological noise (heart rate and
respiration rate) was removed from the data using RETROICOR and RVHRCOR(29).

MRI Data Independent component analysis

FSL MELODIC (http://www.fmrib.ox.ac.uk/fsl/ melodic/index.html) was applied to the
data to produce 30 components. Out of these, 14 were selected as being non-artifactual networks
in accordance with previous studies. The components were each thresholded manually, with a
more liberal statistical cut-off for subcortical spatial clusters (z=3.80+0.40, minimum number of
voxels 15) than for cortical spatial clusters (z=7.0+0.47). This resulted in 14 non-overlapping
networks, which are consistently found in most subjects and studies on resting state(/, /1, 30,
31), although the nomenclature may vary. These were auditory, basal ganglia, dorsal default-
mode, high visual, language, left and right executive control, posterior salience, precuneus,
primary visual, salience, sensorimotor, ventral default-mode network, and visuospatial (Figure
S1). Each network and the rest of the cortex and subcortical areas were then subparcellated into a
total of 499 regions of interest using a Ward clustering procedure(32).

Mapping Allen Institute biological samples to functional networks

Functional networks are defined in Montreal Neurological Institute (MNI) space, using the
ICBM152 template. Allen Institute brains underwent structural MRI before dissection, and were
normalized to MNI space. Therefore, MNI coordinates are available for all samples.

The 13 functional networks are non-overlapping, so samples can be mapped unequivocally.
To account for possible small normalization errors and rounding errors in coordinate
computations, if no one-to-one match is found, we expand the search to a 26-connected
neighborhood around the sample's coordinate (i.e., including voxels that are within + 1 voxel of
either x, y, or z coordinates). Then, our mask of interest defining functional networks includes all
Allen Institute samples whose MNI coordinates overlap with any of our 13 functional networks,
or the 26-connected neighborhood. We excluded all samples that fell within the thalamus,
midbrain, or pons because fMRI does not have the necessary spatial resolution to distinguish
nuclei within these structures as defined in the AIBS data. We also excluded samples from the
cerebellum and deep gray matter, in particular the hippocampus, to avoid biasing the analysis




due to possible differences in proportion of transcriptionally very diverse tissue in functional
networks with respect to the rest of the brain. The final count of samples for each functional
network is: ADMN: 84, Salience: 59, Sensorimotor: 47, Visuospatial: 51.

We also included AIBS samples that did not overlap with functional networks, again
excluding thalamus, midbrain, pons, cerebellum, and deep gray matter, resulting in 1276 samples
outside of functional networks.

Allen Institute data overview

The Allen Institute human microarray data (/0) consists of brains from six subjects(33), of
which two (brains 1 and 2 in Table S1) are full brains, and four are left hemispheres. The main
demographic characteristics are summarized in Table S1.

The data were downloaded from the Allen Institute web site on May 7, 2013, thus
benefitting from the improved within-batch and cross-batch array normalization procedures put
in place in March 2013(34). The platform was an Agilent 4x44 Whole Human Genome array
with an additional 16000 custom probes.

Allen Institute data probe reannotation

The assignment of probe sequences to genes was reannotated to the reference genome
assembly hg19 (UCSC Genome Browser) (35), using Re-annotator
(http://sourceforge.net/projects/reannotator/). If more than 2 mismatches between probe and
reference sequence were found, the probe was instead matched to the whole genome. The type of
hit (exonic or intronic) was recorded for further use in probe selection.

Allen Institute data probe normalization

Using all samples, we normalized each probe's expression level in turn by regressing out
brain identifier and batch identifier. Due to the small number of subjects, average intensity, sex,
age at death, and post-mortem interval have a very discrete set of values, and the statistical
model fit is no better than the one we use here.

Allen Institute data probe selection and collapsing

We removed genes that do not have an Entrez ID. We also removed probes that are not
called in any of the samples, where call information is provided in the Allen Institute data.

If genes were sampled by single probe, this probe was selected as long there was no
sequence mismatch with the gene sequence, and it was aligned to the gene’s exon sequence. If
there were several probes sampling the same gene, probe collapsing was conducted as follows:
the probe with the fewest sequence mismatches was selected, as long as it matched to the exonic
region, otherwise no probe was selected. Ties between probes having the same number of
mismatches (or none) were broken by selecting the one with the highest standard deviation over
samples, as a proxy for maximum information entropy.




Computing correlated gene expression networks

In mouse brains, correlated gene expression (called correlation mode in the anatomic gene
expression atlas at http://mouse.brain-map.org/agea) shows that high similarity of gene
expression is found within brain structures, and low similarity is found across brain
structures(/5).

In our case of interest, we aimed to measure correlated gene expression across 1777
samples, each represented by a 16,906-dimensional vector. The data will then be represented as a
graph with a 1777x1777 adjacency matrix, where nodes correspond to samples, and edges
encode the strength of the relationship between samples, with larger values corresponding to
more similar gene expression. Several methods can be used to measure similarity of samples, and
give a label (weight) to graph edges. Here, we used the Pearson product-moment correlation.

We also checked results using Spearman rank correlation. The edge weights of the
correlated gene expression network were highly similar between Pearson and Spearman
correlations (p=0.961, p<10""; Mantel test p-value=9x10* (1000 permutations)).

Test statistic and procedure for the relationship between functional networks and correlated gene
expression

The aim of the testing procedure is to find out whether grouping gene expression samples
according to their spatial overlap with functional networks gives rise to a “module-like” (or
“community-like”) subgraph in the statistical sense, that is, where the correlated gene expression
is larger within the functional network, relative to the rest of the brain, than expected by chance.
Both a test statistic and a testing procedure have to be defined. As explained in the main text, the
chosen test statistic was the strength fraction. We note that many other metrics could be used,
such as conductance, normalized cut, or a variant of out-degree fraction. We desired a metric that
directly represents the ratio between within-network and out-of-network correlated gene
expression (Figure S2), and that yields a higher number for a more “module-like” subgraph.
Another approach would have been to use a modularity-based technique. Our rationale for
avoiding this is twofold. First, results would hinge critically on the choice of a null model.
Recent work has shown that generic null models (such as the configuration null model) are
inappropriate for correlation networks(36) (where edges weights are given by Pearson
correlation). Second, in a large-scale test of subgraph scoring functions(37), it has been found
that scoring function combining internal and external connectivity, as is the case for the one we
use here, had excellent performance for a wide variety of datasets. Finally, note that to keep the
measure as simple as possible, we used the total strength, rather than the average strength,
meaning that the strength fraction value is not directly comparable between functional networks
because it depends on the size (number of vertices) of the functional network. However, this
does not impact the statistical test value.

The permutation procedure is conducted to test how likely it is to observe a particular
strength fraction value by chance in a subgraph of the same size. It is performed by permuting
samples (over the full graph) irrespective of their assignment to a subgraph, to yield a null
distribution. To account for clustering by subjects, samples are only permuted within subjects,
not across subjects (clustered permutation). Here, a subgraph corresponded directly to one of the
four functional networks of interest, and we used 10,000 permutations to assess significance.

While functional networks are distributed spatially, meaning they cross over different tissue
types, and that their sample can be spatially distant, it is important to ensure that a high strength
fraction does not simply reflect the fact that tissues are the same. For example, as noted, gene




expression in cerebellar samples is remarkably similar. To prevent any biases originating from
this fact, we grouped samples into 88 tissue classes by their anatomical description, foregoing
laterality (see Table S4). Then, we removed edges of the correlated gene expression graph
corresponding to similarities between the same tissue classes (Figure S3 shows the location of
edges that are removed).

Statistics on agreement of gene rankings between two brain subgroups

We split brains into two subgroups of three brains. In each subgroup, we multiplied one
gene’s expression level by 10, keeping all other expression levels at their original values,
computed the strength fraction, and moved on to the next gene. This yielded two ordered lists of
genes, after which we computed the probability of obtaining a certain overlap between the two
ordered lists by chance. Using the list-intersection discovery test(/9), we computed the p-value
for the overlap between the two ranked lists at a False Discovery Rate of 5%. We give an
example of the computation with the two brain subgroups as ([1 4 6], [2 3 5]).

Here, the total number of genes 7 is 16,906. The overlap size s between the two lists at a
top-rank cutoff » of 370 (corresponding to 5% FDR, see below) is 162. A gene has a probability

of ranking among the top r of P° = % = (.02 in any of the two lists. Accordingly, the probability

that a gene is listed in the top 7 in 2 or more lists is given by the binomial cumulative distribution

function _

P =1-Y4_0(;) PO (1 = PO 1y(i) = 5x107%

The number of genes overlapping by chance in 2 or more lists is approximately Poisson
distributed, with mean E = TPY = 8. Under the null hypothesis, the probability of observing an
overlap of size s is given by the Poisson cumulative distribution function

Pro=1-e P NE < 10715

Lastly, we compute the False Discovery Rate, equal to the expectation on the proportion of
false hits in all the significant tests, as

E

Generating the consensus list for all subgroups

We obtained all possible splits of the division of six brains into two subgroups, while
keeping a full brain (either brain 1 or brain 2, see Table S1) in each subgroup, in order to balance
the sample sizes. The six possible grouping permutations are ([1 4 6], [2 3 5]), ([1 3 4], [2 5 6])),
([135],[246]),([136],[245]),([145],[236]),and ([1 5 6], [2 3 4]). In each permutation,
we applied the same procedure as above and thresholded at an FDR of 0.05. The statistical
thresholding in each grouping can be seen as setting a regularization parameter controlling the
number of non-zero components in a 16,906-dimensional vector. This is equivalent to enforcing
a slightly different L;-norm in each of the permutations. Thus, to obtain a consensus, we used
stability selection(20) across all six lists, whereby the final consensus list (Table S2) consists of
genes that appear in the majority of consensus lists (four or more). Results did not vary
substantially if a more stringent criterion (appearance in five out of six splits) was chosen.

Allen Institute data gene set analysis
We used DAVID 6.7(24) (http://david.abcc.nciferf.gov/) to perform over-representation
analysis for Gene Ontology (GO) annotations in Biological Processes and Molecular Function,




using default settings except for selecting the “ALL” versions of the ontologies rather than the
“FAT” versions (equivalent to the Wolf et al settings(28)). The “ALL” versions comprise all
terms in the GO hierarchy (across levels), while the “FAT” version removes more general
(higher level) terms. We supply our custom background set of 16,906 genes, and the software’s
variant of a one-tailed Fisher exact test(38) is used for enrichment analysis. The reported p-value
is corrected using Benjamini-Hochberg FDR(39) (FDRpp). The results, shown in Table S5, point
largely towards cation channels.

We repeat over-representation analyses using Panther 9.0(40) (http://www.pantherdb.org),
Overrepresentation Test release 20141219, with the same custom background set, and FDRgy-
adjusted p-values. The results, shown in Table S6, largely agree (however, no GO Cellular
Component term is significant in this analysis) and again point towards cation channels playing
an important role.

We also compare our results with a study of the genetic determinants of axonal connectivity
in the rodent brain(28). We use the available supplementary “table S5 (obtained by these
authors using DAVID), and consider only annotation terms with an uncorrected p-value smaller
than 0.05. We run our DAVID analysis using the same settings as the authors. Using our own
results thresholded at an uncorrected significance level of 0.05, we compute the overlap in
annotation terms, disregarding the data source (not provided in that supplementary “table
S57(28)). Using their data for “outgoing” axonal connectivity (268 unique annotation terms), we
obtain an overlap of 50 unique terms with our results. Using their data for “incoming” axonal
connectivity (194 unique annotation terms), we obtain an overlap of 34 unique terms. The terms
are reported in Tables S7, S8.

We also looked for disease associations using Ingenuity Pathway Analysis. Here, a set of 6 genes
in the list (CALB1, CDK1, NGFR, PTGS1, SCN1B, TSHZ3) is significantly overrepresented for
Alzheimer’s disease (p<0.04 FDRgp). Another set of 6 genes is overrepresented for
schizophrenia (p<0.04 FDRgp). The full list of the 9 significant annotations is provided in Table
S10.

Finally, we also attempted an initial description of the types of cells that may be driving our
results. Here, we used the transcriptome database from Cahoy et al.(25) to examine whether
some genes in our list are significantly overexpressing in some cell types. We converted mouse
genes to humans orthologs using the HGNC Comparison of Orthology Predictions (HCOP)
tool(47) (http://www.genenames.org/help/hcop). Then we compared our gene list with the Cahoy
list, and counted when each gene had a significant overexpression in astrocytes,
oligendendrocytes, and/or neurons.

IMAGEN data overview

The data was collected and processed by the IMAGEN consortium(2/). Resting-state data
was acquired at the end of the second MR session, with instructions to keep eyes closed, relax,
and not sleep. All participants' parents gave written informed consent after information on the
research procedures, and adolescents gave their assent after written information. INSERM is the
legal promoter for French participants.

Here, we used 259 14-year old subjects (133 females) for which all three of functional MRI
data, a structural T1-weighted image, and genetic data is available. This is a subset of the 385
IMAGEN subjects for which resting-state data was available: we excluded some subjects due to
head motion larger than 3 mm in any direction (N = 74), failed co-registration (N = 16), or not
having genotype data (N = 16), leading to an intermediary sample size of N = 279. The final




analysis removes a further N = 20 because they are genetically related (see IMAGEN validation
procedure below). The functional images consist of a 6.5 mins echo-planar imaging resting-state
scan with TR/TE/Flip Angle = 2200 ms / 30 ms / 75°, 64x64x40 voxels with 2.4 mm slice
thickness and 1 mm slice gap and a field of view of 218x218mm, yielding isotopic 3.4mm
voxels. The structural image consists of a T1-weighted MPRAGE image of 256x256x160/166
voxels (depending on manufacturer), with a 1.1 mm isotropic voxel size. Other parameters were
based on the ADNI protocol (see http://adni.loni.usc.edu/methods/documents/mri-protocols/);
full details are provided in the IMAGEN paper(21).

Genotype is measured from blood samples, using IlluminaQuad660 chip measuring 550K
single nucleotide polymorphisms (SNPs).

IMAGEN MRI data processing

Functional and structural images were processed using FSL(42). Registration to MNI
standard space was accomplished by first aligning functional scans to the structural image, and
then normalizing them to MNI space using FLIRT(43). A 6mm smoothing kernel and a 6™ order
Butterworth band pass filter (0.01-0.1 Hz) were applied to the fMRI data. Several sources of
noise were regressed out: six movement parameters estimated by MCFLIRT, global signal, and
time series from regions-of-interest (ROIs) in the ventricles, the white matter, and outside the
brain. The same parcellation as for Allen Institute data was used. The mean time series was
extracted from each of the 499 regions. Pearson correlations were computed between all pairs of
regions. The matrix was then thresholded at 0, and the diagonal set to 0 to make it a valid
adjacency matrix for an undirected, weighted graph with no self-loops. Further, connection
strengths to ROIs not belonging to any of the 14 functional networks (N=357) were set to 0.

The strength fraction in the four functional networks of interest (ADMN, salience,
sensorimotor, visuospatial) was computed for each subject, in the same manner as described in
the section on Allen Institute gene expression data.

IMAGEN genetic data processing

Data on a total of 557,124 SNPs were provided by IMAGEN. These were filtered for minor
allele frequency (<5%), genotyping rate (<95%), and Hardy-Weinberg-Equilibrium (P<6e-7),
resulting in a final set of 492,856 SNPs.




IMAGEN validation procedure

With PLINK(44), we used strength fraction as a quantitative trait in an additive genetic
model corrected for sex, scanning site, population structure (5 PCA components), and motion
covariates (translation: max and mean of x,y,z, as well as RMS; rotation: max and mean of roll,
pitch, yaw; framewise displacement (FD, defined either by Van Dijk(45) or Power(46)): Van
Dijk and Power means, percentage Power FD at 0.02 and 0.05, total Power FD, total translations
in x,y,z, total rotations in pitch, roll, yaw). A genetic relationship matrix (GRM) was computed
for all 279 subjects using the GCTA software(47). Based on the GRM 20 subjects were removed
due to relatedness as indicated by a relationship score in the GRM of 0.025 or more, leading to a
final sample size of 259. The genome-wide association analysis yielded approximately 490K p-
values, one per SNP, on the null hypothesis of no association between genotype and strength
fraction in functional networks. There was no sign for inflation of p-values as the genomic
inflation factor was close to 1.0 (A=1.00803; Figure S5). The most significant SNP was
rs9870687 with a P-value of 6.57 x 10°. Thus, no SNP survived the Bonferroni corrected
threshold of 1.01 x 10”7 (Figure S5).

Our main interest is to verify the enrichment of statistical association signals in the
consensus list compared to the list of 16,906 background genes as well as the enrichment in the
significant GO terms identified by the previous overrepresentation analysis (Table S5). For
computing the enrichment scores for the 7 GO terms we use recent developments in pathway
analysis for GWAS data(48), in particular the z-statistic method(49) implemented in GSA-
SNP(22), where in order to test all 7 GO terms we removed the software’s default limit to test
only gene sets with sizes 10 to 200 genes. Briefly, every gene’s p-value is taken from its second-
ranked SNP within the region of transcription start site to transcription end including the 10Kb
upstream and downstream, respectively. This approach has been shown to reduce the impact of
randomly highly significant top SNPs(50). The z-statistic is then computed on the basis of all p-
values without the requirement to set an arbitrary cut-off. More precisely, p-values are converted
to scores using the —log;o transformation, p and ¢ are the mean and standard deviation,
respectively, of the gene scores on the set of all genes. S and n are respectively the mean gene
score and the size of gene set to be tested. The z-statistic is then computed as Z=(S — pw)/(c * n’
93). All but one GO terms were significantly enriched in this analysis (Z-scores and p-values for
all 7 GO terms are listed in Table S9). The non-significant term is extracellular region.

GSA-SNP does not allow for selecting a reduced background set of genes. Therefore, we
compute the Z-statistic for the consensus list manually using ppack and Gpack (instead of p and o)
corresponding to mean and standard deviation of the gene scores in our background list. The
consensus list showed significant enrichment (Z = 2.55; P=0.006) with respect to the background
list and, which was even more pronounced with respect to all genes (Z = 3.76; P = 8.38x107).P-
values were confirmed using a non-parametric permutation test with 10,000 permutations by
selecting random gene sets of equivalent size from either the background set (P = 0.0059) or the
full list of genes (P < 4x10™).

In order to capture the multiallelic effect of the consensus list for visualization purposes
(Figures 2, S5), we computed an individual post-hoc multilocus genetic score as follows: the
score is based on 136 SNPs (i.e., one SNP per gene in the list) and represents the sum of the
number of minor alleles for all those SNPs, weighted by the direction of the effect on the
strength fraction (SF) phenotype (with ‘1’ in case the minor allele increases the SF and with ’-1’
in case the minor allele decreases the SF), and divided by the number of nonmissing SNPs. The
SNPs used for computing the genetic score were the same ones used for computing the Z-




statistic, i.e., the 2" most significant SNP per gene was selected. This scoring scheme is similar
to the one performed by Heck et al(27); the only difference being that we use all SNPs instead of
only the nominally significant SNPs.

Allen Institute Mouse Gene expression data overview

Allen Institute Mouse Gene expression data consist of whole-brain In Situ Hybridization
(ISH) data that have been obtained from 24 pum sections of 56-day old C57BL/6J mice. Two
section datasets are available: the coronal dataset, which covers 4,376 genes, and the sagittal
dataset which covers more than 20,000 genes (15, 57). The data from all experiments are
coregistered to the common Allen Brain Atlas template, and expression values are available in
200 pm’ voxels. Here, we use the coronal dataset, which has better spatial coverage and
registration(/5), but fewer genes, and corresponds to the sections used for the connectivity data
and model (see below). We use expression density (sum of expressing pixels / sum of all pixels
in division).

We obtained a list of genes and related information using the following API call:

http://api.brain-
map.org/api/v2/data/Gene/query.json?criteria=products[id$eql]&only=id,acronym
,entrez id,homologene id&num rows=all&order=id

We obtained a list of meta-data for all 1205 brain structures as follows:

http://api.brain-
map.org/api/v2/data/Structure/query.json?criteria=[graph id$eql]&include=stru
cture centers&num rows=all&order=id

We obtained the SectionDatasets (ISH images), omitting failed experiments, as follows:

http://api.brain-
map.org/api/v2/data/SectionDataSet/query.json?criteria=[failed$eqfalse][expre
ssion$eqgtrue],products[id$eqgl],plane of section[id$eql]&include=genes&num row
s=all&order=id

Finally, we mapped the SectionDatasets into brain structures by running the structure
unionizer over each SectionDataset in turn (example here with dataset 32386, and we only

included only a few structure ids for brevity):

http://api.brain-
map.org/api/v2/data/StructureUnionize/query.json?criteria=[section_data set i
d$eg32386][structure_id$inl,2,..,182305713]&only=structure_ id,expression_energ
y,expression density&num rows=all

Allen Institute Mouse Gene expression data processing

We transformed the dataset into an nStructures x nGenes matrix of expression values,
excluding structures where no genes are expressed (according to automated expression
detection), and genes that are not expressed in any structure (likewise), yielding a ‘raw’ 844 x
3191 matrix. We normalize each gene’s expression value across tissues by fitting a constant
model (y=px1), and used the prediction residual as that gene’s normalized expression value.

Allen Institute Mouse connectivity data overview
The Allen Mouse Brain Connectivity Atlas (AMBCA)(23) is based on viral tracing of
axonal projections in coronal mouse brain sections. It consists of both an ipsilateral and a




contralateral connectivity matrix between 295 brain regions. An optimization and regression
model then yields connection weights between 213 ‘meso-scale’ regions. Here, to help
correspondence with our human gene expression data where we used only cortical samples, we
focus on the 38 regions of the mouse isocortex.

We obtained the model connection weights and their corresponding p-values from
supplementary table 3 of(23), for both ipsilateral and contralateral connectivity. Note that this
connectivity matrix M is not symmetric.

Allen Institute Mouse connectivity data processing

Here, we use the ipsilateral connectivity matrix, but results hold when using the
contralateral connectivity matrix (see main text). First, we correct the p-values of the
connectivity model for multiple comparisons using the FDR procedure. Then, for each pair of
regions, we want to test the hypothesis that either there is a connection between region 1 and
region 2, or there is a connection between region 2 and region 1. This is to reflect the fact that
functional connectivity is undirected, and we use axonal connectivity as a ground truth of what
functional connectivity relies on. In order to combine the two p-values for each edge (1—2 and
2—1) into a single value, we use the Fisher (chi-square) product combination. We then obtain a
symmetrized 38x38 adjacency matrix B=(M+M")/2, which we further normalize as C=S""*BS"
2 where S is a diagonal matrix containing the strengths of each vertex in B (52, 53). Other
normalizations, such as used for spectral segmentation (C=S"'B) (54)are also possible and do not
change the result of the statistical test used in the validation procedure.

Allen Institute Mouse validation procedure

Here, we wanted to test whether our consensus list of genes, derived in post-mortem
humans and validated in-vivo in adolescents, was also significantly associated with axonal
connectivity. We first obtained mouse orthologs for our human list of genes, using the HGNC
Comparison of Orthology Predictions (HCOP) database (47) downloaded in September 2014. If
more than one ortholog was found, we selected the one supported by the most databases (15™
column in the ’15-column’ format of the HCOP bulk downloads tool). There were no ties. Out of
136 human genes in our list, 125 could be matched to mouse genes. Of these, 57 corresponded to
non-empty ISH experiments in the Allen Mouse gene expression data. We compute a correlated
gene expression network between the 38 isocortex regions using values of the 57 non-empty
orthologs, yielding a 38x38 adjacency matrix T representing transcriptional similarity across the
isocortex using our list of genes. Then, our test statistic was based on the non-parametric Mantel
test (55) of association between T and C, which represents matrices as vectors (lexicographical
rearrangement) and computes their correlation (Spearman in our case, but using Pearson here
does not change the significance of our results). Because many edges were non-significant in C,
we thresholded them out of both T and C, and removed these from the vector. Leaving zeros
instead would yield artificial correlations between T and C. To generate the null distribution of
the test statistic, instead of permuting rows and columns of one of the matrices, we picked 57
(non-empty) genes at random 10,000 times. This represents the strength of association between
transcriptional similarity and axonal connectivity strength using random genes. The p-value is
then obtained in the usual fashion for permutation tests.




2 Supplementary Text

Rationale for in-vivo validation

We wanted to validate whether genetic variation in the genes of the consensus list derived
from post-mortem gene expression data will also show changes of in vivo rs-fMRI connectivity.
While for the discovery of the genes in the consensus list our hypothesis was that similar gene
expression levels equate with membership to certain functional networks, the hypothesis for this
validation step is that genetic variation as measured by single nucleotide polymorphisms (SNPs)
will alter the in vivo observed strength fraction in functional networks. Here genetic variation
can act in multiple ways such as (i) presence of expression quantitative trait loci (eQTLs) that
directly alter abundance of the associated gene’s mRNA, (ii) non-synonymous SNPs that alter
the amino acid sequence and therefore the resulting protein’s physiochemical properties, (iii)
variants influencing mRNA splicing, (iv) variants disrupting methylation sites within the gene
regulatory region. Thus, many genetic variants alter either mRNA transcript abundance or the
protein’s efficiency, which in turn may be translated into increased or reduced mRNA transcript
abundance.




3 Supplementary Figures

4 Fig S1.

13 resting-state functional networks. Axial view, normalized to an MNI template. The basal
ganglia network is excluded from the analysis, and not shown here. Also, note that Allen
Institute human microarray samples corresponding to parts of functional networks falling in the
cerebellum are excluded from the analysis (only cortical samples are used).



5 Fig. S2.

Principle for the strength fraction computation. The functional network of interest is shown
with grey vertices and its outline by a dashed circle. All Edges labeled '+' go in the numerator of
the strength fraction (W;), while all edges labeled '-' go in the denominator (T-W). In this simple
example, there is only one functional network, so W=W;.
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Tissue-tissue adjacency matrix. Edges labeled in white indicate that the corresponding samples
are of the same tissue class. Sample grouping into 13 functional networks is indicated in the
leftmost column. To account for correlation bias due to spatial proximity and being in the same
tissue class, these edges are set to zero.
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Genome-wide association study on IMAGEN data. (A) QQ plot, showing no p-value inflation.
(B) Manhattan plot, showing no SNP surviving the Bonferroni-corrected level of significance
(red line).
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Adjacency matrices for in-vivo functional connectivity differences related to our list of
genes. (top row) Adjacency matrices of the in-vivo IMAGEN fMRI connectivity graph for
average of top 20 or bottom 20 subjects, ranked by their multilocus genetic score. (bottom row)
Difference of adjacency matrices, unthresholded (left) and thresholded (right). The thresholded
version corresponds to Fig. 3 of the main manuscript.



9 Table S1.

Demographic information about the AIBS human microarray dataset

L: left, R: right

. M: male, F: female,

ID Allen ID Sex Age Handedness Hemispheres Post-mortem
[years] interval [hours]

1 H0351.2001 M 24 left L+R 23

2 H0351.2002 M 39 left L+R 10

3 HO0351.1009 M 57 mixed L 25.5

4 HO0351.1012 M 31 right L 17.5

5 HO0351.1015 F 49 right L 30

6 HO0351.1016 M 55 right L 18



10 Table S2.

136 consensus genes linked to functional networks. The genes are grouped by the number of
splits of AIBS data (into two groups of three subjects each) in which the gene is top-ranked.
When known, genes related to ion channels are highlighted in bold, and genes related to

neurotransmitters are highlighted in red (note that there are overlaps in function).

ADAM23 ANKRD6 ATP6V1C2 BAIAP3 | AMDHD1 ASGR2 CD163L1
C3orf55 CARTPT CCDC39 CD70 COL5A2 CYP2C18 FAM163A
CDK1 CNTN6 CRYBA2 CTXN3 GABRA5 GALP GPR26 GPR88
CXXC11 DMRT3 EPN3 FEZF1 FZD7 | GPX3 HPCAL1 IL13RA2 ISCU
GAL GLRA3 GNA14 GNGT2 GRP NEXN  NKAIN4 NPBWR2 £
HSD11B1 KANK4 KCNA1 KCNA3 ONECUT3 OR51E2 PLCH1 &
KCNA5 KCNC1 KCTD15 KRT1 KRT31 | PVALB  SNAP25 SPHKAP o
LAIR2 LINC00238 LMOD3 LRRC38 TMEM52 TSPANS ZCCHC18 15

. LYPLA2 MGP MYH7 MYLK3 NEB ALOX12 CALB1 CCBE1 CD6

= NECAB2 NEFH NEUROD6 NGFR CDR2L CPLX1 ENPP6 GMPR

S NOL4 NOV NRP1 ONECUT2 PCP4 GOLT1A GPR20 HOXD1 HPCA

2  PIRT PNMT PRR15 PRSS35 PTGS1 IL33 IQCJ KLK1 KLK8 LGR6

3 RBP4 RBPMS2 RHOBTB2 RSPH9 LINC00617 MS4A8 MYBPCH

£ SCARA5 SCN1B SCN4B SEMA7A NUPR1L PYDC1 RTP1

£ SHD SHISA9 SIX3-AS1 SLC16A6 SEMA3C SH3RF2 SLC16A5 2

S SLC22A10 SLN SV2C SYT10 SYT2 SLC20A2 SLC39A12 SOST &

— TDO2 TGFBI TINCR TLX2 TNNT2 WISP1 WISP2 WNT4 ©

<  TRIM29 TSHZ3 <




11 Table S3.

Subset of gene ontology annotations for genes of our consensus lists. CC: cellular component,
MF: molecular function, ID: numeric identifier in Gene Ontology. Most specific subset of Gene
ontology CC and MF terms where genes of our consensus list are significantly overrepresented
(p<0.05 FDRpgp) in the DAVID analysis, and corresponding uncorrected p-value of these terms
on IMAGEN dataset and Wolf et al’s Rodent axonal connectivity data. For consistency, all p-
values shown here are uncorrected.

Type ID Term Allen IMAGEN Rodent(28)
afferent efferent

0022843  Voltage-gated cation channel 1.92E-04 1.17E-09 2.0E-03 <10E-15

MF .
activity
0034702  Ion channel complex 1.32E-04 2.64E-11 n/a n/a
003470  Potassium channel complex 4.95E-04 2.80E-05 n/a n/a
0008076  Voltage-gated potassium 4.95E-04 2.80E-05 5.4E-02 5.5E-02
CcC channel complex
0005576  Extracellular region 7.87E-04 3.82E-01 3.6E-02 1.9E-02
0005886  Plasma membrane 9.98E-04 4.00E-20 n/a n/a

003470  Cation channel complex 4.61E-04 8.66E-10 n/a n/a




12 Table S4.
88 tissue classes derived from anatomical labels

Angular gyrus, inferior bank of gyrus

Angular gyrus, superior bank of gyrus

Anterior orbital gyrus

Cingulate gyrus, frontal part, inferior bank of gyrus
Cingulate gyrus, frontal part, superior bank of gyrus
Cingulate gyrus, parietal part, inferior bank of gyrus
Cingulate gyrus, parietal part, superior bank of gyrus
Cingulate gyrus, retrosplenial part, inferior bank of gyrus
Cingulate gyrus, retrosplenial part, superior bank of gyrus
Cuneus, peristriate

Cuneus, striate

Frontal operculum

Frontal pole, inferior aspect

Frontal pole, medial aspect

Frontal pole, superior aspect

Fusiform gyrus, bank of cos

Fusiform gyrus, bank of the its

Fusiform gyrus, lateral bank of gyrus

Gyrus rectus

Heschls gyrus

Inferior frontal gyrus, opercular part

Inferior frontal gyrus, orbital part

Inferior frontal gyrus, triangular part

Inferior occipital gyrus, inferior bank of gyrus
Inferior occipital gyrus, superior bank of gyrus
Inferior rostral gyrus

Inferior temporal gyrus, bank of mts

Inferior temporal gyrus, bank of the its

Inferior temporal gyrus, lateral bank of gyrus
Lateral orbital gyrus

Lingual gyrus, peristriate

Lingual gyrus, striate

Long Insular Gyri

Medial orbital gyrus

Middle frontal gyrus, inferior bank of gyrus

Middle frontal gyrus, superior bank of gyrus

Middle temporal gyrus, inferior bank of gyrus
Middle temporal gyrus, superior bank of gyrus
Occipital pole, inferior aspect

Occipital pole, lateral aspect

Occipital pole, superior aspect




Occipito-temporal gyrus, inferior bank of gyrus
Occipito-temporal gyrus, superior bank of gyrus
Paracentral lobule, anterior part

Paracentral lobule, anterior part, inferior bank of gyrus
Paracentral lobule, anterior part, superior bank of gyrus
Paracentral lobule, posterior part, bank of cingulate sulcus
Paracentral lobule, posterior part, lateral bank of gyrus
Parahippocampal gyrus, bank of the cos
Parahippocampal gyrus, lateral bank of gyrus
Paraterminal gyrus

Parolfactory gyri

Piriform cortex, left

Planum polare

Planum temporale

Postcentral gyrus, bank of the central sulcus
Postcentral gyrus, bank of the posterior central sulcus
Postcentral gyrus, inferior lateral aspect of gyrus
Postcentral gyrus, superior lateral aspect of gyrus
Posterior orbital gyrus

Precentral gyrus, bank of the central sulcus
Precentral gyrus, bank of the precentral sulcus
Precentral gyrus, inferior lateral aspect of gyrus
Precentral gyrus, superior lateral aspect of gyrus
Precuneus, inferior lateral bank of gyrus

Precuneus, superior lateral bank of gyrus

Precuneus, inferior lateral bank of gyrus

Precuneus, superior lateral bank of gyrus

Putamen

Short Insular Gyri

Subcallosal gyrus

Subcollosal gyrus

Superior frontal gyrus

Superior frontal gyrus, lateral bank of gyrus

Superior frontal gyrus, medial bank of gyrus

Superior occipital gyrus, inferior bank of gyrus
Superior occipital gyrus, superior bank of gyrus
Superior rostral gyrus

Superior temporal gyrus, inferior bank of gyrus
Superior temporal gyrus, lateral bank of gyrus
Supramarginal gyrus, inferior bank of gyrus
Supramarginal gyrus, superior bank of gyrus
Supraparietal lobule, inferior bank of gyrus
Supraparietal lobule, superior bank of gyrus
Temporal pole, inferior aspect

Temporal pole, medial aspect




Temporal pole, superior aspect
Transverse gyri




13 Table S5:

Gene Ontology Molecular Function (MF) and Cellular Component (CC) terms for which our
consensus list of genes is significantly over-represented (p < 0.05 FDRgy), obtained using

DAVID.

Type ID term p-value FDRgy

MF 0022843  Voltage-gated cation channel activity 1.92E-04  4.97E-02
0034702  Ton channel complex 1.32E-04 2.11E-02
003470  Potassium channel complex 4.95E-04 2.62E-02

cc 0008076  Voltage-gated potassium channel complex 4.95E-04 2.62E-02
0005576  Extracellular region 7.87E-04 3.12E-02
0005886  Plasma membrane 9.98E-04 3.16E-02
003470  Cation channel complex 4.61E-04 3.64E-02




14 Table S6:

Gene Ontology Molecular Function and Biological Processes terms over-representation analysis
results for our consensus list using Panther, showing terms where our genes are significantly
over-represented (p < 0.05 FDRgp-adjusted).

Type Term p-value (FDRgp)
receptor activity 2.93E-02
voltage-gated ion channel activity 2.93E-02
transmembrane transporter activity 2.93E-02

MF cation channel activity 2.93E-02
transporter activity 2.93E-02
voltage-gated potassium channel activity 2.93E-02
nucleic acid binding 3.48E-02
multicellular organismal process <10E-15
single-multicellular organism process <10E-15
system process < 10E-15
cell-cell signaling <10E-15
neurological system process <10E-15
cell communication < 10E-15
synaptic transmission 1.30E-03
cellular process 1.30E-03
developmental process 5.40E-03
angiogenesis 5.40E-03
mesoderm development 5.40E-03

BP system development 5.40E-03
cation transport 6.50E-03
ion transport 6.60E-03
transport 7.50E-03
localization 1.15E-02
sensory perception 1.17E-02
muscle organ development 1.49E-02
immune system process 2.71E-02
neurotransmitter secretion 2.71E-02
macrophage activation 2.71E-02
receptor-mediated endocytosis 2.71E-02

cell-cell adhesion 2.84E-02




15 Table S7: Overlap between our human microarray consensus gene list annotation
terms and those for afferent (incoming) rodent neuronal connectivity. Terms listed here have
uncorrected p-values < 0.05 in both our results and those of (26).

Anatomical structure development Cation channel activity

Cell fraction Cell part morphogenesis

Cell projection morphogenesis Cell-cell signaling

Channel activity Extracellular region

Gated channel activity Glycoprotein

Ion channel activity Ion transport

Ionic channel Metal ion transmembrane transporter
activity

Metal ion transport Multicellular organismal development

Negative regulation of multicellular Nervous system development

organismal process

Neurogenesis Neuropeptide signaling pathway

Passive transmembrane transporter activity Potassium channel activity
Potassium channel, voltage dependent, kv, Potassium ion transport

tetramerisation

Regulation of multicellular organismal Signal

process

Substrate specific channel activity Synapse

Synaptic transmission Transmission of nerve impulse
Voltage-gated cation channel activity Voltage-gated channel

Voltage-gated channel activity Voltage-gated ion channel activity




16 Table S8 Overlap between our human microarray consensus gene list annotation
terms and those for efferent (outgoing) rodent neuronal connectivity. Terms listed here have
uncorrected p-values < 0.05 in both our results and those of (28)

alkali metal ion binding

cation channel activity

cation transport

cell projection morphogenesis
channel activity

extracellular region part

gated channel activity

ion channel activity

ion transport

metal ion transmembrane transporter
activity

monovalent inorganic cation transport
negative regulation of multicellular
organismal process

neurogenesis

organ morphogenesis

passive transmembrane transporter activity
potassium channel activity

potassium ion binding

regulation of multicellular organismal
process

substrate specific channel activity

substrate-specific transporter activity
synaptic transmission
transmembrane transporter activity
transport

voltage-gated channel

voltage-gated ion channel activity

anatomical structure development

cation transmembrane transporter activity
cell part morphogenesis

cell-cell signaling

extracellular region

extracellular space

glycoprotein

ion transmembrane transporter activity
ionic channel

metal ion transport

multicellular organismal development
nervous system development

neurotransmitter transport

palmitate

potassium

potassium channel, voltage dependent, kv,
tetramerisation

potassium ion transport

signal

substrate-specific transmembrane
transporter activity

synapse

system development

transmission of nerve impulse
voltage-gated cation channel activity
voltage-gated channel activity
voltage-gated potassium channel activity




17 Table S9

Z-scores and P-values for Gene Ontology Molecular Function (MF) and Cellular Component
(CC) terms, which were significant in the AIBS dataset using DAVID and in the independent
validation on the IMAGEN dataset, obtained using GSA-SNP.

Type ID Term Z-score P-value
MF 0022843 Voltage-gated cation channel activity 5.97 1.17E-09
0034702 Ton channel complex 6.56 2.64E-11

003470 Potassium channel complex 4.03 2.80E-05

cc 0008076 Voltage-gated potassium channel complex 4.03 2.80E-05
0005576 Extracellular region 0.30 3.82E-01

0005886 Plasma membrane 9.11 4.00E-20

003470 Cation channel complex 6.02 8.66E-10




18 Table S10

Significant disease annotations for our consensus list using Ingenuity Pathway Analysis (p<0.05
FDRgp).

Annotation p-value (FDRgy)
Huntington's Disease 3.10E-02
Alzheimer's disease 3.10E-02
Huntington disease grade 1 Huntington's disease 3.10E-02
Atrophy of motor axons 3.10E-02
Neurogenesis of neuronal progenitor cells 3.10E-02
Quantity of neurofilaments 3.10E-02
Schizophrenia 3.12E-02
Amyotrophic lateral sclerosis 3.64E-02

Formation of neurofilament inclusion 4.11E-02
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