SUPPORTING INFORMATION

Supporting Tables and Figures

Table S1. Primers used for all cloning described in the Experimental Procedures.	The bold and
underlined nucleotides indicate the codon mutated to alanine.	

Primer Name	Sequence
C104A	Forward 5'-gcctgaacgtcgcccacgacgctaatctgcgctgcaaatattgttttgc-3'
C104A	Reverse 5'-gcaaaacaatatttgcagcgcagattagcgcggcggcggcggcggcgtcaggc-3'
C104/108/111A	Forward 5'-cccacgacgctaattgcgcgccaaatatgctttgccagcaccggtaatttcaagg-3'
C104/100/111A	Reverse 5'-ccttgaaattaccggtgctggcaaaaagcatatttggcgcgcagattagcgtcgtggg-3'
C400 A	Forward 5'-cgacatctataaacgtgaagaagacgcgcaaattgttgggctcgc-3'
C400A	Reverse 5'-gcgagcccaacaatttgcggcttcttcacgtttatagatgtcg-3'
C400 A	Forward 5'-gcaaattgttgggctcgcttttatgcctctggcggttgtttcgc-3'
C409A	Reverse 5'-gcgaaacaaccgccagaggcataaaagcgagcccaacaatttgc-3'
C400/402/400 A	Forward 5'-cgtgaagaagccgcaaatgcttgggctcgcttttatgcc-3'
C400/403/409A	Reverse 5'-ggcataaaagcgagcccaagcatttgcggcttcttcacg-3'
C344A	Forward 5'-gcatcaaaaagcgcctgcagggcgctgcaggcttcgaatatattgc-3'
C344A	Reverse 5'-gcaatatattcgaagcctgcaccagcgcctgcaggcgctttttgatgc-3'
C362A	Forward 5'-cggatgaagaaatctacccggccccaatttgttggtattgaagaattcaaactgg-3'
C302A	Reverse 5'-ccagtttgaattcttcaataccaacaaattggtgggccgggtagatttcttcatccg-3'
C412A	Forward 5'-cgcttttattgctctggcggtgctttcgcaaacaactacaacatcaacgg-3'
C4IJA	Reverse 5'-ccgttgatgttgtagttgtttgcgaaagcaccgccagagcaataaaagcg-3'
C400/413A	Forward 5'-cgcttttatgccgttgcggtgctttcgcaaacaactacaacatcaacgg-3'
C409/413A	Reverse 5'-ccgttgatgttgtagttgttgcgaaagcaccgccagaggcataaaagcg-3'

Table S2. Monoisotopic masses corresponding to the peaks of the various charge states with the associated ppm error from the mass spectrum of unmodified Tte1186a (**Fig. 4A, black**) and modified Tte1186a (**Fig. 4A, red**) isolated from the reaction not treated with iodoacetamide. The masses observed in the spectrum of unmodified Tte1186a were consistent with the peptide containing six reduced cysteine residues, while the observed masses in the spectrum of modified Tte1186a were consistent with the loss of two hydrogen atoms.

	Unmodified 7	Tte1186a (black	Modified T	te1186a (red sj	pectrum)	
Charge State	Observed [M+ <i>n</i> H] ⁿ⁺	Calculated [M+ <i>n</i> H] ⁿ⁺	Error (ppm)	Observed [M+ <i>n</i> H] ⁿ⁺	Calculated [M+ <i>n</i> H] ⁿ⁺	Error (ppm)
4	1777.8408	1777.8419	0.62	1777.3321	1777.3380	3.32
5	1422.4745	1422.4750	0.35	1422.0676	1422.0719	3.02
6	1185.5631	1185.5637	0.51	1185.2243	1185.2278	2.95
7	1016.3408	1016.3414	0.59	1016.0506	1016.0534	2.76
8	889.4245	889.4246	0.11	889.1708	889.1726	2.02
9	790.7117	790.7116	0.13	790.4855	790.4876	2.66
10	711.7401	711.7411	1.41	711.5355	711.5396	5.76

Table S3. Monoisotopic masses corresponding to the peaks of the various charge states with the associated ppm error from the mass spectrum of unmodified Tte1186a (**Fig. 4B, black**) or modified Tte1186a (**Fig. 4B, red**) isolated from reactions that were subsequently treated with iodoacetamide. The masses of the peaks in the spectrum of unmodified Tte1186a were consistent with Tte1186a containing six carbamidomethylated cysteine residues, while the masses in the spectrum of modified Tte1186a were consistent with peptide missing two hydrogen atoms and containing only five carbamidomethylated cysteine residues.

	Unmodified T	te1186a (black	Modified Tte	e1186a (red spe	ctrum)	
Charge State	Observed [M+ <i>n</i> H] ⁿ⁺	Calculated [M+ <i>n</i> H] ⁿ⁺	Error (ppm)	Observed [M+ <i>n</i> H] ⁿ⁺	Calculated [M+nH] ⁿ⁺	Error (ppm)
4	1863.3894	1863.3741	8.21	1848.6252	1848.6148	5.63
5	1490.9087	1490.9007	5.37	1479.0985	1479.0933	3.52
6	1242.5912	1242.5852	4.83	1232.7507	1232.7456	4.14
7	1065.2221	1065.2169	4.88	1056.7865	1056.783	3.31
8	932.1949	932.1907	4.51	924.8140	924.8110	3.24
9	828.7314	828.7259	6.64	822.1693	822.1662	3.77
10	745.9575	745.9540	4.69	740.0540	740.0503	5.00

Table S4. Comparison of the observed and calculated monoisotopic masses of the various charge states of each *b*- or *y*-ion and the associated ppm error from the MS/MS fragmentation of the + 8 charge state of unmodified Tte1186a (**Fig. 5A**) and modified Tte1186a (**Fig. 5B**). The fragments corresponding to *b*51 through *b*54 and *y*10 through *y*13 were not detected (n.d.) in the CID fragmentation mass spectrum of the modified peptide. The (*) indicates the calculated m/z corresponds to the theoretical mass of the Tte1186a peptide minus two hydrogens and one carbamidomethyl group relative to the unmodified peptide.

		unmodifie	ed Tte1186a (l	black)	modifie	ed Tte1186a (re	d)
		Observed	Calculated	Error	Observed	Calculated	Error
Ion	Charge	m/z	m/z	(ppm)	m/z	m/z	(ppm)
<i>b</i> 5	1				506.2117	506.2106	2.2
<i>b</i> 5 -H ₂ O	1				488.2012	488.2001	2.3
<i>b</i> 6	1				643.2711	643.2695	2.5
<i>b</i> 7	1				780.3304	780.3284	2.5
<i>b</i> 7 -H ₂ O	1				762.3197	762.3179	2.5
<i>b</i> 8	2				459.1984	459.1973	2.3
<i>b</i> 9	2				527.7280	527.7268	2.3
<i>b</i> 10 -H ₂ O	2				562.2388	562.2375	2.4
<i>b</i> 21	3				773.7043	773.7022	2.6
<i>b</i> 36	5				817.2419	817.2399	2.5
<i>b</i> 42	6				785.9136	785.9118	2.4
<i>b</i> 44	6				833.9286	833.9266	2.4
<i>b</i> 45	6	845.7674	845.7661	1.5	845.7682	845.7661	2.4
<i>b</i> 46	6				860.2737	860.2715	2.6
<i>b</i> 46 -H ₂ O	6				857.2719	857.2697	2.6
<i>b</i> 47	6				886.9455	886.9433	2.5
<i>b</i> 48	7				778.6771	778.6751	2.6
<i>b</i> 48	6	908.2870	908.2864	0.7			
<i>b</i> 49	7	791.1088	791.1082	0.8	791.1100	791.1082	2.3
<i>b</i> 49 -H ₂ O	7				788.5375	788.5353	2.8
<i>b</i> 50	7	801.2584	801.2564	2.5	801.2581	801.2564	2.2
<i>b</i> 50	6	934.6336	934.6312	2.6			
<i>b</i> 50	5				1121.3591	1121.3560	2.8
<i>b</i> 50 -H ₂ O	7	798.6805	798.6834	3.6	798.6854	798.6834	2.4
<i>b</i> 51	7	824.1167	824.1179	1.5	n.d.	815.8280*	
<i>b</i> 52	7	842.4186	842.4172	1.7	n.d.	834.1273*	
$b52 - NH_3$	7	839.9870	839.9848	2.6	n.d.	831.6949*	
<i>b</i> 53	7	856.8540	856.8526	1.6	n.d.	848.5627*	
<i>b</i> 53 -H ₂ O	7	854.2805	854.2796	1.1	n.d.	845.9897*	
<i>b</i> 54	7	869.2875	869.2857	2.1	n.d.	860.9958*	
<i>b</i> 54 -H ₂ O	7	866.7145	866.7128	2.0	n.d.	858.4229*	
<i>b</i> 55	7	892.1492	892.1472	2.2	883.7172*	883.7133*	4.4

<i>b</i> 55	6	1040.6715	1040.6705	1.0			
<i>b</i> 55 -H ₂ O	7	889.5768	889.5743	2.8			
<i>b</i> 56	7	906.5846	906.5826	2.2	898.1514*	898.1487*	3
<i>b</i> 56	6	1057.5139	1057.5118	2.0	1047.6749*	1047.6723*	2.5
<i>b</i> 56 -H ₂ O	7	904.0114	904.0097	1.9	895.5783*	895.5758*	2.8
<i>b</i> 56 -H ₂ O	6	1054.5123	1054.5101	2.1	1044.6731*	1044.6705*	2.4
<i>b</i> 57	7	920.7371	920.7352	2.1	912.3034*	912.3014*	2.3
<i>b</i> 57	6	1074.0251	1074.0232	1.8	1064.1862*	1064.1837*	2.3
<i>b</i> 57 -H ₂ O	7	918.1632	918.1623	1.0	909.7306*	909.7284*	2.4
$b57 - NH_3$	6				1061.3516*	1061.3459*	5.3
<i>b</i> 57 -H ₂ O	6	1071.0231	1071.0215	1.5			
<i>b</i> 58	6	1083.5285	1083.5268	1.6	1073.6898*	1073.6873*	2.3
<i>b</i> 59	7	945.1748	945.1730	1.9	936.7413*	936.7391*	2.3
<i>b</i> 59	6	1102.5367	1102.5340	2.4	1092.6972*	1092.6944*	2.6
<i>b</i> 59 -NH ₃	7	942.7431	942.7406	2.7			
<i>b</i> 60	8				835.7823*	835.7800*	2.8
<i>b</i> 60	7	963.4687	963.4671	1.7	955.0355*	955.0332*	2.4
<i>b</i> 60	6	1123.8801	1123.8771	2.7	1114.0402*	1114.0375*	2.4
<i>b</i> 60 -H ₂ O	6				1111.0382*	1111.0358*	2.2
<i>b</i> 60 -NH ₃	7	961.0365	961.0347	1.9	952.6056*	952.6008*	5
<i>b</i> 61	8				851.9124*	851.9103*	2.5
<i>b</i> 61	7	981.9034	981.9017	1.7	973.4703*	973.4679*	2.5
<i>b</i> 61	6	1145.3859	1145.3842	1.5	1135.5473*	1135.5446*	2.4
<i>b</i> 61 -NH ₃	7	979.4731	979.4694	3.8			
<i>b</i> 61 -H ₂ O	7				970.8971*	970.8949*	2.2
<i>b</i> 61 -NH ₃	8				849.7847*	849.7820*	3.3
<i>b</i> 61 -NH ₃	6				1132.7105*	1132.7069*	3.2
<i>b</i> 62	7				996.3316*	996.3294*	2.2
<i>b</i> 62 -NH ₃	8				869.7894*	869.7858*	4.1
<i>b</i> 62 -NH ₃	7	1002.3337	1002.3309	2.8	993.9017*	993.8970*	4.7
<i>b</i> 63	8	895.3010	895.3011	0.1	887.9237*	887.9214*	2.5
<i>b</i> 63	7	1023.0596	1023.0573	2.2	1014.6258*	1014.6235*	2.3
<i>b</i> 63	6				1183.5623*	1183.5595*	2.4
<i>b</i> 63 -NH ₃	8				885.7976*	885.7931*	5
<i>b</i> 63 -NH ₃	7	1020.6293	1020.6250	4.2	1012.1959*	1012.1911*	4.8
<i>b</i> 64	8	915.6858	915.6840	2.0	908.3070*	908.3044*	2.9
<i>b</i> 64	7				1037.9208*	1037.9182*	2.5
<i>b</i> 64 -H ₂ O	8	913.4333	913.4327	0.7	906.0557*	906.0530*	2.9
<i>b</i> 64 -NH ₃	7				1035.4890*	1035.4859*	3.1
y2	1	296.1246	296.1241	1.7	296.1248	296.1241	2.5
y2 -NH ₃	1				279.0982	279.0975	2.4
y3	1	424.1835	424.1827	1.9	424.1837	424.1827	2.4
у3 -Н ₂ О	1	406.1729	406.1721	2.0			

y4	1	584.2144	584.2133	1.9	584.2147	584.2133	2.4
y4 -H ₂ O	1	566.2036	566.2028	1.4			
<i>y</i> 4 -NH ₃	1	567.1878	567.1868	1.8	567.1880	567.1868	2.1
y5	1	713.2574	713.2559	2.1	713.2577	713.2559	2.5
у5 -Н ₂ О	1	695.2467	695.2454	1.9	695.2470	695.2454	2.3
y5 -NH ₃	1				696.2311	696.2294	2.5
y6	1	841.3160	841.3145	1.8	841.3165	841.3145	2.4
у6 -Н ₂ О	1	823.3059	823.3039	2.4	823.3061	823.3039	2.6
y6 -NH ₃	1				824.2901	824.2879	2.6
y7	1	955.3593	955.3574	2.0	955.3600	955.3574	2.7
y8	1	1012.3810	1012.3789	2.1	1012.3814	1012.3789	2.5
y8 -H ₂ O	1				994.3708	994.3683	2.5
y8 -NH ₃	1	995.3537	995.3523	1.4	995.3549	995.3523	2.6
y9	1	1111.4498	1111.4473	2.2	1111.4502	1111.4473	2.6
y10	1	1212.4981	1212.4950	2.6	n.d.	1211.4872*	
y11	1	1372.5291	1372.5256	2.6	n.d.	1371.5178*	
y12	1	1459.5605	1459.5577	1.9	n.d.	1458.5498*	
y13	1	1560.6111	1560.6053	3.7	n.d.	1559.5975*	
y15	2				895.3530*	895.3506*	2.8
y19	2				1118.4328*	1118.4297*	2.8
y20	2				1161.9490*	1161.9458*	2.8
у53 -Н ₂ О	7	879.1475	879.1405	8.0			
y61 -H ₂ O	8				876.5478*	876.5417*	6.9
у61 -Н ₂ О	7	1010.0576	1010.0519	5.6	1001.6247*	1001.6180*	6.7

Variant	SAM	\boldsymbol{g}_1	g_2	g_3	σ1	σ2	σ3
RC	_	2.0405	1.9190	1.9055	0.0350	0.0324	0.0579
RC	+	1.9925	1.8950	1.8400	0.0190	0.0280	0.0350
AC1a	+/	2.0631	1.9322	1.8799	0.0712	0.0270	0.1145
AC1b	+/	2.0221	1.9509	1.900	0.0274	0.0166	0.0354
AC2a	+/	2.0500	1.9255	1.8865	0.0470	0.0367	0.0556
AC2b	+/	2.0850	1.9397	1.8672	0.0330	0.0152	0.1197

Table S5. g-values of the EPR spectra determined by the data simulations.

Figure S1. Caldanaerobacter subterraneus subsp. tengcongensis MB4 tte1186 (a) and tte1186a (c) nucleotide sequences optimized for recombinant expression in *E. coli*. The corresponding protein sequences for Tte1186 and Tte1186a are shown in (b) and (d) respectively. The nucleotide sequences in bold represent the *NdeI* and *XhoI* restriction endonuclease sites that were used to clone the gene into pET28a. The start and stop codons are shown in italic. The underlined sequence corresponds to the His₆ purification tag.

- a) ATGGGCAGCAGCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGTCGGC TACCATGCATAAGTTTAAGCGTCTGGGCCTGAATATCGTTGTTGATCCGGTTTCGGGCGCAATCCACG TCGTTGATGACGTGGTTTACGATGTCCTGGACTATTACGAAAACCATAGTCGTGAAGAAATCGTTAAT CTGCTGAAGGATAAGTACAAAGAAGAAGACATCCTGGAAGCGATCTCCGAAGTGGATGAACTGAAGGG CAACGGTCTGCTGTTTACCGAAGATATTTACAAAGACATTGCGATCAGTCGTGCCGATTCCGTTATCA AAGCGATGTGCCTGAACGTCGCCCACGACTGTAATCTGCGCTGCAAATATTGTTTTGCCAGCACCGGT AATTTCAAGGGCGGTCGTAAACTGATGGATTTTGAAACGGGTCGCAAAGCGATTGACTTCCTGATCAA GAGCTCTGGCAAACGTCGCAACATTGAAATCGATTTCTTTGGCGGTGAACCGCTGCTGAATTTTGAAG TCGTGAAACAGCTGGTTGAATACGGCAAGCAAAAAGCGAAGGAAAACAAAAAGAATATCAAGTTCACC ATCACCACGAACGCCGTTCTGCTGGATGACGAAAAGATCGAATACTTCAACGAAAACTTCTCAAACGT CGTACGACGTCATTGTGCCGAAAATCCAAAAGTTTGTGAAAGCGCGTGGTAAAAAGGAATATTACGTT CGCGGCACCTTTACGGCGAAAAATCTGGATTTCGTTGAAGACGTCCTGCATATTGCCGATCTGGGTGT GTATGAAATCTCTGTTGAACCGGTGGTTGAAAAGGATGACAAAGATTACACCCTGAAAGAAGAACACC TGGATCGTATTTTCGAAGAATATGACCGCCTGGCAGAAGAATATATCCGTCGCTACGAAGAAGGCCGT CCGTTCGCTTTCTACCATTTCAAGATCGATCTGAAAGGCGGTCCGTGCATCAAAAAGCGCCTGCAGGG CTGTGGTGCAGGCTTCGAATATATTGCTGTGACGCCGGATGAAGAAATCTACCCGTGCCACCAATTTG TTGGTATTGAAGAATTCAAACTGGGTACCCTGGATGAAGGCATTACGAACATCGAACTGCAGCGTAAG TTTATGGAAAGCGACATCTATAAACGTGAAGAATGCGCAAATTGTTGGGCTCGCTTTTATTGCTCTGG CGGTTGTTTCGCAAACAACTACAACATCAACGGCGATATCAACAAGCCGTATAAACTGGCTTGTGAAA TGCAGAAACGTCGCATTGAAAATGCAATTGCTATCAAGGCATACCTGACCCTGCGTGGTGAAAAAGGC GATTATCAGCGTGTGCAACGCGACAAAGCGGCCAACCGC*TAA*CTCGAG
- b) MGSSHHHHHHSSGLVPRGSHMSATMHKFKRLGLNIVVDPVSGAIHVVDDVVYDVLDYYENHSREEIVN LLKDKYKEEDILEAISEVDELKGNGLLFTEDIYKDIAISRADSVIKAMCLNVAHDCNLRCKYCFASTG NFKGGRKLMDFETGRKAIDFLIKSSGKRRNIEIDFFGGEPLLNFEVVKQLVEYGKQKAKENKKNIKFT ITTNAVLLDDEKIEYFNENFSNVVLSLDGRKEVNDQMRVRADGSGTYDVIVPKIQKFVKARGKKEYYV RGTFTAKNLDFVEDVLHIADLGVYEISVEPVVEKDDKDYTLKEEHLDRIFEEYDRLAEEYIRRYEEGR PFAFYHFKIDLKGGPCIKKRLQGCGAGFEYIAVTPDEEIYPCHQFVGIEEFKLGTLDEGITNIELQRK FMESDIYKREECANCWARFYCSGGCFANNYNINGDINKPYKLACEMQKRRIENAIAIKAYLTLRGEKG DYQRVQRDKAANR
- **c)** *ATG*GGCAGCAGC<u>ATCATCATCATCATCATCAC</u>AGCAGCGGCCTGGTGCCGCGCGGCAGC**CATATG**CGTCG CATTATCACCATTAACAAACCGACGCTGCGTGAAAGTCTGAAAAAGCCGGGCTGCGGTGAATGTCAGG CGAGCTGCCAATCTGCCTGTAAGACCAGCTGCACGGTGGGCAACCAGGAATGTCAATATAAT*TAA***CTC GAG**
- d) MGSSHHHHHHHSSGLVPRGSHMRRIITINKPTLRESLKKPGCGECQASCQSACKTSCTVGNQECQYN

Figure S2. Purification of Tte1186a and Tte1186. **A.** Tte1186 maturase (lane 2) and Tte1186a peptide (lane 3) were purified by affinity chromatography to 95% homogeneity as determined by SDS-PAGE analysis. Lane 1 is the molecular weight marker. **B.** UV-visible spectra of as-isolated Tte1186 (red), reconstituted Tte1186 (black), and reconstituted Tte1186 after size exclusion chromatography (blue). **C.** Mass spectrum of purified Tte1186a peptide. The various charge states of the peptide are indicated above the respective peaks. **D.** Deconvoluted and deisotoped mass spectrum of Tte1186a generated from **C** using Xtract software (Thermo Fisher). **E.** Zoomed in view of the deconvoluted and deisotoped spectrum in **D**. The peak with m/z = 7108.3298 corresponds to the monoisotopic [M+H]⁺ of Tte1186a. The other peaks correspond to oxidized peptide (+O) and/or potassium (+K) adducts, as indicated above the respective peaks.

Figure S3. Clustal Omega sequence alignments between anSME from *Clostridium perfringens* ATCC 13124 (gi 122959045), QhpD from *Paracoccus denitrificans* PD1222 (gi 119374208), Tte1186 from *C. subterraneus* subsp. *tengcongensis* MB4 (gi 20516186), and AlbA from *Bacillus subtilis* subsp. *subtilis* str 168 (gi 27734208). The CxxxCxxC RS signature sequence is highlighted by the blue box and the seven conserved Cys resides in the C-terminal SPASM domain are highlighted by the red box. Each of the seven conserved Cys residues in anSME were observed binding either AC1 or AC2 in the crystal structure.¹

AlbA	MFIEQMFPFINESVRVHQLPEGGVLEIDYLRDNVSISDFEYLDLNKTAYELCMRMDGQKT								
Ttell86 QhpD	MSATMHKFKRLGLNIVVDPVSGAIHVVDDVVYDVLDYYENHSREEI MGALTLIRHNAHRVDVDGHAMLMHVPTTSLFELDGVARDVYDLFRRAPAVD-	0 46 51							
AlbA anSME	AEQILAEQCAVYDESPEDHKDWYYDMLNMLQNKQVIQLGNRASRHTITTSGSNEFPMP MPPL	118 4							
Ttel186 QhpD	VNLLKDK-YKEEDILEAISEVDELKGNGLLFTEDI-YKDIAISRADSVI PDLMRAE-LG-PRHGPDTLSECLQSFLALDILRNAEAADI-PRPVVKVEEIPL	93 101							
AlbA anSME	LHATFELTHFCNLKCAHCLESSPEALGTVSIEQFKKTADMLFDNGVLTCEI SLLIKPASSCCNLKCTYCFYHSLSDNRNVKSYGIMRDEV-LESMVKRVLNEANGHCSFAF	170 63							
QhpD	STILLNVNTCCNLACTYC XEDLTTPAKGQKMGFETAKASFELLLKQAHARDRVNVVF	159							
AlbA anSME Tte1186	TGGEIFVHPNANEILDYVCKKFKKVAVLTNGTLMRKESLELLKTYKQKIIVG QGGEPTLAGLEFFEKLMELQRKHNYK-NLKIYNSLQTNGTLIDESWAKFLSENKFLVG FGGEPLL-NFEVVKQLVEYGKQKAKENKKNIKFTITTNAVLLDDEKIEYFNENFSNVV	222 120 208							
QhpD	FGGEPLS-NMPLIRELVAYARPRAAELGKAVDFSLTTNATLLTPELVDWFDAHRFALT ***: : :: ***::. :	216							
AlbA anSME Ttel186	ISLDSVNSEVHDSFRGRKGSFAQTCKTIKLLSDHGIFVRVAMS LSMDGP-KEIHNLNRKDCCGLDTFSKVERAAELFKKYKVEFNILCVVTSNTARHVNKVYK LSLDGR-KEVNDOMFVRADGSGTYDVIVFKIOKFVKARGKKEYYVRG	265 179 254							
QhpD	VSMDGP-KALHDANRKTVGGKGTYDLVARNVRMLLSRYRSRPVGGRV	262							
AlbA anSME Tte1186	VFEKNMWEIHDMAQKVRDLGAKAFSYNWVDDFGRGRDIVHPTKDAEQ YFKEKDFKFLQFINCLDPLYEEKGKYNYSLKPKD	312 219 306							
QhpD	TLTRGVTDVIGIHDHLKNELGFHEVGFGPATSGPIAVFNLDAEALKRAFEDMK : : : * .	315							
AlbA anSME Tte1186 QhpD	AGWKSIVISPFGEVRICA NLFDFWYEDFLNGNRVSIRYFDGLLETILLGKSSSCGMNGTCTCQFVVESDGSVYPCD RLAEEYIRRYEEGRPFAFYHFKIDLKGGPCIKKRLQCCGAGFEYIAVTPDEEIYPCH TLGRRYVEAACRGENIGFSNMHQLLTDIAQGTKKAVFCGAGLGMLAVDKDGELHLCH	363 277 363 372							
Alba		420							
anSME Ttel186 QhpD	FYV-LDKWRLGNIQDMTMKELFETNKNHEFIKLSF-KVHEFCKKCKWFRICKGCCRC QFVGIEEFKLGTLDEGITNIELQRKFMESDI-YKREFCANCWAFFYCSGCCPAN RFVGSNQPTYGNVAKGIDIPKLAGFIETAQD-RSAYCCKTCRIRSICAGCYHE : .: *.: . * * * *	333 416 425							
AlbA anSME Tte1186 QhpD	GLNSNKYHRKNICSWAKNE-QLEDVVQLI RDSK-EDSALELNYYCQSYKEFFEYAFPRLINVANNIK NYNINGDINKPYKLACEMQKRRIENAIAIKAYLTLRGEKGDYQRVQRDKAANR SYARQGDPFAPVWHYCDLMRDWVDFGIESYVRIMQANPSFFRSQLEPRIARSGTAREV *	448 370 469 483							
AlbA anSME	448 370								
QhpD	LQ 485								

Fig S4. Continuous wave X-band EPR Component analysis. **A**) EPR of the FeS clusters present in the Δ RC/ Δ AC2 variant in the absence of SAM (black) can be well simulated with two components (summed simulation in red), AC1a (fuchsia, 81%) and AC1b (blue, 19%). **B**) The Δ RC/ Δ AC1 variant in the absence of SAM (black) can also be well simulated (summed simulation in red) with two components, AC2a (teal, 63%) and AC2b (green, 37%). Simulations were carried out using EasySpin, using a least squares fit varying the three principle *g*-values, *g*strain (σ), and the percent composition for each component. X-band CW spectra were recorded at T= 10 K, 9.4 GHz microwave frequency, 10G modulation amplitude, 100 μ W microwave power.

Figure S5. Proposed mechanisms for thioether bond formation. Mechanism (**A**) postulates simultaneous H-atom abstraction from two positions followed by bond formation. Such a diradical mechanism is unlikely as highly unstable intermediates are being generated simultaneously, and requires the ability of the enzyme to generate two dAdo•. Mechanism (**B**) is more commonly discussed and requests that the peptide-based radical combine with the Cys side-chain, followed by electron transfer to an as yet identified cluster (either RS or Aux). While this is more plausible, the fact that the regiochemistry of the reaction can be either *si*- or *re*- in the same substrate, such as in SboA (**C**), makes this highly unlikely. For example, the RS enzyme AlbA introduces three crosslinks into its peptide substrate (SboA). As (**C**) shows, comparison of the NMR structure of the substrate reveals that the enzyme introduces two regiochemically distinct crosslinks using the same active site. The amide nitrogen (blue) and the carbonyl oxygen (red) of the peptide bond are shown as spheres to help visualize the change in stereochemistry. (**C**) was generated using PyMol² using the PDB coordinates 1PXQ³.

Supplemental References

Goldman, P. J., Grove, T. L., Sites, L. A., McLaughlin, M. I., Booker, S. J., and Drennan, C. L. (2013) X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification. *Proc Natl Acad Sci U S A 110*, 8519–8524.
 Delano, W. L. (2002) The PyMOL Molecular Graphics System. *pymol.org*. DeLano Scientific, Palo Alto, CA, USA.

(3) Kawulka, K. E., Sprules, T., Diaper, C. M., Whittal, R. M., McKay, R. T., Mercier, P., Zuber, P., and Vederas, J. C. (2004) Structure of subtilosin A, a cyclic antimicrobial peptide from *Bacillus subtilis* with unusual sulfur to alpha-carbon cross-links: formation and reduction of alpha-thio-alpha-amino acid derivatives. *Biochemistry* 43, 3385–3395.