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Supplementary Figure 1: SNP overlap of significant annotations in ICOGS. The percentage of SNPs in column-
annotation that overlap SNPs in row-annotation are reported in each cell. The diagonal lists the fraction of total SNPs in
that annotation.
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Supplementary Figure 2: SNP overlap of selected model annotations in ICOGS. The percentage of SNPs in column-
annotation that overlap SNPs in row-annotation are reported in each cell. The diagonal lists the fraction of total SNPs in
that annotation.
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Supplementary Figure 3: Estimated enrichment from smaller sample sizes. The iCOGS cohort was randomly sub-
sampled and heritability enrichment re-estimated for each component in the joint model from a subgroup. Each subfigure
shows the estimated enrichment and standard error for the named component as a function of sample size, with each point
corresponding to five random samples. The point color corresponds to the fraction of subsamples that were significantly
enriched/depleted. Estimates at lower sizes are unbiased with respect to the full sample.



Supplementary Table 1: Simulations using UK10K sequencing data over 3,047 individuals show that variance
components estimation attains high accuracy. To assess potential biases in variance components estimation, we
simulated phenotypes starting from the real UK10K sequencing data and employed the variance components framework
to estimate heritability attributable to each category of variants. First we sampled 5,000 SNPs from those on the iCOGS
genotyping platform to serve as causal variants; second, we sampled effect sizes either inversely proportional to SNP
variance (each SNP explains equal variance in trait, in expectation) or from the standard normal (high frequency SNPs
explain more variance in trait than low frequency SNPs); and third, simulated additive polygenic phenotypes for each
individual. We report the GCTA inferred %h from simulations where causal effects within LNCaP: H3k27ac are not
enriched (top) or enriched to explain 50% of the SNP-heritability (bottom). The standard deviation (*'s.d.” column) across
simulations was similar to the analytical standard error computed by GCTA (REML algorithm) ("Al s.e." column) thus
showing that GCTA’s analytical standard error is well calibrated. The SNP-heritability estimated by REML was very
similar to the true simulated SNP-heritability across all simulations. Overall, the simulations show that variance
components approaches yield unbiased estimates and well-calibrated standard errors.

LNCaP: H3k27ac category not enriched with causal variants

All SNPs explain equal variance in trait Common SNPs explain more variance

Category True % h%| Estimated % hZ (se.) | s.d.’ | Al s.e” | Estimated % h% (se) | sd.? |Al s.e.p
Coding 1.75% 1.47% (0.21%) 18% | 21% 1.65% (0.19%) 14% | 14%
UTR 1.88% 2.11% (0.23%) 18% | 21% 1.05% (0.19%) 14% | 14%
Promoter 3.44% 2.87% (0.27%) 22% | 25% 4.09% (0.24%) 16% | 17%
LNCaP: H3k27ac 3.22% 3.50% (0.22%) 17% | 19% 3.68% (0.21%) 13% | 13%
DHS 22.72% 22.62% (0.67%) 41% | 48% 22.57% (0.63%) 38% | 40%
Intron 26.97% 28.20% (0.53%) 34% | 39% 27.90% (0.52%) 30% | 31%
Other 40.04% 39.22% (0.57%) 36% | 41% 39.06% (0.50%) 32% | 33%

LNCaP: H3k27ac category enriched with causal variants

All SNPs explain equal variance in trait | Common SNPs explain more variance

Category True % h% | Estimated %h% (se) | s.d® |Al s.e.” | Estimated % h% (se) | sd? |Al s.e.l
Coding 0.88% 0.64% (0.18%) 19% | 20% 1.02% (0.19%) 13% | 14%
UTR 0.94% 0.56% (0.19%) 17% | 20% 0.45% (0.18%) 17% | 15%
Promoter 1.72% 3.02% (0.25%) 22% | 23% 2.30% (0.24%) 18% | 18%
LNCaP: H3k27ac 50.00% 51.13% (0.40%) 19% | 22% 46.98% (0.35%) 18% | 18%
DHS 11.36% 12.39% (0.64%) 43% | 49% 12.19% (0.59%) 36% | 40%
Intron 13.48% 12.78% (0.48%) 36% | 39% 14.52% (0.45%) 34% | 32%
Other 20.02% 19.47% (0.54%) 36% | 41% 22.54% (0.49%) 33% | 34%

®Empirical standard deviation across 500 simulations.
®Mean AI-REML estimate of standard error across 500 simulations (used for significance testing in real data).




Supplementary Table 2: Simulations using UK10K sequencing data over 3,047 individuals to assess the tagging
properties of SNPs on the iCOGS genotyping platform. We simulated phenotypes starting from the real UK10K
sequencing data and employed the variance components framework to estimate heritability attributable to each functional
category using only the SNPs present on the iCOGS platform ("iCOGS" columns) or 1000 Genomes SNPs imputed from
the iCOGS data (“Imputed” columns). We report the inferred %h; from simulations where causal effects within LNCaP:
H3k27ac are not enriched (top) or enriched to explain 50% of the SNP-heritability (bottom). In both scenarios, we observe
that variance components using only iCOGS SNPs underestimate the %h3 coming from the LNCaP: H3k27ac category.
However, using the imputed data attained an estimate closer to the simulated %h? (e.g. 31% as opposed to 13% for the
case when LNCaP: H3k27ac variants were simulated to explain 50% of all SNP-heritability). This suggests that our
inferred %h results for LNCaP: H3k27ac using iCOGS SNPs are a lower bound on the total SNP-heritability attributable

to LNCaP: H3k27ac in the iCOGS data (42,613 individuals, see main text).

LNCaP: H3k27ac category not enriched with causal variants

All SNPs explain equal variance in trait Common SNPs explain more variance
Category True % hg, iCOGS Imputed iCOGS Imputed
% hZ (se.) % hZ (s.e.) % hZ (se.) % hZ (s.e.)

Coding 0.67% 4.75% (0.84%) 0.18% (0.93%) 3.10% (0.68%) -1.33% (0.82%)

UTR 0.89% 1.94% (0.80%) 1.95% (0.93%) 3.12% (0.69%) 2.04% (0.80%)

Promoter 2.62% 3.86% (1.04%) 5.17% (1.21%) 3.67% (0.81%) 6.77% (1.06%)
LNCaP: H3k27ac| 2.50% 0.70% (0.82%) 0.14% (0.89%) -0.19% (0.60%) 0.08% (0.73%)
DHS 15.10% 16.38% (2.14%) 15.21% (2.71%) 12.32% (1.80%) | 15.32% (2.34%)
Intron 27.71% 22.28% (1.74%) 26.95% (1.82%) 28.30% (1.54%) | 29.80% (1.68%)
Other 50.52% 49.72% (1.83%) 56.09% (1.92%) 50.90% (1.51%) | 51.40% (1.57%)

LNCaP: H3k27ac category enriched with causal variants
All SNPs explain equal variance in trait Common SNPs explain more variance
Category True %h? iCOGS Imputed iCOGS Imputed
% hZ (se) % hZ (s.e.) % hj (se.) % hZ (s.e.)

Coding 0.34% 6.24% (0.82%) 0.91% (0.88%) 7.15% (0.61%) 0.98% (0.75%)
UTR 0.45% 6.53% (0.85%) 4.42% (0.85%) 5.83% (0.61%) 2.56% (0.73%)
Promoter 1.31% 4.58% (1.09%) 5.36% (1.09%) 3.22% (0.80%) 7.60% (1.02%)
LNCaP: H3k27ac| 50.00% 12.55% (0.92%) 30.92% (1.09%) 13.45% (0.72%) | 32.77% (0.94%)
DHS 7.55% 15.44% (2.09%) 16.16% (2.54%) 11.00% (1.64%) | 12.90% (2.23%)
Intron 13.86% 21.80% (1.67%) 16.28% (1.74%) 22.80% (1.44%) | 17.21% (1.46%)
Other 25.26% 37.67% (1.92%) 33.25% (1.70%) 38.50% (1.44%) | 31.70% (1.52%)




Supplementary Table 3. Estimates of SNP-heritability from the African American samples. To assess potential
biases in variance components estimation in admixed samples, we performed separate simulations in the AAPC data
where causal variants were specifically sampled from varying fixation index (Fst) bins. Effect sizes were sampled
inversely proportional to the minor allele frequency in the study. This framework evaluated the potential bias resulting
from markers that had drifted to different frequencies in the two populations. The Fst was estimated out-of-sample in the
HapMap CEU and YRI populations. First data row shows the total inferred hf, (and standard error over all simulations),
where the truth was simulated at 0.50; subsequent rows show the inferred %hj for each functional category under
simulations with no enrichment (category %hj = category %SNPs). We tested the baseline six-component model
(Coding, UTR, Promoter, DHS, Intron, Other) and observed no significant deviations from the null under any class of
differentiated SNPs across 50 simulated phenotypes. The total estimate of A7 was biased when unusually differentiated
SNPs were causal due to different levels of LD at such SNPs, as has been shown previously (Speed et al. AJHG 2012).

1st Fy quintile | 2nd F quintile | 3rd Fg quintile | 4th Fy quintile | 5th Fg quintile

Truehg | hi | se. | hg | se | hg | se | hy | se | hy | se

Total 0.50 0.38 0.01 0.38 0.01 0.43 0.01 0.50 0.01 0.66 0.01
Cateqory (True%hg| %hg | se. | %hg | se | %hi | se. | %hi | se. | %hg | se.
Coding 1% 04% | 08% | 08% | 08% | 12% | 06% | 0.7% | 06% | 1.2% | 0.4%
UTR 1% 04% | 0.7% | 06% | 0.7% | 21% | 05% | 14% | 05% | 1.1% | 0.4%
Promoter 2% 28% | 1.0% | 26% | 1.0% | 20% | 1.0% | 25% | 08% | 2.7% | 0.6%
DHS 23% 22.7% | 24% | 21.8% | 3.0% | 19.0% | 2.8% | 242% | 2.7% | 25.6% | 1.5%
Intron 27% 29.9% | 2.1% | 27.1% | 2.0% | 28.4% | 2.0% | 26.8% | 2.0% | 27.2% | 1.2%
Other 46% 43.8% | 24% | 47.1% | 2.8% | 473% | 1.8% | 44.4% | 2.0% | 42.3% | 1.3%




Supplementary Table 4. Total SNP-heritability estimates and standard errors reported for the analyzed cohorts.
BPC3 is the European genome-wide array study; AAPC is the African American genome-wide array study; and iCOGS is
the custom chip used for main results (split into four equally sized sub groups for computational efficiency). BPC3
(hgwas) corresponds to an estimate from 65 previously genome-wide significant SNPs in the BPC3. Bottom row reports
the inverse-variance weighted meta-analysis estimates from the iCOGS. No significant heterogeneity was observed
between the iCOGS sub-groups, and the iCOGS meta-analysis estimate does not differ significantly from the BPC3 or
AAPC estimates. All estimates were converted to the liability scale using a prevalence of 0.14 and the listed case/control

ratios.

Study # Samples |Proportion of cases| hZ (liability scale) | hZ standard error (liability scale)
BPC3 6,953 0.39 0.26 0.05

BPC3 (h3yas) 6,953 0.39 0.06 0.001

AAPC 9,522 0.51 0.32 0.06

ICOGS (1/4) 10,990 0.52 0.29 0.03

ICOGS (2/4) 10.981 0.53 0.31 0.03

ICOGS (3/4) 10.354 0.39 0.25 0.03

ICOGS (4/4) 10.288 0.59 0.28 0.03

ICOGS meta 42,613 0.28 0.01




Supplementary Table 5. Functional annotations relevant to prostate cancer, corresponding heritability estimates,
and significance of enrichment. #1D column corresponds to IDs in Supplementary Spreadsheet. REF indicates reference
where the annotation was most recently evaluated.

#I1D type cell line Summary REF % | % hf] %hzg p-value
SNPs standard
error
458 | DNAse LNCaP |prostate cancer (+/- androgen treatment) | ENCODE | 4.2% |14.9% 1.6% 2x10™
(+/- AR)

511 | DNAse |LNCaP (+| prostate cancer (+ androgen treatment) | ENCODE | 0.8% | 5.8% 0.8% 4x10%°

AR)
459 | DNAse | LNCaP | prostate cancer (UW FDR 0.05 peaks) | ENCODE | 3.1% |16.7%| 1.6% 2x10°8
464 | DNAse LNCaP prostate cancer (FDR 0.01 peaks) ENCODE | 15% | 8.7% 1.1% 6x10™
537 | DNAse LNCaP prostate cancer (FDR 0.01 Duke/UW | ENCODE | 1.9% | 8.4% 1.2% 2x10®

combined peaks)
478 | DNAse PrecC prostate epithelial (UW FDR 0.05 ENCODE | 2.8% |12.2% 1.4% 4x10™
peaks)
479 | DNAse PreC prostate epithelial (FDR 0.01 peaks) | ENCODE | 1.5% | 7.5% 1.1% 2x108
477 | DNAse PreC prostate epithelial (FDR 0.01 peaks) | ENCODE | 1.2% | 6.4% 1.0% 1x10™
481 | DNAse RWPE1 immortalized prostate epithelial cell- | ENCODE | 1.0% | 2.2% 0.8% 1x10™*
line
460 | FOXALl | LNCaP | transcription factor FOXAL, facilitates | Hazelett | 2.6% | 9.4% 1.3% 2x10"
androgen receptor binding
461 | H3K27ac | LNCaP histone H3 acetylated at lysine 27, Hazelett | 2.7% |20.4% 1.6% 7x10%
distinguishes "active™ enhancers
99 | H3K27ac | LNCaP histone H3 acetylated at lysine 27, Hazelett | 2.8% [13.6%| 1.3% 2x10™"
distinguishes "active™ enhancers

462 | H3K27ac | LNCaP (+ histone H3 acetylated at lysine 27, Hazelett | 2.9% |22.2% 1.6% 1x10%

DHT) |distinguishes "active" enhancers, treated

with androgen dihydrotestosterone
(DHT)
463 | H3K4mel | LNCaP | histone H3 lysine 4 mono-methylation, | ENCODE | 3.7% |11.3%| 1.4% 2x107
(+/- DHT) distinguishes "poised" enhancers
8 ARBS primary androgen receptor binding sites Pomerantz | 1.5% |10.7% 1.2% 1x10™
tissue ascertained in 13 cancer and 6 normal
samples (yielding 6.5x more sites than
the ARBS LNCap below)

543 | ARBS |LNCaP (+ androgen receptor binding sites Hazelett | 0.2% | 3.2% 0.8% 1x10%

DHT)
465 | TCF7L2 LNCaP transcription factor 7-like 2, abbarent Hazelett | 0.4% | 2.1% 0.8% 4x107

expression implicated in cancer




Supplementary Table 6. SNP-heritability estimates using variance components in the full model using iCOGS
imputed data over 42,613 individuals. We highlight in bold fonts the 3 functional annotations that attain a significant
enrichment/depletion of SNP-heritability after correcting for multiple testing.

Functional category % h3 stamﬁ%rror % SNP | Enrichment st%mr p-value
Coding 3.0% 1.3% 1.8% 1.67 0.75 3.8E-01

UTR 1.6% 1.4% 1.9% 0.84 0.72 8.3E-01
Promoter 7.8% 1.8% 3.4% 2.32 0.54 1.5E-02
LNCaP: H3k27ac 22.3% 2.1% 3.2% 6.90 0.64 2.5E-20
ARBS 3.3% 1.1% 1.0% 3.21 1.10 4.5E-02
LNCaP: FOXA1l 1.5% 1.3% 1.5% 1.05 0.88 9.5E-01
LNCaP: H3k4mel 1.3% 1.4% 2.0% 0.65 0.71 6.2E-01
LNCaP: DHS 5.4% 1.6% 2.9% 1.86 0.56 1.3E-01
DHS prostate 2.6% 1.4% 1.8% 1.49 0.81 5.4E-01
DHS cancer 14.1% 2.3% 4.7% 2.97 0.48 3.9E-05
H3k4mel (other) 19.6% 3.5% 16.3% 1.20 0.21 3.5E-01
H3k27ac (other) 4.1% 2.4% 7.3% 0.57 0.33 1.9E-01
DHS (other) 0.2% 1.3% 1.8% 0.09 0.76 2.3E-01
repressed 11.0% 4.1% 48.7% 0.23 0.08 2.1E-20

all other 0.7% 1.2% 1.7% 0.38 0.69 3.7E-01




Supplementary Table 7. SNP-heritability estimates using variance components in the selected model using iCOGS
typed data (no imputation) over 42,613 individuals. This selected model localized 51.0% of the SNP-heritability (hﬁ)
within 12.1% of SNPs (LNCaP:H3K27ac + ARBS + DHS cancer).

Functional category % hZ stam%;error % SNP | Enrichment st%cm)r p-value
Coding 3.3% 1.4% 1.8% 1.88 0.77 2.6E-01

UTR 2.2% 1.4% 1.9% 115 0.73 8.3E-01
Promoter 8.5% 1.8% 3.4% 251 0.55 5.7E-03
LNCaP: H3K27ac 23.2% 2.1% 3.2% 7.19 0.65 *1.5E-21
ARBS 4.1% 1.2% 1.0% 3.98 114 9.0E-03

DHS cancer 23.7% 2.8% 7.9% 2.99 0.36 *2.1E-08
repressed 33.5% 4.1% 77.0% 0.43 0.05 *2.2E-26

all other 0.9% 1.6% 3.7% 0.25 0.42 7.2E-02




Supplementary Table 8. SNP-heritability estimates using variance components in the selected model using iCOGS
imputed data over 42,613 individuals. This selected model localized 86% of the hﬁ within 8.6% of SNPs

(LNCaP:H3K27ac + ARBS + DHS cancer).

Functional category % hZ stam%;error % SNP | Enrichment st%cm)r p-value
Coding 0.9% 2.9% 0.7% 131 442 9.4E-01

UTR 3.0% 3.1% 1.0% 3.04 3.13 5.1E-01
Promoter 8.9% 4.1% 2.6% 341 1.58 1.3E-01
LNCaP: H3K27ac 27.0% 3.8% 2.8% 9.71 1.36 *1.5E-10
ARBS 9.1% 3.3% 0.6% 14.67 5.26 9.4E-03

DHS cancer 49.6% 6.3% 5.2% 9.56 1.22 *1.8E-12
repressed 0.3% 7.0% 82.8% 0.00 0.08 *1.0E-31

all other 0.2% 2.7% 4.4% 0.06 0.62 1.3E-01




Supplementary Table 9. SNP-heritability estimates using variance components in the selected model using iCOGS
imputed data over 42,613 individuals. We further assessed the ARBS and LNCaP: H3K27ac functional categories in a
hierarchical model in which imputed SNPs were first assigned to ARBS class (over LNCaP: H3K27ac). ARBS attained a
highly significant 31-fold enrichment (as opposed to 15-fold in the model in which SNPs are first assigned to LNCaP:
H3K27ac, see Supplementary Table 7). Consistent with Supplementary Table 7, this selected model localized 86% of the
hf, within 8.6% of SNPs (ARBS + LNCaP:H3K27ac + DHS cancer).

Functional category Mﬁ stan(%%rror % SNP | Enrichment st%mr p-value
Coding 0.6% 2.9% 0.7% 0.95 4.36 9.9E-01

UTR 3.0% 3.0% 1.0% 3.03 3.07 5.1E-01
Promoter 8.7% 4.0% 2.6% 3.34 1.55 1.3E-01
ARBS 26.5% 4.1% 0.9% 30.51 4.71 *3.7E-10
LNCaP: H3K27ac 14.9% 3.4% 2.5% 5.90 1.34 2.6E-04
DHS cancer 44.8% 6.1% 5.2% 8.62 1.18 *1.1E-10
repressed 0.2% 6.9% 82.8% 0.00 0.08 *6.6E-33

all other 0.4% 2.6% 4.4% 0.09 0.61 1.3E-01




Supplementary Table 10. SNP-heritability estimates using variance components in sub-categories of the selected
model using iICOGS typed data (no imputation) over 42,613 individuals. To quantify the enrichment of SNP-
heritability (h3) in regions marked by both LNCaP: H3K27ac and ARBS, we partitioned the SNPs in LNCaP: H3K27ac
and ARBS according to whether they are present in both categories or are exclusive to each. We observe that SNPs
present in both LNCaP: H3K27ac and ARBS attain significantly higher enrichment (15.31-fold) than SNPs exclusive to
each category (5.62-fold for LNCaP: H3K27ac and 4.05-fold for the ARBS specific categories).

Functional category Mf} stamﬁ%rror % SNP | Enrichment st%r p-value

Coding 3.4% 1.4% 1.8% 191 0.80 2.5E-01

UTR 2.2% 1.4% 1.9% 1.14 0.75 8.5E-01

Promoter 8.6% 1.9% 3.4% 2.55 0.56 5.4E-03

LNCaP: H3K27ac (exclusively) 15.5% 1.9% 2.8% 5.62 0.68 1.0E-11
LNCaP: H3K27ac & ARBS (intersection) | 6.8% 1.0% 0.4% 15.31 2.26 2.3E-10
ARBS (exclusively) 4.1% 1.2% 1.0% 4.05 1.16 8.5E-03

DHS cancer 24.7% 2.9% 7.9% 3.13 0.37 7.1E-09

repressed 32.4% 4.2% 76.7% 0.42 0.05 5.7E-26

all other 1.1% 1.6% 3.7% 0.30 0.43 1.0E-01




Supplementary Table 11. SNP-heritability estimates using variance components in the selected model using BPC3
European imputed data. We observe a high degree of correlation in the SNP-heritability (hg) attributable to each
functional category between the iCOGS (see Supplementary Table 7, main text) and BPC3 data sets. Analytical standard
error on the estimate is higher in the BPC3 than iCOGS due to lower sample size. Annotations replicating significantly at

P<0.05 are marked with *'.

Functional category % h3 stancﬁ%rror % SNP | Enrichment st%r p-value
Coding 0.2% 10.1% 0.6% 0.31 16.10 9.7E-01

UTR 21.0% 11.3% 0.8% 25.40 13.65 7.4E-02
Promoter 0.0% 12.7% 2.2% 0.00 5.71 8.6E-01
LNCaP: H3K27ac 30.3% 12.1% 2.6% 11.50 4.60 *2.3E-02
ARBS 1.1% 12.1% 0.6% 1.74 18.78 9.7E-01

DHS cancer 47.4% 21.4% 5.1% 9.27 4.19 *4.8E-02
repressed 0.0% 23.8% 84.3% 0.00 0.28 *4 0E-04

all other 0.0% 9.2% 3.6% 0.00 2.54 6.9E-01




Supplementary Table 12. SNP-heritability estimates using variance components in the selected model using AAPC
African American imputed data. We observe a high degree of correlation in the SNP-heritability (h7) attributable to
each functional category between the iCOGS European (see Supplementary Table 7, main text) and AAPC African
American data sets. Analytical standard error on the estimate is higher in AAPC than iCOGS due to lower sample size.
Annotations replicating significantly at P<0.05 are marked with "*'.

Functional category Mf} stamﬁ%rror % SNP | Enrichment st%r p-value
Coding 3.3% 11.1% 0.7% 4.93 16.53 8.1E-01

UTR 5.9% 11.2% 1.0% 6.05 11.45 6.6E-01
Promoter 0.0% 14.7% 2.7% 0.00 5.53 8.6E-01
LNCaP: H3K27ac 28.9% 12.7% 2.9% 9.98 4.39 *4.1E-02
ARBS 15.2% 12.1% 0.6% 23.66 18.73 2.3E-01

DHS cancer 46.6% 22.4% 5.5% 8.49 4.08 6.6E-02
repressed 0.0% 24.5% 86.6% 0.00 0.28 *4.2E-04

all other 0.0% 7.6% 4.4% 0.00 1.73 5.6E-01




Supplementary Table 13. SNP-heritability estimates using variance components in the selected model using BPC3
European imputed data at two levels of imputation accuracy. Filtering SNPs based on stringent imputation quality
scores does not significantly change the SNP-heritability estimates for each functional category.

All markers INFO > 0.9 markers

% hf, standard error| % SNP | p-value | % hf, standard error | SNP | p-value

Coding 0% 10% 1% 1E+00 1% 10% 1% | 1E+00
UTR 21% 11% 1% 7E-02 18% 11% 1% | 1E-01
Promoter 0% 13% 2% 9E-01 0% 12% 2% | 9E-01
LNCaP: H3K27ac 30% 12% 3% 2E-02 30% 12% 3% | 2E-02
ARBS 1% 12% 1% 1E+00 1% 12% 1% | 1E+00

DHS cancer 47% 21% 5% SE-02 50% 21% 5% | 4E-02
repressed 0% 24% 84% 4E-04 0% 24% 87% | 2E-04

all other 0% 9% 4% 7E-01 0% 9% 4% | 7E-01




Supplementary Table 14. SNP-heritability estimates using variance components in the selected model using
WTCCC European imputed data. We present results meta-analyzed across all 11 phenotypes: Ankylosing Spondylitis
(AS); Bipolar Disorder (BD); Coronary Artery Disease (CAD); Crohn's Disease (CD); Hypertension (HT); Multiple
Sclerosis (MS); Rheumatoid Arthritis (RA); Schizophrenia (SP); Type 1 Diabetes (T1D); Type 2 Diabetes (T2D);
Ulcerative Colitis (UC). After quality control, a total of 47,053 samples and 4-5 million genotyped and imputed SNPs
remained. Reported hj values were estimated for each phenotype separately and meta-analyzed using inverse-variance
weighting.

Functional category Mﬁ stan(%%rror % SNP | Enrichment st%mr p-value
Coding 2.2% 1.6% 0.5% 4.11 2.86 2.8E-01

UTR 3.3% 1.6% 0.8% 421 2.12 1.3E-01
Promoter 2.3% 2.1% 2.2% 1.05 0.97 9.6E-01
LNCaP: H3K27ac 1.1% 1.6% 2.6% 0.43 0.59 3.4E-01
ARBS 11.6% 1.9% 0.6% 19.17 3.20 *1.4E-08

DHS cancer 47.5% 3.6% 4.8% 9.82 0.74 *4.0E-33
repressed 28.1% 3.6% 87.8% 0.32 0.04 *4.4E-63

all other 2.8% 1.5% 3.7% 0.75 0.39 5.2E-01




Supplementary Table 15. Risk prediction accuracy in cross-validations from iCOGS data. All predictions were
carried out by cross-validation in the iCOGS data, removing 1,000 individuals in each fold. Prediction R? was then
computed from a regression of phenotype on the predictor score with 10 PCs included as covariates to account for
ancestry, subsequently subtracting the R=0.021 from a model with PCs only. To ensure that prediction across data sets
was independent, we carefully removed all iCOGS individuals with a GRM value of >0.05 to any individual in the BPC3
when computing BLUP coefficients. We separately analyzed the predictor in 26,000 iCOGS samples that had age at
diagnosis, but did not observe significant differences before/after including age as a covariate. We report coefficient-
specific P-values from a multiple regression of phenotype ~ top SNPs score + single-BLUP score + multi-BLUP score +

PCs.
Predictor Prediction R? e e

top SNPs 0.029 NA

single BLUP 0.065 NA

multi BLUP 0.071 NA
top SNPs + single BLUP 0.069 2.3E-06
top SNPs + multi BLUP 0.074 5.3E-31

known SNPs [Al Aloma et al. Nat. Gen. 2014] 0.084 NA
known SNPs + single BLUP 0.096 6.7E-04
known SNPs + multi BLUP 0.098 1.3E-23




Supplementary Table 16. SNP-heritability estimates using variance components partitioned by minor allele
frequency using iICOGS imputed data over 42,613 individuals. We observe that most of the SNP-heritability in the
iCOGS data comes from common variation. P-value reported for difference between % h and % SNP.

Fﬂw Mﬁ- stan(%%rror %o SNP M'Ue
1-5% 6% 2% 7% 7E-01
5-12% 17% 3% 19% 6E-01
12-20% 13% 3% 19% 4E-02
20-29% 19% 3% 19% 8E-01
29-39% 18% 3% 19% 8E-01
39-50% 26% 3% 19% 7E-03
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