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Figure S1 Effect of polyphenols on DNP-BSA-induced mast cell degranulation

(a) All 32 phenolic compounds used representing 11 subgroups and their abbreviations. (b and c) Inhibitory effect of polyphenols on β-hexosaminidase and histamine release from the RBL-2H3
cells. RBL-2H3 cells were treated with or without 10 μM polyphenols. Results are means +− S.D. from five independent experiments. Dense area of (b) is shown enlarged in (c) for clarity.
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Figure S2 Effect of polyphenols on mast cell degranulation is independent
of stimulation method

β-Hexosaminidase release from RBL-2H3 cells was stimulated by either FcεRI cross-linking or
calcium ionophore A23 187 in the presence or absence of polyphenols.

Figure S3 The lipid mixing ability of various SN25-containing SNARE complexes

SNAP-25 or Syn1a could induce lipid mixing with various VAMPs, but these proteins are not expressed in mast cells. SN25, 25 kDa synaptosome-associated protein; Vp, vesicle-associated
membrane protein.
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Figure S4 Inhibitory effect of 32 polyphenols on membrane fusion driven by three SNARE complexes

(a) SNAP-23/Syn4/VAMP2 compared with SNAP-23/Syn4/VAMP8. (b) SNAP-23/Syn4/VAMP2 compared with SNAP-25/Syn1/VAMP2. Dense areas of (a and b) are shown enlarged in (c) and (d)
respectively for better resolution. SN23/25, 23/25 kDa synaptosome-associated protein; Vp, vesicle-associated membrane protein.

Figure S5 UV absorption spectra of polyphenols DL and CY with SNARE proteins

Soluble fragments of SNARE proteins (Vp2S and Vp8S) and t-SNARE complex were mixed with polyphenols and UV spectra were measured. Abs., absorbance; CY, cyanidin; DL, delphinidin;
SN23/25, 23/25 kDa synaptosome-associated protein; Vp, vesicle-associated membrane protein.
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Figure S6 Dense areas of Figure 4 of the main text are shown enlarged

Figure S7 Determination of IC50 values of polyphenols for histamine and β-hexosaminidase release from RBL-2H3 cells
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Table S1 Primers and condition for PCR analysis of RBL-2H3 cells

F, forward; R, reverse.

Type Gene Primer type Primer sequence (5′→3′) Annealing temperature (◦C) Number of cycles Amplicon size (bp)

v-SNAREs VAMP2 F ATGTCGGCTACCGCTGCCAC 58 28 348
R ATCGTTTACTTCAGCACT

VAMP8 F ATGGAGGCCAGTGGGAGTGC 58 28 300
R GGCACCATCCCCACT

VAMP8S F ATGGAGGCCAGTGGGAGTGC 58 28 222
R GTTCTGGTGGAAGAATGTGAAG

VAMP4 F ATGCCTCCCAAGTTCAAGCG 58 30 423
R TAGTTGTGAAATACCGTACT

VAMP7 F ATGGCCATTCTTTTTGCCGTTG 58 28 660
R GGCCAAGCTGTGTGAAGAAA

t-SNAREs SNAP-23 F ATGGATGATCTATCACCAGA 52 30 630
R AGAGCAAAGAAACTCATTGACAGC

SNAP-25 F ATGGCCGAGGACGCAGACAT 52 40 618
R AAGATGCTGGGAAGTGGT

Syntaxin 1a F ATGAAGGACCGAACCCAGGA 56 40 864
R ACCATCGGGGGCATCTTTGGA

Syntaxin 4 F ATGCGCGACAGGACCCATGA 56 40 894
R CATCACCATAACCGTTGGA

Syntaxin 5 F ATGTCCTGCCGGGATCGGAC 56 40 903
R ATCTTTGTGGTCTTCCTTGCC

β-Actin F ATGGGTCAGAAGGACTCCTACG 58 18 470
R CATTGTGATGGACTCCGGAGA
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