Geniposide Protects against Cardiac Hypertrophy via GLP-1R/AMPKα Signalling Pathway Zhen-Guo Ma^{1,2}, MD, PhD, Jia Dai^{1,2}, PhD, Wen-Bin Zhang^{1,2}, MD, Yuan Yuan^{1,2}, PhD, Hai-Han Liao^{1,2}, MD, Ning Zhang^{1,2}, MD, Zhou-Yan Bian^{1,2}, PhD, Qi-Zhu Tang^{1,2}, MD, PhD

¹Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China ²Cardiovascular Research Institute of Wuhan University, Wuhan, China

Corresponding author: Qi-Zhu Tang, Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University at Jiefang Road 238, Wuhan 430060, China. Tel.: +86 27 88073385; Fax: +86 27 88042292. E-mail: <u>gztang@whu.edu.cn</u>

Short title: Geniposide against Cardiac Hypertrophy

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL METHOD

XBP-1 splicing assay

The XBP-1 splicing assay was preformed according to a previous study. The total RNA was extracted from hearts and cells, and then was reverse-transcribed into cDNA using the Transcriptor First Strand cDNA Synthesis Kit (Roche, 04896866001). Levels of spliced and unspliced XBP-1 by using primers flanking the intron excised by IRE1 exonuclease activity. The running conditions were: 50 \degree (30 min); 95 \degree (15 min); 30 cycles of 94° C (1 min), 55 \degree (1 min), 72 \degree (1min); 72 \degree (10 min).

	1			
Gene	Species		Sequence (5'-3')	
GAPDH	Mouse	Forward	ACTCCACTCACGGCAAATTC	
		Reverse	TCTCCATGGTGGTGAAGACA	
GAPDH	Rat	Forward	GACATGCCGCCTGGAGAAAC	
		Reverse	AGCCCAGGATGCCCTTTAGT	
ANP	Mouse	Forward	ACCTGCTAGACCACCTGGAG	
		Reverse	CCTTGGCTGTTATCTTCGGTACCGG	
		Forward	AAAGCAAACTGAGGGCTCTGCTCG	
ANP	Rat	Reverse	TTCGGTACCGGAAGCTGTTGCA	
		Reverse	GCCATTTCCTCCGACTTTTCTC	
β-ΜΗϹ	Mouse	Forward	CCGAGTCCCAGGTCAACAA	
		Reverse	CTTCACGGGCACCCTTGGA	
GRP78	Rat	Forward	TGGAGGTGGGCAAACCAAGACA	
		Reverse	TTGGTTGCTTGTCGCTGGGCAT	
VDD 1	Rat	Forward	AAGCGCTGCGGAGGAAACTGAA	
ADF-1		Reverse	TCGTCAGGATCCAGCGTGTCCATT	
CLD 1D	Mouse	Forward	TGCAACCGGACCTTTGATGA	
OLF-IK		Reverse	TTGTAGCACACTACTGGCCC	
CLD 1D	Dot	Forward	GCTGCTGTTCGTTATCCCCT	
GLP-IK	Kal	Reverse	AGGAAGTTGACCCCGATTGC	
AMPKa1	Rat	Forward	ATCCGCAGAGAGATCCAGAA	
		Reverse	CGTCGACTCTCCTTTTCGTC	
ΑΜΡΚα2	Rat	Forward	CGGAGGTCATCTCAGGAAGGCTG	
		Reverse	ACGTGCTCATCGTCGAACGGG	
XBP-1	Mice	Forward	GAACCAGGAGTTAAGAACACG	
(the splicing assay)		Reverse	AGGCAACAGTGTCAGAGTCC	

 Table S1: Primer sequences used for RT-PCR

Antibody name	Company	Number	Dilution
GAPDH	Santa Cruz	sc-25778	1:200
PERK	Santa Cruz	sc-13073	1:200
phospho-PERK	Santa Cruz	sc-32577	1:200
GRP78	Santa Cruz	sc-13968	1:200
XBP-1	Santa Cruz	sc-7160	1:200
ANP	Santa Cruz	sc-20158	1:200
ΑΜΡΚα	Cell Signaling Technology	2603P	1:1000
phospho-AMPKα	Cell Signaling Technology	2535	1:1000
ACC	Cell Signaling Technology	3676P	1:1000
phospho-ACC	Cell Signaling Technology	3661P	1:1000
mTOR	Cell Signaling Technology	2983	1:1000
phospho-mTOR	Cell Signaling Technology	2971	1:1000
ERK	Cell Signaling Technology	4695	1:1000
phospho-ERK	Cell Signaling Technology	4370P	1:1000
ATF6	Abcam	ab103673	1:1000

Table S2: The information of the primary antibodies used in western

SUPPLEMENTAL FIGURES AND FIGURE LEGENDS:

Figure S1. Effects of geniposide (GE) on cardiac hypertrophy induced by pressure overload. HW/BW: heart weight/body weight. A, The preliminary experiment indicated that GE (50mg/kg-100mg/kg) protected against cardiac hypertrophy (n=5). B-D, echocardiographic parameters in mice after 8 weeks of TAC (n=14). E, Left ventricular internal diastolic diameter (LVIDd) in mice subjected to isoprenaline (ISO) injection (n=8). **P*<0.05 versus matched control.

Figure S2. Effects of geniposide (GE) suppressed the production of transcription factor XBP1s. M: marker.

Figure S3. Geniposide (GE) suppressed hypertrophy of myocytes in vitro. A, Viability of H9c2 cells (n=3). B, mRNA of 5'-adenosine monophosphate-activated protein kinase- α (AMPK α)1 and AMPK α 2 after adenovirus infection in neonatal rat cardiac myocytes (n=6). C, Changes of AMPK α and acetyl-CoA carboxylase (ACC) after adenovirus infection in neonatal rat cardiac myocytes (n=6). D, Changes of AMPK α and ACC after AICAR treatment in H9c2 (n=6). E, Phosphorylated AMPK α and downstream proteins after Compound (CpC) treatment in H9c2 cells (n=6). **P*<0.05 versus matched control.

Figure S4. The effects of geniposide (GE) on hypertrophy induced by isoprenaline (ISO) (10mmol/L for 24h) in H9c2 cell. A, The levels of atrial natriuretic peptide (ANP) induced by ISO in indicated groups (n=5). B, Compound (CpC) (5-20 μ M for 24h) reversed hypertrophic response induced by ISO (n=5). C, The cross-sectional area of H9c2 myocytes (n=5). D, The protein levels of phosphorylated 5'-adenosine

monophosphate-activated protein kinase- α (AMPK α) in indicated groups (n=6). E, GE suppressed ISO-induced ER stress (n=5). F, shAMPK α offset the effect of GE against the production of transcription factor XBP1s. M: marker. **P*<0.05.

Figure S5. Compound (CpC) offset effects of geniposide (GE) on hypertrophy in vivo. A, Echocardiographic parameters in mice subjected to CpC (n=7). B, The mRNA expressions of hypertrophic markers (n=6). C, CpC attenuates 5'-adenosine monophosphate-activated protein kinase- α (AMPK α) and related targets (n=6). **P*<0.05 versus matched control.

Figure S6. Endoplasmic stress induces accumulation of reactive oxygen species (ROS). A, Geniposide (GE) suppressed the accumulation of ROS induced by thapsigargin (TG). B, GE suppressed the accumulation of ROS induced by Angiotensin II (Ang II). C, N-acetylcysteine (NAC) blunted the accumulation of ROS induced by TG. D, NAC blunted the accumulation of ROS induced by Ang II. E-F, NAC almost completely abolished the increase of atrial natriuretic peptide (ANP) and cross-sectional area (n=6). G-H. NAC suppressed the increase of ANP and cross-sectional area induced by TG (0.5 μ M for 48h) (n=6). ROS were detected by DCFH-DA in 3 experiments independently. Statistical analysis of ROS was performed using a repeated measures ANOVA. **P*<0.05 versus matched control.

Figure S7. Atrial natriuretic peptide (ANP) and cross-sectional area of myocytes induced by Ex9-39 (n=6).

Figure S8. The mRNA levels of glucagon-like peptide 1 receptor (GLP-1R) in the hypertrophic heart after infection (n=8). *P<0.05 versus matched control.

Figure S9. Effects of geniposide (GE) on the heart at baseline. A-D, Statistical results of body weight (BW), heart weight (HW)/BW, HW/tibial length (TL) of the indicated groups (n=6). E, The cross-sectional areas of myocytes (n=6). F, The protein levels of phosphorylated 5'-adenosine monophosphate-activated protein kinase- α (AMPK α) in mice from indicated groups (n=6). G, Hepatic morphology after GE treatment (n=5). **P*<0.05 versus sham.