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1 Supplementary Methods

1.1 Data collection

We applied two different subsampling procedures to the sequence data in order to miti-
gate sampling bias: 1) by randomly selecting 50 isolates for regions with a higher number
of available sequences and 2) by selecting the same number of sequences based on phy-
logenetic diversity in those regions. For the latter, we used the Phylogenetic Diversity
Analyzer tool (www.cibiv.at/software/pda) in order to select a subset that comprised
the maximal phylogenetic diversity [1, 2]. Both down-sampling procedures were performed
on the HA sequence set, resulting in data set of 806 sequences (Supplementary Table 1),
and the corresponding NA subset was created by collecting the NA sequences from the
same isolates included in the HA data set. In this supplementary information, we refer
to the randomly downsampled data sets as HAR and NAR and the data sets subsampled
by diversity as HAD and NAD for hemagglutinin and neuraminidase respectively.

We attempted to collect information about the wild or domestic status of the Anatidae
hosts, but this was only available for about 20% of the sequences based on our database
and literature search. By contacting the original authors, we were able to collect additional
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information for about 13% of the Anatidae sequences, but this remains insufficient to take
this into account in our analysis.

1.2 Bayesian inference of sequences and traits

1.2.1 Sequence evolution

We performed Bayesian genealogical inference of time-measured trees using Markov chain
Monte Carlo (MCMC) sampling implemented in the Bayesian Evolutionary Analysis Sam-
pling Trees (BEAST) software [3]. We partitioned the coding genes into first+second and
third codon positions and applied a separate Hasegawa-Kishino-Yano 85 (HKY85 [4]) sub-
stitution model with gamma-distributed rate variation among sites to both partitions [5].
We used an uncorrelated lognormal relaxed molecular clock to account for evolutionary
rate variation among lineages [6] and specified a flexible Bayesian Skyride coalescent tree
prior [7].

We ran and combined three independent MCMC analyses for 100 million generations,
sampling every 10000th generation and removed 10% as chain burn-in. Stationarity and
mixing was investigated using Tracer version 1.5, making sure that effective sample sizes
for the continuous parameters were greater than 200.

Supplementary Table 3 compares posterior estimates for phylogenetic divergence times,
evolutionary rates and statistics for the Bayesian discrete diffusion analysis (see below) of
the different data sets. While the evolutionary rates are all close to 5 x 10-3 substitutions
per site per year for the different data sets, the estimates for HAD and NAD are slightly
higher compared to the randomly down-sampled data sets. This may be explained by the
fact that the most diverse subset is selected by searching for the subset of taxa in a tree
that maximises the sum of the branch lengths of the corresponding subtree [1, 2]. This
will prefer longer terminal branches for samples drawn in the same year and consequently
yield slightly faster divergence rates. The coefficient of variation for the evolutionary
rate indicates somewhat higher substitution rate variability among lineages for NA as
compared to HA. The time estimates for the most recent common ancestor are all close
to the earliest sample in our data set (from 1996). The uncertainty for these dates will
be slightly underestimated as only the sampling year - and not the exact sampling date,
which was not available for all the sequences analysed here - was accommodated in our
inference.
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1.2.2 Discrete geography

To compare how the different data sets (HAR, NAR, HAD and NAD) inform our discrete
state inference, we followed Lemey et al. (2009) [8] and calculated the Kullback-Leibler
(KL) divergence [9] between a distribution with equal probabilities for each state and the
posterior state distribution for each node, and sum this quantity across all internal nodes.
A larger KL divergence value implies that the model extracts more information from the
data. We also investigate how this compares to the extent of phylogenetic structure for a
trait using the association index (AI) [10, 8]. This metric quantifies the degree to which
the same traits (e.g. location or host) tend to cluster together relative to the expectation
for randomised trait assignments. AI values close to 0 reflect strong phylogeny-trait
correlation whereas AI values close to 1 reflect the absence of phylogenetic structure for
the trait [10, 8]. Supplementary Table 3 lists these metrics or both the location and host
traits in the different data sets. The HA data sets appear to yield higher KL divergences
and therefore less uncertainty for the location estimates at the internal nodes than the NA
data sets, and this is associated with a higher degree of phylogenetic clustering by trait as
indicated by lower association indices. For HA, there is also less uncertainty and higher
phylogeny-trait association for the randomly down-sampled data set. Interestingly, the
same trend is reproduced by the host state estimates. Based on these results, we mainly
restrict ourselves to reporting the HAR and NAR results in the main manuscript, but
largely mirror them here with estimates for the other dataset sets.

In order to identify long-distance dispersal dynamics that significantly stand out from
a more regular, distance-based diffusion process, we extended the recently developed
generalized linear model (GLM) approach [11]. To this purpose, we introduce random
effects (ε) in the GLM model such that every instantaneous movement rate Λij for i 6= j

is parametrised as:

log Λij = β1δ1xij1 + . . .+ βP δPxijP + εij, (1)

where each predictor set xp = {xijp} for p = 1, . . . , P potentially influences the rate from
location i to j. We further group all effect sizes for the predictors into β = (β1, . . . , βP )

′ ,
quantifying their contribution to Λ, and encode (δ1, . . . , δP ) as (0,1)-indicator variables
that determine the inclusion or exclusion of the P predictors in the model. Importantly,
random effects εij for each entry in the instantaneous rate matrix account for the unex-
plained variability in the diffusion process when restricting its description to a number of
potential predictors. We use this GLM diffusion approach extended here to accommodate
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random effects in order to identify exceptions to distance-based diffusion as a possible
baseline spatial dispersal process.

To this aim, we incorporated log-transformed great-circle distances between each pair of
locations as a predictor (x) in our analyses. If geographic distances suffice in providing an
adequate description of the diffusion process, all posterior estimates for the random effects
are expected to be close to zero. We specify a 50% prior probability on the inclusion of
the great-circle distance predictor and a normal prior distribution with a mean of zero
and a standard deviation of 2 on its coefficient in log space (β). We specify a hierarchical
normal prior distribution over the random effects (ε) with a mean of zero and an estimable
precision, which we assume to be gamma-distributed with a shape and a rate of 0.001.
This enables us to build a highly effective Gibbs sampler [12, 13] over the joint space of
these random variables. Markov chain Monte Carlo (MCMC) transition kernels for the
standard GLM-diffusion model parameters (β and δ) are described elsewhere [11].

We note that the introduction of random effects confronts us with the challenge to estimate
a large amount of additional parameters, in our case 19 × 18 = 342. As is the case for
the set of instantaneous transition rates in a standard discrete continuous-time Markov
chain (CTMC) model, it is difficult to adequately inform these random effect parameters
based on a single trait observation, and as a consequence, they will be subject to high
variances. Therefore, in our posterior summary, we aim to focus on a limited number of
random effects that are consistently high on an absolute (log) scale. We do this through
the use of a posterior rank statistic that, for each effect, summarises the probability that
the effect is the highest among all random effects:

Pr(|εij| = max
0≤i,j≤K

|εij|), (2)

where i 6= j.

Using random effect estimates from the GLM model to identify exceptions to distance-
based diffusion requires distances for each pair of location states to adequately represent
geographic distances between all samples associated with these states. In other words,
the approach will be most useful when location states represent a spatially coherent set
of samples, which is not necessarily the case for location discretisation based on admin-
istrative borders we used for sub-sampling (Supplementary Table 1). In order to arrive
at a spatially more coherent sampling for the same number of locations, we adjusted
the discretisation according to a K-means identification of 19 clusters based on the ge-
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ographic coordinates for all the sequences [14]. The K-means clustering was performed
using R [15] and the resulting discretisation is represented in Supplementary Figure 1 and
Supplementary Table 2.

1.3 Grid-based visualisation of continuous spatial diffusion

We developed a novel visualisation approach of continuous phylogeographic dispersal on a
two-dimensional grid. To this purpose, we specify a grid composed of arbitrarily-sized cells
covering the area of interest. For each branch in the posterior tree sample, we conditionally
simulate its Brownian bridge representation of the random walk process at several time
points along the branch. We identify which cells the process visits using Bresenham’s
line algorithm [16] to interpolate between points. Repeating this simulation over the
entire sample approximates the posterior mass of occupancy with each grid cell that we
visualise using a colour gradient or opacity. For the combined discrete host and continuous
location diffusion, we summarise host-specific densities based on the host associated with
the branch at the time a cell is visited as estimated by the complete Markov jump history.
We also obtain similar visualisations for the diffusion rate by summarising cell-specific
mean diffusion rates for the rates along the branches that visit the cells and representing
them using heat map colouring.
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2 Supplementary Figures

Figure 1: Sampling locations across Russia and Asia for the HPAIV H5N1 sequences
we study here. The colours and the legend represent the 19 locations specified in
the discrete phylogeographic analysis. The maps were taken from Natural Earth
(www.naturalearthdata.com) and visualised using Cartographica (www.macgis.com).
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Figure 2: Posterior probabilities for location states at the root and Markov reward times
in the discrete non-reversible phylogeographic analysis. Southeast China has ≈ 98% and
72% probability of being the origin location of HPAIV H5N1 for HAR and NAR (left bar
chart). The amount of time spent in a particular location state throughout the HAR and
NAR evolutionary histories is summarised from the Markov rewards (right bar chart).
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Figure 3: Bayes factor (BF) test for significant non-zero rates in HPAIV H5N1 HAD

(top) and NAD (bottom). Only rates supported by a BF>100 are plotted. The line
colour represents the relative strength by which the rates are supported: green lines and
red lines suggest relatively weak and strong support respectively.
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Figure 5: Reconstruction of the spatiotemporal dispersal of HPAIV H5N1 for HAD (top),
NAD (middle) and NAR (bottom) throughout Russia and Asia, shown since 2001 onwards
at intervals where major dispersal events occur: invasion of southeast Asia (2003), disper-
sal towards west Asia and invasion of Russia (2005) and spread to southwest Asia (2011).
Black lines show a spatial projection of the representative phylogeny. Coloured clouds rep-
resent statistical uncertainty in the estimated locations of HPAIV H5N1 internal nodes
(95% HPD intervals).
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Figure 6: Percentage of total amount of time rewarded for each location state along the
phylogenies of HAD and NAD.
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Figure 7: Standard diffusion coefficient (top) and weighted average diffusion coefficient
(bottom) for both HPAIV H5N1 HAR, NAR, HAD, NAD and West Nile virus in North
America [17] (posterior mean and 95% HPD interval). Using a weighted average estimate
for the diffusion coefficient, we arrive at consistently lower estimates, but importantly,
much lower variance estimates as compared to the original diffusion coefficient statistic.
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Figure 8: Posterior rank distribution for HAR and NAR for first 20 effects. One particular
effect stands out as being more consistently ranked as the largest effect size on an absolute
scale.
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Figure 9: Time-calibrated maximum clade credibility tree inferred for 806 HAR and NA
Rsequences sampled from 3 avian orders. Branches were coloured according to most
probable host order, indicated in the coloured legend. Ana - Anatidae, Pha - Phasianidae,
Neo - Neoaves. 14
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Figure 10: Host-specific wavefront distance estimates for HAD and NAD. These estimates
summarise, for each host (Anatidae - Ana, Phasianidae - Pha and Neoaves - Neo), the
fraction of estimated amount of great circle distance from the phylogeographic origin
to the wavefront that can be associated with that host according to the host ancestral
reconstruction.
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Figure 11: Posterior dispersal rate (top) and diffusion coefficient (bottom) distributions
for each host (blue - Anatidae, red - Phasianidae, yellow - Neoaves and green - general
representing the joint host analysis) in the analysis of HAD (left) and NAD (right)
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3 Supplementary Tables

Table 1: Number of sequences by administrative region

Location Number of sequences before/after down-sampling

Central-West Asia 38

Central China 36

Cambodia 25

West Russia 27

Guangdong 143 / 50

Guangxi 146 / 50

Hong Kong 252 / 50

Hunan 44

Indonesia 216 / 50

Japan 16

Korea 17

Laos 30

Mid-East China 26

Mid-West China 42

Mongolia 12

Northeast China 29

Southeast China 32

South Asia 49

Thailand 312 / 50

Vietnam 490 / 50

East Russia 23

Yunnan 106 / 50
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Table 2: Number of sequences by K-Means location clustering

Location cluster City Administrative subdivision Country Anatidae Phasianidae Neoaves

Afghanistan and
Pakistan 6 1 17 1 15 1

Cambodia and
Vietnam 0 0 78 23 55 0

Central Russia and
Kazakhstan 12 0 12 6 4 2

East China 10 111 121 65 48 7

India 3 0 22 1 21 0

Indonesia 18 21 46 1 44 1

Israel and Turkey 1 1 7 0 7 0

Japan and Far
East Russia 6 11 18 6 5 6

Korea 0 0 17 8 9 0

Malaysia and
Indonesia 2 0 5 0 5 0

Middle East 0 0 10 1 4 5

Mongolia and
North China 0 13 25 21 2 2

Northeast China 0 21 21 2 17 2

Northwest China
and Central Russia 1 19 20 2 10 8

South Asia 0 24 31 3 25 3

Southeast China 37 90 127 44 62 21

Southwest China
and Laos 15 105 150 97 52 1

Thailand 1 26 50 4 32 14

West Russia and
Kazakhstan 28 1 29 15 11 3
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Table 3: Parameter estimates and posterior statistics for the Bayesian sequence and discrete trait phylo-
genetic inference applied to the HA and NA HPAIV H5N1 data sets.

HAR NAR HAD NAD

Date for the
MRCA1

(year)

1995.7
[1995.45 - 1995.98]

1994.69
[1994.24 - 1995.14]

1995.98
[1995.70 - 1996.28]

1994.64
[1994.14 - 1995.14]

Evolutionary
rate (µ)
(substitutions/
site/year)

5.13x10-3

[4.69x10-3 -
5.61x10-3]

5.09x10-3

[4.56x10-3 -
5.61x10-3]

5.33x10-3

[4.92x10-3 -
5.76x10-3]

5.25x10-3

[4.72x10-3 -
5.82x10-3]

Coefficient of
variation for µ

0.78
[0.70 - 0.86]

1.14
[0.99 - 1.30]

0.71
[0.64 - 0.79]

1.18
[1.04 - 1.35]

Internal node
location KL2

divergence
2263.65 2222.71 2251.05 2223.04

Location
association
index

0.24
[0.22 - 0.26]

0.26
[0.24 - 0.28]

0.27
[0.25 - 0.29]

0.28
[0.25 - 0.30]

Internal node
host KL
divergence

765.55 736.15 759.04 724.73

Host association
index

0.51
[0.47 - 0.54]

0.56
[0.52 - 0.61]

0.60
[0.55 - 0.64]

0.65
[0.60 - 0.70]

Values in between brackets represent 95% highest posterior density (HPD) intervals
1MRCA: most recent common ancestor
2KL: Kullback-Leibler

Table 4: Log marginal likelihoods estimated by stepping stone sampling for strict Brownian and different
relaxed random walk (RRW) models

HAR NAR HAD NAD

Homogeneous (strict Brownian) -5491.83 -5851.49 -5576.16 -5881.30

Cauchy RRW -5123.00 -5395.54 -5199.13 -5428.73

Gamma RRW -5376.62 -5753.08 -5454.14 -5784.51

Lognormal RRW -5398.32 -5764.56 -5468.42 -5791.90
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Table 5: Log random effect sizes with the highest posterior rank probability (first three) for HAR, NAR,
HAD and NAD

Effects Mean of effect Posterior rank probability

HAR

Mongolia and North China to West
Russia and Kazakhstan 8.15 [2.93 - 13.53] 0.47

Japan and Far East Russia to West
Russia and Kazakhstan 2.84 [-5.31 - 9.86] 0.03

Mongolia and North China to
Middle East 1.21 [-5.76 - 8.65] 0.01

NAR

Mongolia and North China to West
Russia and Kazakhstan 9.47 [2.05 - 14.39] 0.57

West Russia and Kazakhstan to
Mongolia and North China 0.68 [-6.12 - 9.49] 0.03

Japan and Far East Russia to West
Russia and Kazakhstan 2.89 [-5.28 - 11.74] 0.01

HAD

Mongolia and North China to West
Russia and Kazakhstan 8.11 [5.80 - 10.81] 0.53

Mongolia and North China to
Middle East 1.34 [-4.46 - 8.69] 0.02

Japan and Far East Russia to West
Russia and Kazakhstan 2.51 [-4.06 - 9.14] 0.02

NAD

Mongolia and North China to West
Russia and Kazakhstan 9.75 [2.39 - 14.87] 0.56

West Russia and Kazakhstan to
Mongolia and North China 0.69 [-6.55 - 10.03] 0.03

Japan and Far East Russia to West
Russia and Kazakhstan 2.91 [-5.78 - 11.50] 0.01

Values in between brackets represent 95% HPD intervals
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Table 6: Sequences classified by avian host

Host Wild Domestic Unknown

Anatidae 61 36 203

Phasianidae 6 397 25

Neoaves

Accipitriformes 1 0 0

Charadriiformes 4 0 0

Ciconiiformes 12 0 0

Columbiformes 0 0 3

Falconiformes 12 0 0

Gruiformes 3 0 0

Passeriformes 25 0 0

Pelecaniformes 8 0 0

Podicipediformes 9 0 0

Two sequences are not listed in this table, one sampled from a Diptera host and the other from a
Struthioniformes host, which were treated as unknown hosts.

Table 7: Relative host transition rates estimated from an asymmetric continuous-time Markov chain
model

HAR NAR

Ana Pha Neo Ana Pha Neo

Ana ————
3.59

[1.21 - 6.91]
0.65

[0.19 - 1.40] Ana ————
3.81

[1.42 - 7.45]
0.75

[0.23 - 1.57]

Pha
1.18

[0.36 - 2.39] ————
0.69

[0.21 - 1.46] Pha
1.39

[0.44 - 2.91] ————
0.67

[0.22 - 1.41]

Neo
0.29

[0.02 - 0.84]
0.16

[0.003 - 0.57] ———— Neo
0.27

[0.02 - 0.77]
0.16

[0.001 - 0.60] ————

Values in between brackets represent 95% HPD intervals
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