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I. Model analysis: Equilibria and stability

Performing linear stability analysis, we find that the system admits a multitude of pos-
sible clearance equilibria, with the broad pattern that if there is sufficient immunity in
terms of either precursor cell abundance or memory cells (M∗+N∗), the clearance steady-
state with no pathogen and no effector cells (B∗

s = B∗
r = 0, E∗ = 0) is neutrally stable.

Typically, with r0 ≥ r1, sufficient immunity means: M∗ + N∗ > r0
d
(strictly greater), in-

dependently of how the total sum is partitioned among precursor and memory cells (since
they both act to kill the pathogen). Typically in the absence of treatment, infection dy-
namics tend to this pathogen-free equilibrium. Notice that given the constraint of a finite
time horizon T for our simulations, and the implementation of an extinction threshold
when Bs, Br < Bext in our simulated infections, the final level of immunity accumulated
may be below this theoretical equilibrium value: M∗ = limt→∞ M(t).

In addition, there are two cases of chronic pathogen persistence within host at a non-
trivial equilibrium:

i) when M∗ = r1/d (exactly equal), and suboptimal immune memory is just sufficient
to prevent growth of the drug-resistant subpopulation, whose persistence may be
prolonged indefinitely (B∗

r > 0, B∗
s = 0, E∗ = 0, N∗ = 0). Inspecting of the corre-

sponding eigenvalues of the Jacobian matrix evaluated at this equilibrium, we find
that this steady state is unstable when B∗

r > hk/σ, and neutrally stable otherwise.

ii) when M∗ = r0/d, and the persistence of drug-sensitive bacteria is observed instead
(B∗

s > 0, B∗
r = 0, E∗ = 0, N∗ = 0). The stability of this equilibrium requires

B∗
s ≤ hk/σ. Which one of these two occurs depends on how r0 compares to r1. If

r0 ≥ r1, then Bs persistence will be observed in the absence of the antibiotic, in this
particular critical case.



Treatment interference

What may happen with treatment, is that due to the interference with immunity, the
total immunity at the end of treatment may just about linger around this critical value,
sufficient to halt pathogen growth. Subsequently, due to its coupling with waning im-
munity, the total pathogen population may begin to display oscillations around hk/σ, a
value sufficient to make dI/dt = 0. Notice that if this immunity consisted only of persis-
tent memory cells, there would not be potential for immune decay and oscillations: these
occur because well into the course of infection, I ≈ E + M , with N ≈ 0 and M small,
and effector cells prompt oscillatory behaviour, similar to predator-prey cycles.

Due to the advantage of the resistant subpopulation in the presence of the antibiotic
(a < 1), the fitness differential between the two types may be reversed at high doses,
leading to clearance of the drug-sensitive sub-population, but oscillatory persistence of
Br post-treatment.

II. Contraction phase of the immune response after adaptive
treatment

The secondary phase of the immune response (when I(0) ≥ r0/d and B(0) ≥ k) can be
approximated by the sub-system:

dB

dt
≈ r0B − dBI (1)

dI

dt
≈

(
σ + h(1− f)

)
I

B

k +B
− h(1− f)I (2)

where I = N + E + M and B = Bs + Br. Dividing the two equations, integrating and
re-arranging gives:(

σ + h(1− f)

)
log

(
B + k

B0 + k

)
− h(1− f) log

(
B

B0

)
= r0 log

(
I

I0

)
− d(I − I0). (3)

This equation gives the relationship between the total number of immune cells, I, and
parasite density, B = Bs + Br, at any given time during the final immune growth and
contraction phase, post-treatment, where I0 = I(0) and B0 = B(0). Thus, it allows us
to calculate the level of immunity as a function of current pathogen load, and viceversa.
At the end of adaptive treatment, the immune level is initially I0 = r0/d, and pathogen
load initially is at the symptom threshold B0 = Ω. To find out what the value of total
pathogen load is, when I(t) hits Icrit = r0/d again during the decay phase, we just have
to plug-in the above values in the above equation and solve for B. Since I = I0, the
right-hand-side of the equation becomes zero, and we obtain:(

σ + h(1− f)

)
log

(
B + k

Ω + k

)
= h(1− f) log

(
B

Ω

)
, (4)



which is equivalent to Eq.22 in the paper. Thus, if the solution of this equation with
respect to B, sits below the extinction threshold, Bext, clearance is guaranteed after
adaptive treatment, otherwise oscillatory dynamics is induced between pathogen load
peaking at Ω, and host immunity around r0/d.

III. Extending the model to represent secondary infection

A possible model extension to represent secondary infection by the same pathogen could
be to include an activation of pre-existent memory cells to re-stimulate effector cells,
which then combat infection. Assuming the same functional response for this activation
as a function of pathogen load, the model would be very similar to the baseline model
presented in the paper, with only one addition in the dE/dt equation:

dBs

dt
= r0Bs − dBsI − δ0Bsη(t)Am (5)

dBr

dt
= r1Br − dBrI − δ1Brη(t)Am (6)

dN

dt
= −σN

B

k +B
(7)

dE

dt
= (2σN + σE)

B

k +B
− hE

(
1− B

k +B

)
+ σMM

B

kM +B
(8)

dM

dt
= fEh

(
1− B

k +B

)
, (9)

where B(t) = Bs(t) + Br(t) is the total pathogen load at time t, and I(t) = N(t) +
E(t) +M(t) is the total number of immune cells activated to clear the pathogen. In this
model, since the basic motivation is to study secondary infection, the initial conditions
representing this situation are likely M(0) ≫ N(0) > 0, B(0) > 0 and E(0) = 0. The
initial level of memory cells can be equal to the memory accumulated over the previous
infection, or slightly lower, in case of memory decay in the meantime.

The parameters governing recruitment of memory cells into effector function are the
rate of activation σM , and the half-saturation constant for antigen stimulation of memory
cells kM . These can be different from the original σ and k in the primary infection. For
example, to represent rapid conversion of memory to effector cells we can assume that
σM > σ, and to represent higher sensitivity to invading pathogen we may assume kM < k.
We do not use this model in the paper, although the dynamics for primary infection under
this addition would remain largely unchanged. However we propose this as a possible
model extension to study the importance of host immunization and sequential infection
events.

In Figure S10, we illustrate hypothetical scenarios of secondary infection vs. primary
infection under this model. We observe that the main features of the dynamics of pri-



mary infection remain robust (top panel of Figure S10). Furthermore, the biological role
of pre-existing memory in secondary infection becomes clear: moderate treatment during
primary exposure, leading to substantial host immunization, suppresses pathogen growth
in subsequent exposures. In contrast, when aggressive treatments are applied in primary
exposure, insufficient immune memory levels permit transient pathogen growth during
secondary infections. In particular, the second row panel of Figure S10 illustrates that
interference by treatment during primary exposure can lead to reinfections that resemble
primary infection, where high pathogen loads would require further antibiotic treatment.
If a more moderate regime would have been used instead, bacterial loads in secondary in-
fections will be controlled by immunity. The immune dynamics during secondary response
naturally depends on the exact parameters governing M → E activation. As expected,
the faster and stronger this activation is (bottom three panels in Figure S10), the lower the
pathogen load and the faster the clearance. These brief insights into secondary infection
call for further modeling work in this direction in the future.


