Supporting Information

Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing

Shailabh Kumar,^{1,2} Timothy W. Johnson,^{1†} Christopher K. Wood,^{3†} Tao Qu,^{4†} Nathan J. Wittenberg,¹ Lauren M. Otto,¹ Jonah Shaver,¹ Nicholas J. Long,³ Randall H. Victora,^{1,4} Joshua B. Edel,³ Sang-Hyun Oh*^{1,2}

¹Department of Electrical and Computer Engineering, ²Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States

> ³Department of Chemistry, Imperial College London, South Kensington, SW7 2AZ, London, United Kingdom

⁴Department of Physics, University of Minnesota, Minneapolis,

Minnesota 55455, United States

[†]These authors contributed equally to this work.

Corresponding author *E-mail: <u>sang@umn.edu</u>

Figure S1: SEM image showing sharp tip of a wedge fabricated with deposited gold thickness 10 nm and nickel thickness 125 nm.

Figure S2: The magnetization of the nickel wedge (a) near the base and (b) near the tip. The saturation value of 4.83×10^5 A/m was reached in the wedge region, although the direction of the magnetization is still somewhat in-plane due to shape anisotropy effects.

Figure S3: Order of magnitude plot of ∇H for a wedge with 10 nm tip radius showing the entire modeled area.

Figure S4: Fluorescence image showing 350 nm magnetic nanoparticles trapped along the sharp bases of magnetic wedges.