

Supporting Information

C-H Oxidation of Ingenanes Enables Potent and Selective Protein Kinase C Isoform Activation

Yehua Jin, Chien-Hung Yeh, Christian A. Kuttruff, Lars Jørgensen, Georg Dünstl, Jakob Felding, Swaminathan R. Natarajan, and Phil S. Baran*

anie_201507977_sm_miscellaneous_information.pdf

SUPPORTING INFORMATION

Part 1: Experimental Procedures and Characterization Data

General Experimental..... SI-3 page Scheme 1..... page SI-4 Scheme 2..... SI-5 page Scheme 3..... SI-6 page Scheme 4..... page SI-7 Scheme 5..... page SI-8 Experimental Procedures and Characterization Data..... page SI-9~57 Compound SI-1 SI-9 page Compound 17..... SI-10 page Compound **25**..... page SI-11 Compound SI-3..... **SI-12** page Compound 12..... SI-13 page Compound 10..... page SI-14 Compound 14..... SI-15 page **SI-16** Compound **13**..... page Compound SI-5..... SI-17 page Compound **26**..... **SI-18** page SI-19 Compound 11..... page Compound 9..... SI-20 page Compound 22 and SI-6..... **SI-22** page Compound SI-7..... page SI-23 **SI-24** Compound SI-8..... page Compound SI-9 **SI-26** page Compound 23..... SI-27 page Compound SI-10..... **SI-28** page **SI-29** Compound 7..... page Compound 5..... **SI-30** page **SI-31** Compound SI-12..... page Compound **16** **SI-32** page **SI-33** Compound SI-13..... page Compound SI-14..... SI-34 page Compound SI-15..... **SI-35** page Compound **20**..... **SI-36** page page **SI-37** Compound 21..... Compound SI-16..... **SI-38** page SI-39 Compound SI-17..... page **SI-40** Compound 8..... page SI-41 Compound **6** page

Table of Contents

Compound SI-19

page

SI-42

Compound SI-19a and SI-20	page	SI-43
Compound 15'	page	SI-45
Compound SI-21	page	SI-45
Compound SI-22	page	SI-46
Compound 16' and SI-23	page	SI-48
Compound SI-22a	page	SI-49
Compound 17' and 18'	page	SI-51
Compound SI-24	page	SI-52
Compound 4'	page	SI-53
Compound 1'	page	SI-54
Compound SI-25	page	SI-55
Compound SI-26	page	SI-56
Compound 3'	page	SI-57
Biological Experiments	page	SI-58~62
X-Ray Crystallographic Data	page	SI-63~72
Compound SI-4	page	SI-63
Compound 26	page	SI-65
Compound 23	page	SI-67
Compound 21	page	SI-69
Compound 4'	page	SI-71
References	page	SI-73

General Procedures: All reactions were carried out under an argon atmosphere with dry solvents using anhydrous conditions unless otherwise stated. Dry diethyl ether (Et₂O), dichloromethane (CH₂Cl₂), acetonitrile (CH₃CN), toluene (PhMe), tetrahydrofuran (THF), methanol (MeOH), and triethylamine (Et₃N) were obtained by passing these previously degassed solvents through activated alumina columns. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Yields refer to chromatographically and spectroscopically (¹H NMR) homogeneous materials, unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60F-254) using UV light as visualizing agent and an acidic mixture of anisaldehyde, phosphomolybdic acid, or ceric ammonium molybdate, or basic aqueous potassium permanganate (KMnO₄), and heat as developing agents. E. Merck silica gel (60, particle size 0.0430-0.663 mm) was used for flash column chromatography. Preparative thin layer chromatography (PTLC) separations were carried out on 0.25 or 0.50 mm E. Merck silica gel plates (60F-254). Concentration of organic solvents was performed on a rotary evaporator under reduced pressure followed by further evacuation using a two-stage mechanical pump. NMR spectra were recorded on Bruker DRX-600, DRX-500 and AMX-400 instruments and calibrated using residual undeuterated solvent as an internal reference (CHCl₃ @ δ 7.26 ppm ¹H NMR, δ 77.16 ppm ¹³C NMR; Benzene (a) δ 7.16 ppm ¹H NMR, δ 128.06 ppm ¹³C NMR). The following abbreviations (or combinations thereof) were used to explain ¹H NMR multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, p = quintet, m = multiplet, br = broad. High-resolution mass spectra (HRMS) were recorded on Agilent 6230 TOF LC/MS mass spectrometer by electrospray ionization time of flight reflectron experiments. IR spectra were recorded on a Perkin Elmer Spectrum BX FTIR spectrometer. Optical rotation were obtained on a Perkin-Elmer 341 polarimeter at 20 °C, measured at 589 nm. Melting points were recorded on a Fisher-Johns 12-144 melting point apparatus and are reported uncorrected.

Experimental Procedures

Synthesis of **SI-1**: To a solution of **15** (2.5 g, 5.12 mmol, 1.0 equiv) in MeOH (40 mL) and EtOAc (10 mL) was added 10% Pd/C (542 mg, 0.51 mmol, 0.1 equiv). $H_{2(g)}$ was bubbled into this solution at room temperature. The reaction mixture was stirred at room temperature for 30 min. Then, the solvent was concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 10:1 \rightarrow 5:1) afforded **SI-1** (1.5 g, 60%) as a colorless crystalline solid.

Physical state: colorless crystalline solid

 $R_f = 0.5$ (Hex/EtOAc = 5:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₈H₅₁O₃Si₂, [M+H]⁺, 491.3377; found, 491.3376

 $[\alpha]_{D} = +43.9^{\circ} (c = 0.8, \text{ EtOAc})$

¹**H** NMR (400 MHz, Chloroform-*d*) δ 6.03 (s, 1H), 3.77 (s, 1H), 2.75 – 2.62 (m, 2H), 2.12 (d, J = 17.0 Hz, 1H), 1.76 – 1.32 (m, 7H), 1.10 (s, 3H), 0.96 (s, 3H), 0.93 (d, J = 6.7 Hz, 3H), 0.87 (s, 9H), 0.84 – 0.72 (m, 2H), 0.62 (d, J = 6.9 Hz, 3H), 0.25 (s, 9H), 0.15 (s, 3H), 0.06 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 208.4, 192.1, 128.5, 83.0, 80.0, 52.0, 47.3, 44.0, 42.6, 41.9, 41.2, 28.9, 27.0, 26.9, 26.1, 21.9, 21.5, 19.2, 18.9, 17.6, 15.9, 5.1, -0.8, -4.1.

Synthesis of **17**: To a solution of **SI-1** (1.5 g, 3.06 mmol, 1.0 equiv) in Et₂O (50 mL) was added methylmagnesium bromide (3 M in Et₂O, 1.53 mL, 4.59 mmol, 1.5 equiv) over 5 min at -78 °C. The reaction mixture was stirred at this temperature for 15 min before warming to 0 °C. After another 30 min of stirring, the reaction mixture was carefully quenched with water (100 mL). The mixture was extracted with Et₂O (3 × 100 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure to afford crude **SI-2** (1.5 g) as a light yellow foam. To a solution of crude **SI-2** (1.5 g) in toluene (50 mL) was added BF₃·Et₂O (3.76 mL, 29.6 mmol, 9.7 equiv) over 5 min at -78 °C. After 15 min, a 1:1 mixture of Et₃N/MeOH (24.6 mL) was slowly added, then the solution was allowed warm to room temperature. The solvent was concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 50:1 \rightarrow 30:1) afforded **17** (745.4 mg, 58%, two steps) as a white foam.

Physical state: white foam

 $R_f = 0.22$ (Hex/EtOAc = 50:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₆H₄₅O₂Si, [M+H]⁺, 417.3189; found, 417.3185

 $[\alpha]_{D}$ = +21.2° (*c* = 0.65, EtOAc)

¹**H NMR** (400 MHz, Chloroform-*d*) δ 5.61 (s, 1H), 3.83 (d, J = 3.8 Hz, 1H), 2.72 (dd, J = 16.2, 7.3 Hz, 1H), 2.51 (d, J = 12.2 Hz, 1H), 2.21 (dd, J = 10.6, 7.4 Hz, 1H), 1.90 – 1.74 (m, 3H), 1.70 (d, J = 1.4 Hz 3H), 1.72 – 1.64 (m, 3H), 1.11 (d, J = 15.0 Hz, 1H), 1.08 (s, 3H), 1.04 (s, 3H), 0.94 (s, 9H), 0.90 (d, J = 7.0 Hz, 3H), 0.89 – 0.83 (m, 1H), 0.86 (d, J = 6.6 Hz, 3H), 0.67 (td, J = 8.8, 5.9 Hz, 1H), 0.15 (s, 3H), 0.03 (s, 3H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 208.0, 139.2, 125.0, 76.4, 73.6, 52.1, 45.6, 45.2, 45.1, 40.7, 38.7, 29.9, 28.8, 26.2, 24.4, 23.6, 23.3, 19.8, 18.5, 17.3, 16.6, 15.8, -3.7, -4.6.

Synthesis of **25**: To a solution of **17** (384 mg, 0.92 mmol, 1.0 equiv) in THF (5 mL) was added SeO₂ (307 mg, 2.74 mmol, 3.0 equiv). The flask was sealed with a plastic cap and the suspension was stirred at 80 °C for 10 h. After cooling to room temperature, the reaction mixture was filtered through a plug of silica gel (hexanes/EtOAc = 1:1) to provide a clear yellow solution. A yellow oil was obtained after concentration *in vacuo*, and followed by dissolution in THF (5 mL). To this solution, excess NaBH₄ (350 mg, 9.21 mmol, 10.0 equiv) was added, then EtOH (0.54 mL, 9.21 mmol, 10.0 eq.) was slowly added at room temperature. When the reaction was completed (monitored by TLC), water (5 mL) was slowly added to quench the excess NaBH₄. The reaction mixture was extracted with EtOAc (3×10 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 4:1 \rightarrow 3:1) afforded **25** (197.7 mg, 50%) as a pale yellow oil.

Physical state: pale yellow oil

 $R_f = 0.2$ (Hex/EtOAc = 4:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₆H₄₅O₃Si, [M+H]⁺, 433.3138; found, 433.3132

 $[\alpha]_{D} = +26.5^{\circ} (c = 0.43, EtOAc)$

¹**H** NMR (500 MHz, Chloroform-*d*) δ 6.14 – 5.68 (m, 1H), 4.15 (d, J = 5.3 Hz, 2H), 3.85 (d, J = 3.9 Hz, 1H), 2.76 (ddd, J = 15.9, 7.0, 3.9 Hz, 1H), 2.52 (d, J = 12.2 Hz, 1H), 2.30 (dd, J = 10.8, 7.4 Hz, 1H), 1.94 – 1.76 (m, 4H), 1.74 – 1.62 (m, 2H), 1.40 (t, J = 6.2 Hz, 1H), 1.14 (dd, J = 15.4, 2.0 Hz, 1H), 1.09 (s, 3H), 1.05 (s, 3H), 0.94 (s, 9H), 0.93 (d, J = 6.9 Hz, 3H), 0.90 – 0.85 (m, 1H), 0.87 (d, J = 6.7 Hz, 3H), 0.68 (td, J = 9.0, 6.1 Hz, 1H), 0.15 (s, 3H), 0.03 (s, 3H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 207.5, 143.0, 125.9, 76.0, 73.5, 62.4, 52.3, 45.23, 45.21, 40.6, 40.5, 38.5, 30.0, 28.8, 26.2, 24.4, 23.7, 23.3, 19.7, 18.5, 16.5, 15.8, -3.7, -4.6.

Synthesis of **SI-3**: To a solution of **25** (65.3 mg, 0.15 mmol, 1.0 equiv) in THF (3 mL) was added 1-methylcyclohexanecarboxylic acid (42.6 mg, 0.30 mmol, 2.0 equiv) and triphenylphosphine (119.0 mg, 0.45 mmol, 3.0 equiv) at room temperature. Then, DIAD (0.09 mL, 0.45 mmol, 3.0 equiv) was slowly added over 1 min. The reaction mixture was stirred at room temperature for another 5 min before water (5 mL) was added. The mixture was then extracted with $Et_2O(3 \times 10 \text{ mL})$ and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 30:1) afforded **SI-3** (79.8 mg, 95%) as a pale yellow oil.

Physical state: pale yellow oil

 $R_f = 0.5$ (10:1 Hex/EtOAc; anisaldehyde)

HRMS (*m*/*z*): calcd for C₃₄H₅₆NaO₄Si, [M+Na]⁺, 579.3846; found, 579.3852

 $[\alpha]_{D} = +23.2^{\circ} (c = 0.34, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 5.95 (s, 1H), 4.61 (s, 2H), 3.85 (d, *J* = 3.7 Hz, 1H), 2.75 (dd, *J* = 16.0, 6.9 Hz, 1H), 2.51 (d, *J* = 12.2 Hz, 1H), 2.37 – 2.18 (m, 1H), 2.03 (d, *J* = 13.2 Hz, 2H), 1.94 – 1.86 (m, 1H), 1.83 (d, *J* = 16.2 Hz, 1H), 1.83 – 1.78 (m, 2H), 1.75 – 1.62 (m, 2H), 1.54 – 1.46 (m, 2H), 1.35 (q, *J* = 10.7 Hz, 2H), 1.30 – 1.18 (m, 4H), 1.15 (s, 3H), 1.12 (d, *J* = 15.3 Hz, 1H), 1.09 (s, 3H), 1.04 (s, 3H), 0.94 (

9H), 0.91 (d, *J* = 7.0 Hz, 3H), 0.88 (d, *J* = 9.0 Hz, 1H), 0.87 (d, *J* = 6.9 Hz, 3H), 0.71 – 0.64 (m, 1H), 0.15 (s, 3H), 0.03 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 207.2, 177.6, 138.2, 128.4, 76.1, 73.5, 62.8, 52.3, 45.2, 45.1, 43.5, 41.1, 40.5, 38.5, 35.7, 30.0, 28.8, 26.2, 25.8, 24.5, 23.7, 23.4, 23.2, 19.7, 18.5, 16.5, 15.8, -3.7, -4.6.

Synthesis of **12**: To a solution of **SI-3** (79.8 mg, 0.14 mmol, 1.0 equiv) in THF (3 mL) was added TBAF (1 M, 0.72 mL, 0.72 mmol, 5.0 equiv) and H₂O (13 mg, 0.72 mmol, 5 equiv) at room temperature. The flask was sealed with a plastic cap and the reaction mixture was heated to 80 °C. After 10 h, the reaction mixture was cooled to room temperature, then water (5 mL) was added. The mixture was extracted with Et₂O (3 × 10 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 10:1) afforded **SI-3a** (54.9 mg, 87%).

To a solution of **SI-3a** (54.9 mg, 0.129 mmol, 1.0 equiv) in toluene (2 mL) was added Martin's sulfurane (110 mg, 0.163 mmol, 1.3 equiv) at room temperature. The solution was stirred at 80 °C for 10 min. Toluene was then removed under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 20:1) afforded **12** (49.3 mg, 94%) as a colorless oil.

Physical state: colorless oil

 $R_f = 0.2$ (Hex/EtOAc = 20:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₈H₄₀NaO₃, [M+Na]⁺, 447.2875; found, 447.2875

 $[\alpha]_{D} = +5.6^{\circ} (c = 0.18, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 5.93 (s, 1H), 5.63 (s, 1H), 4.63 (s, 2H), 3.62 (d, J = 12.0 Hz, 1H), 2.78 – 2.63 (m, 2H), 2.17 – 2.08 (m, 2H), 2.08 – 2.00 (m, 3H), 1.87 (dt, J = 15.7, 5.4 Hz, 1H), 1.80 – 1.70 (m, 2H), 1.58 (s, 3H), 1.52 – 1.47 (m, 2H), 1.41 – 1.32 (m, 2H), 1.30 – 1.18 (m, 4H), 1.17 (s, 3H), 1.10 (s, 3H), 1.05 (s, 3H), 0.96 (d, J = 7.0 Hz, 3H), 0.87 (dd, J = 12.1, 8.3 Hz, 1H), 0.71 (td, J = 8.7, 6.4 Hz, 1H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 208.9, 177.6, 139.3, 137.8, 126.1, 122.0, 76.3, 62.8, 45.4, 43.5, 43.1, 43.0, 38.4, 38.2, 35.7, 30.7, 28.8, 25.8, 24.4, 23.7, 23.5, 23.4, 23.1, 16.8, 15.6.

Synthesis of **10**: To a solution of **12** (5.5 mg, 0.013 mmol, 1.0 equiv) in THF (2 mL) was added SeO₂ (7.3 mg, 0.065 mmol, 5.0 equiv) at room temperature. The flask was sealed with a plastic cap and the suspension was stirred at 50 °C for 1 h. After cooling to room temperature, the reaction mixture was filtered through a plug of silica gel (hexanes/EtOAc = 1:1) to provide a clear yellow solution. A yellow oil was obtained after concentration *in vacuo*, and followed by dissolution in MeOH (2 mL). After cooling to -78 °C, CeCl₃·7H₂O (24 mg, in 0.5 mL MeOH, 0.065 mmol, 5.0 equiv) was added, then NaBH₄ (4.9 mg, 0.129 mmol, 10.0 equiv) was slowly added to the flask. After stirring for 10 min at -78 °C, H₂O (2 mL) was carefully added to quench this reaction followed by dilution with Et₂O (5 mL). The mixture was extracted with Et₂O (5 × 2 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 2:1) afforded **10** (2.3 mg, 40%) as a colorless oil.

Physical state: colorless oil

 $R_f = 0.16$ (Hex/EtOAc = 3:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₈H₄₀NaO₄, [M+Na]⁺, 463.2824; found, 463.2815

 $[\alpha]_{D} = -4.2^{\circ} (c = 0.19, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 5.94 (s, 1H), 5.91 (s, 1H), 4.63 (s, 2H), 3.88 (q, J = 13.0 Hz, 2H), 3.67 (d, J = 11.8 Hz, 1H), 2.77 – 2.64 (m, 2H), 2.25 (d, J = 16.9 Hz, 1H), 2.21 – 2.12 (m, 1H), 2.12 – 1.98 (m, 3H), 1.89 (dt, J = 15.8, 5.6 Hz, 1H), 1.82 (d, J = 15.0 Hz, 1H), 1.75 (ddd, J = 15.6, 8.9, 2.4 Hz, 1H), 1.60 – 1.54 (m, 2H), 1.41 – 1.31 (m, 2H), 1.31 – 1.19 (m, 4H), 1.17 (s, 3H), 1.10 (s, 3H), 1.06 (s, 3H), 0.97 (d, J = 7.0 Hz, 3H), 0.91 (dd, J = 12.0, 8.4 Hz, 1H), 0.78 – 0.69 (m, 1H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 208.6, 177.5, 141.1, 139.6, 125.7, 123.7, 76.3, 67.3, 62.7, 45.4, 43.5, 42.8, 38.5, 38.3, 38.2, 35.7, 30.8, 28.7, 25.8, 23.8, 23.6, 23.4, 23.0, 17.0, 15.6.

Synthesis of **14**: To a solution of **17** (496 mg, 1.19 mmol, 1.0 equiv) in THF (5 mL) was added TBAF (1 M, 5.95 mL, 5.95 mmol, 5.0 equiv) and H₂O (53 mg, 2.94 mmol, 2.5 equiv) at room temperature. The flask was sealed with a plastic cap and the reaction mixture was heated to 65 °C. After stirring for 2 days, the reaction mixture was cooled to room temperature then water (5 mL) was added. The mixture was extracted with Et_2O (3 × 10 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 10:1) afforded **17a** (178.3 mg, 50%).

To a solution of **17a** (178.3 mg, 0.59 mmol, 1.0 equiv) in CHCl₃ (3 mL) was added Martin's sulfurane (540 mg, 0.80 mmol, 1.4 equiv) at room temperature. The reaction mixture was stirred at room temperature for 30 min. Then, CHCl₃ was removed under

reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = $30:1 \rightarrow 20:1$) afforded **14** (162.6 mg, 97%) as a pale yellow oil.

Physical state: pale yellow oil

 $R_f = 0.5$ (Hex/EtOAc = 10:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₀H₂₉O, [M+H]⁺, 285.2218; found, 285.2211

 $[\alpha]_{D} = +0.7^{\circ} (c = 0.42, \text{ EtOAc})$

¹**H NMR** (400 MHz, Chloroform-*d*) δ 5.62 (s, 1H), 5.58 (s, 1H), 3.63 (d, *J* = 10.2 Hz, 1H), 2.69 – 2.60 (m, 2H), 2.11 – 2.08 (m, 2H), 2.05 – 1.96 (m, 1H), 1.84 (dt, *J* = 15.7, 5.6 Hz, 1H), 1.76 – 1.69 (m, 1H), 1.74 (s, 3H), 1.61 (d, *J* = 14.9 Hz, 1H), 1.58 (s, 3H), 1.09 (s, 3H), 1.05 (s, 3H), 0.95 (d, *J* = 7.1 Hz, 3H), 0.86 (dd, *J* = 12.1, 8.4 Hz, 1H), 0.70 (td, *J* = 8.6, 6.2 Hz, 1H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 209.8, 140.4, 137.9, 122.6, 122.0, 76.6, 45.3, 43.4, 42.4, 38.4, 30.7, 28.8, 24.5, 23.6, 23.5, 23.1, 17.5, 16.9, 15.6.

Synthesis of **13**: To a solution of **14** (46 mg, 0.16 mmol, 1.0 equiv) in dioxane (2 mL) was added SeO₂ (36 mg, 0.32 mmol, 2.0 equiv) at room temperature. The flask was sealed with a plastic cap and the suspension was stirred at room temperature for 1 h. The reaction mixture was filtered through a plug of silica gel (hexanes/EtOAc = 1:1) to provide a clear yellow solution. A yellow oil was obtained after concentration *in vacuo*, and followed by dissolution in MeOH (2 mL). After cooling to -78 °C, CeCl₃·7H₂O (301.5 mg, 0.81 mmol, in 2 mL MeOH, 5.0 equiv) was added, then NaBH₄ (31 mg,

0.81 mmol, 5.0 eq.) was slowly added to the flask. After stirring for 10 min at -78 °C, H₂O (5 mL) was carefully added to quench this reaction followed by dilution with Et₂O (10 mL). The mixture was extracted with Et₂O (3 × 10 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 3:1) afforded **13** (28.3 mg, 58%) as a pale yellow oil.

Physical state: pale yellow oil

 $R_f = 0.4$ (Hex/EtOAc = 2:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₀H₂₉O₂, [M+H]⁺, 301.2168; found, 301.2166

 $[\alpha]_{D} = -5.0^{\circ} (c = 0.18, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 5.92 (s, 1H), 5.57 (s, 1H), 3.96 – 3.83 (m, 2H), 3.67 (d, J = 12.0 Hz, 1H), 2.73 – 2.57 (m, 2H), 2.29 – 2.12 (m, 2H), 2.07 – 2.02 (m, 1H), 1.87 (dt, J = 15.8, 5.7 Hz, 1H), 1.76 – 1.71 (m, 1H), 1.74 (s, 3H), 1.67 (d, J = 15.2 Hz, 1H), 1.09 (s, 3H), 1.06 (s, 3H), 0.96 (d, J = 7.1 Hz, 3H), 0.90 (dd, J = 12.0, 8.4 Hz, 1H), 0.73 (td, J = 8.6, 6.2 Hz, 1H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 209.4, 141.3, 140.7, 123.8, 122.4, 76.7, 67.4, 45.2, 43.2, 42.4, 38.5, 38.4, 30.8, 28.8, 23.7, 23.6, 22.9, 17.5, 17.1, 15.6.

Synthesis of **SI-5**: To a flame-dried 25 mL flask equipped with a stir bar were added **14** (21.3 mg, 0.075 mmol, 1.0 equiv), Cr(V) reagent (124.1 mg, 0.384 mmol, 5.0 equiv) and manganese (IV) oxide (324.6 mg, 49.8 equiv). The flask was evacuated and filled

with argon, followed by addition of α, α, α -trifluorotoluene (5 mL) and 15-crown-5 (74 μ L). The vial was sealed with a septum and heated at 85 °C for 24 h. The reaction mixture was filtered through a two-layered plug of silica and Celite[®] (hexanes/EtOAc = 1:1) to provide a clear yellow solution, which was concentrated *in vacuo* to a yellow oil. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 20:1 \rightarrow 10:1) afforded **SI-5** (11.1 mg, 50%) as a pale yellow oil.

Physical state: pale yellow oil

 $R_f = 0.4$ (Hex/EtOAc = 5:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₀H₂₇O₂, [M+H]⁺, 299.2011; found, 299.2011

 $[\alpha]_{D} = +74.6^{\circ} (c = 0.26, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-d) δ 7.51 (s, 1H), 5.67 (s, 1H), 3.61 (d, *J* = 10.1 Hz, 1H), 2.71 (dd, *J* = 12.4, 4.0 Hz, 1H), 2.43 (dd, *J* = 18.3, 3.8 Hz, 1H), 1.98 (ddt, *J* = 9.4, 6.6, 2.6 Hz, 1H), 1.95 – 1.85 (m, 2H), 1.85 – 1.74 (m, 1H), 1.81 (d, *J* = 1.5 Hz, 3H), 1.61 (s, 3H), 1.11 (s, 3H), 1.07 (s, 3H), 0.99 (d, *J* = 6.9 Hz, 3H), 0.96 (dd, *J* = 11.9, 8.5 Hz, 1H), 0.78 – 0.73 (m, 1H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 207.8, 206.2, 155.4, 140.7, 136.0, 122.1, 70.5, 52.8, 45.6, 42.9, 39.5, 31.6, 28.8, 24.2, 23.8, 23.5, 23.3, 17.8, 15.5, 10.7.

Synthesis of **26**: To a solution of **SI-5** (11.1 mg, 0.037 mmol, 1.0 equiv) in MeOH (1 mL) at 0 °C was slowly added NaBH₄ (7.1 mg, 0.187 mmol, 5.0 equiv). The reaction mixture was stirred at 0 °C for 5 min before quenching with H₂O (2 mL). The mixture was extracted with Et₂O (3×5 mL) and the combined organic layers were dried over

MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 5:1) afforded **26** (10.1 mg, 90%) as a colorless crystalline solid.

Physical state: colorless crystalline solid

 $R_f = 0.2$ (Hex/EtOAc = 5:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₀H₂₉O₂, [M+H]⁺, 301.2168; found, 301.2168

 $[\alpha]_{D} = -5.6^{\circ} (c = 0.18, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 5.77 – 5.70 (m, 1H), 5.66 (dq, *J* = 4.8, 1.5 Hz, 1H), 4.72 – 4.65 (m, 1H), 3.67 (d, *J* = 11.8 Hz, 1H), 2.75 (ddd, *J* = 10.3, 6.2, 3.9 Hz, 1H), 2.53 (dd, *J* = 17.9, 3.7 Hz, 1H), 2.11 (td, *J* = 6.8, 3.1 Hz, 1H), 1.95 (dd, *J* = 17.8, 10.6 Hz, 2H), 1.85 (dt, *J* = 15.8, 6.3 Hz, 1H), 1.82 – 1.76 (m, 1H), 1.79 (t, *J* = 1.3 Hz, 3H), 1.66 (s, 3H), 1.12 (s, 3H), 1.04 (s, 3H), 0.94 (dd, *J* = 11.8, 8.5 Hz, 2H), 0.89 (d, *J* = 7.0 Hz, 3H), 0.68 (q, *J* = 7.4 Hz, 1H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 210.1, 142.5, 137.9, 125.0, 122.2, 78.6, 73.1, 48.3, 45.0, 37.5, 33.7, 31.3, 28.8, 24.9, 23.9, 23.34, 23.26, 17.2, 15.6, 13.9.

Synthesis of **11**: To a solution of **26** (7.0 mg, 0.023 mmol, 1.0 equiv) in THF (1 mL) was added 1-methylcyclohexanecarboxylic acid (16.6 mg, 0.116 mmol, 5.0 equiv) and triphenylphosphine (30.6 mg, 0.116 mmol, 5.0 equiv) at room temperature. Then, DIAD (23 μ L, 0.116 mmol, 5.0 equiv) was slowly added over 1 min. The reaction mixture was stirred at room temperature for 5 min before water (5 mL) was added. The

mixture was extracted with Et₂O (3 × 10 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = $50:1 \rightarrow 30:1$) afforded **11** (4.4 mg, 45%) as a colorless oil.

Physical state: colorless oil

 $R_f = 0.2$ (Hex/EtOAc = 20:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₈H₄₀NaO₃, [M+Na]⁺, 447.2875; found, 447.2884

 $[\alpha]_{D} = +16.4^{\circ} (c = 0.44, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 6.04 (s, 1H), 5.62 (s, 1H), 4.82 (s, 1H), 3.51 (d, J = 11.7 Hz, 1H), 2.47 (s, 1H), 2.45 (dd, J = 15.9, 3.4 Hz, 1H), 2.18 – 2.08 (m, 1H), 2.01 (d, J = 12.3 Hz, 2H), 1.96 – 1.87 (m, 1H), 1.82 (dt, J = 15.7, 5.8 Hz, 1H), 1.77 (d, J = 1.3 Hz, 3H), 1.67 (ddd, J = 15.7, 9.1, 2.6 Hz, 1H), 1.59 (s, 4H), 1.58 – 1.51 (m, 2H), 1.38 – 1.19 (m, 6H), 1.14 (s, 3H), 1.07 (s, 3H), 1.04 (s, 3H), 1.01 (d, J = 7.1 Hz, 3H), 0.85 (dd, J = 12.1, 8.4 Hz, 1H), 0.69 (td, J = 8.8, 6.3 Hz, 1H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 208.3, 178.1, 138.0, 136.9, 131.8, 122.2, 85.9, 75.4, 49.3, 45.4, 43.4, 41.4, 40.0, 35.7, 30.5, 28.8, 25.8, 24.3, 23.5, 23.44, 23.40, 22.9, 16.7, 15.6, 15.3.

Synthesis of **9**: To a solution of **11** (4.0 mg, 0.0094 mmol, 1.0 equiv) in THF (1 mL) was added SeO₂ (5.2 mg, 0.0465 mmol, 4.9 equiv) at room temperature. The flask was sealed with a plastic cap and the suspension was stirred at 60 °C for 1 h. After cooling to room temperature, the reaction mixture was filtered through a plug of silica gel SI-20

(hexanes/EtOAc = 1:1) to provide a clear yellow solution. A yellow oil was obtained after concentration *in vacuo*, and followed by dissolution in MeOH (1 mL). After cooling to -78 °C, CeCl₃·7H₂O (17.6 mg, in 0.5 mL MeOH, 0.0472 mmol, 5.0 equiv) was added, then NaBH₄ (1.8 mg, 0.0474 mmol, 5.0 equiv) was slowly added to the flask. After stirring for 10 min at -78 °C, H₂O (5 mL) was carefully added to quench this reaction, followed by dilution with Et₂O (5 mL). The mixture was extracted with Et₂O (3 × 5 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 2:1) afforded **9** (2.1 mg, 51%) as a colorless oil.

Physical state: colorless oil

 $R_f = 0.25$ (Hex/EtOAc = 2:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₈H₄₀NaO₄, [M+Na]⁺, 463.2824; found, 463.2822

 $[\alpha]_{D} = +20.0^{\circ} (c = 0.21, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 6.02 (s, 1H), 5.94 (s, 1H), 4.89 (s, 1H), 3.91 (s, 2H), 3.56 (d, *J* = 11.6 Hz, 0H), 2.58 (dd, *J* = 18.1, 3.0 Hz, 1H), 2.47 (dd, *J* = 12.5, 3.3 Hz, 1H), 2.20 – 2.13 (m, 1H), 2.04 – 1.97 (m, 3H), 1.85 (dt, *J* = 15.8, 5.8 Hz, 1H), 1.77 (d, *J* = 1.3 Hz, 3H), 1.69 (ddd, *J* = 16.0, 8.9, 2.7 Hz, 1H), 1.60 – 1.55 (m, 2H), 1.39 – 1.19 (m, 6H), 1.15 (s, 3H), 1.08 (s, 3H), 1.05 (s, 3H), 1.01 (d, *J* = 7.1 Hz, 3H), 0.90 (dd, *J* = 12.0, 8.4 Hz, 1H), 0.73 (td, *J* = 8.5, 6.3 Hz, 1H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 207.9, 140.3, 138.4, 131.4, 123.7, 85.6, 75.3, 67.1, 49.2, 45.2, 43.4, 41.3, 35.6, 35.2, 30.6, 28.7, 25.8, 23.6, 23.5, 23.4, 22.8, 16.8, 15.6, 15.3.

Synthesis of **22** and **SI-6**: To a solution of **17** (519.0 mg, 1.247 mmol, 1.0 equiv) in CH₂Cl₂ (8 mL) was added 20% Pd(OH)₂ on carbon (66 mg, 0.125 mmol, 0.1 equiv) and K₂CO₃ (43 mg, 0.312 mmol, 0.25 equiv) at room temperature. The mixture was cooled to 0 °C, and TBHP (5.5 M in decane, 1.13 mL, 6.215 mmol, 5.0 equiv) was added with vigorous stirring. Then, the reaction mixture was allowed to warm to room temperature. After 24 h, the reaction mixture was filtered through a plug of silica gel (CH₂Cl₂). The solvent was removed under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = $20:1 \rightarrow 5:1$) afforded **22** (105.1 mg, 20%) and **SI-6** (60 mg, 11%).

Spectroscopic data for 22:

Physical state: colorless oil

 $R_f = 0.25$ (Hex/EtOAc = 5:1; anisaldehyde)

HRMS (*m/z*): calcd for C₂₆H₄₄NaO₃Si, [M+Na]⁺, 455.2957; found, 455.2959

 $[\alpha]_{D} = +49.4^{\circ} (c = 0.34, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 5.98 (d, *J* = 1.7 Hz, 1H), 3.96 (s, 1H), 3.85 (d, *J* = 3.9 Hz, 1H), 2.51 (d, *J* = 12.2 Hz, 1H), 2.15 (dd, *J* = 10.6, 1.8 Hz, 1H), 2.09 – 2.02 (m, 1H), 1.87 – 1.80 (m, 2H), 1.80 (d, *J* = 1.5 Hz, 3H), 1.78 – 1.73 (m, 1H), 1.35 – 1.29 (m, 1H), 1.27 (dd, *J* = 15.6, 3.4 Hz, 1H), 1.09 (s, 3H), 1.04 (s, 3H), 0.97 (d, *J* = 7.1 Hz, 3H), 0.93 (s, 9H), 0.88 (d, *J* = 6.9 Hz, 3H), 0.86 (dd, *J* = 12.2, 8.6 Hz, 1H), 0.67 (td, *J* = 9.2, 6.2 Hz, 1H), 0.14 (s, 3H), 0.03 (s, 3H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 206.6, 140.5, 132.0, 87.9, 75.0, 73.7, 54.1, 52.2, 44.9, 42.1, 38.2, 30.0, 28.7, 26.2, 24.3, 23.6, 23.0, 19.8, 18.4, 16.3, 15.7, 14.9, -3.7, -4.6.

Spectroscopic data for SI-6:

Physical state: colorless crystalline solid

 $R_f = 0.33$ (Hex/EtOAc = 10:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₆H₄₂NaO₃Si, [M+Na]⁺, 453.2801; found, 453.2809

 $[\alpha]_{D} = +98.2^{\circ} (c = 0.17, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.59 (s, 1H), 3.87 (d, J = 3.6 Hz, 1H), 2.57 (d, J = 12.1 Hz, 1H), 2.38 (d, J = 10.8 Hz, 1H), 1.92 – 1.81 (m, 3H), 1.79 – 1.76 (m, 1H) 1.77 (d, J = 1.5 Hz, 3H), 1.59 (dq, J = 15.2, 1.6 Hz, 1H), 1.27 (dt, J = 15.0, 11.4 Hz, 1H), 1.11 (s, 3H), 1.06 (s, 3H), 1.01 – 0.96 (m, 1H), 0.95 (d, J = 6.7 Hz, 3H), 0.93 (s, 9H), 0.90 (d, J = 6.9 Hz, 3H), 0.73 (td, J = 8.2, 5.8 Hz, 1H), 0.15 (s, 3H), 0.03 (s, 3H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 209.7, 204.6, 158.5, 140.4, 73.0, 69.9, 55.1, 52.7, 44.5, 42.8, 36.9, 31.1, 28.8, 26.1, 24.7, 23.6, 23.4, 19.5, 18.4, 17.3, 15.7, 10.6, -3.7, -4.5.

Synthesis of **SI-7**: To a solution of **SI-6** (60.0 mg, 0.14 mmol, 1.0 equiv) in MeOH (2 mL) at room temperature was slowly added NaBH₄ (26.5 mg, 0.70 mmol, 5.0 equiv). After stirring at room temperature for 5 min, the reaction mixture was diluted with Et₂O (5 mL), followed by quenching with H₂O (5 mL). The mixture was extracted with Et₂O (3 × 5 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 5:1) afforded **SI-7** (47.2 mg, 77%) as a white foam.

Physical state: white foam

 $R_f = 0.4$ (Hex/EtOAc = 4:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₆H₄₄NaO₃Si, [M+Na]⁺, 455.2957; found, 455.2956

 $[\alpha]_{D} = +20.5^{\circ} (c = 0.2, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 5.86 (t, *J* = 1.8 Hz, 1H), 4.77 (s, 1H), 3.88 (d, *J* = 3.9 Hz, 1H), 2.52 (d, *J* = 12.2 Hz, 1H), 2.43 (dd, *J* = 10.9, 6.7 Hz, 1H), 1.88 (ddd, *J* = 7.1, 4.5, 2.8 Hz, 1H), 1.82 (ddd, *J* = 15.6, 6.0, 4.5 Hz, 1H), 1.75 – 1.68 (m, 3H), 1.72 (t, *J* = 1.5 Hz, 3H), 1.34 – 1.23 (m, 2H), 1.09 (s, 3H), 1.04 (s, 3H), 0.94 (s, 9H), 0.92 (d, *J* = 6.8 Hz, 3H), 0.89 (d, *J* = 7.3 Hz, 3H), 0.88 – 0.85 (m, 1H), 0.66 (ddd, *J* = 9.7, 8.6, 6.1 Hz, 1H), 0.15 (s, 3H), 0.03 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 206.5, 140.6, 127.3, 77.5, 73.8, 73.0, 52.2, 49.9, 45.0, 38.2, 30.2, 28.7, 28.4, 26.2, 24.4, 23.8, 23.1, 19.9, 18.4, 16.8, 15.8, 13.6, -3.7, -4.6.

Synthesis of **SI-8**: To a solution of **SI-7** (46.2 mg, 0.107 mmol, 1.0 equiv) in THF (2 mL) was added 1-nitro-2-selenocyanatobenzene (29.0 mg, 0.127 mmol, 1.2 equiv) at room temperature. *n*-Bu₃P (53 μ L, 0.212 mmol, 2.0 equiv) was then slowly added at room temperature. After stirring for 30 min, the reaction mixture was filtered through a plug of silica gel (Hexanes/EtOAc = 10:1). The solvent was removed under reduced pressure. The crude residue was dissolved in THF (5 mL). To this solution was added H₂O (2 mL), NaIO₄ (228.9 mg, 1.070 mmol, 10.0 eq.) and Na₂CO₃ (53.0 mg, 0.639 mmol, 6.0 equiv). The flask was sealed with a plastic cap and the reaction mixture was stirred at 80 °C for 2 h. After filtration, the filtrate was extracted with Et₂O (3 × 5 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated

under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 20:1) afforded **SI-8** (30.5 mg, 69%).

Synthesis of **SI-8**: To a solution of **22** (78.0 mg, 0.18 mmol, 1.0 equiv) in toluene (2 mL) was added Burgess reagent (56.0 mg, 0.24 mmol, 1.3 equiv) at room temperature under argon atmosphere. The reaction mixture was stirred at 110 °C for 1 min. Then, the solvent was removed under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 20:1) afforded **SI-8** (23.3 mg, 31%).

Physical state: pale yellow foam

 $R_f = 0.5$ (Hex/EtOAc = 10:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₆H₄₂NaO₂Si, [M+Na]⁺, 437.2852; found, 437.2853

 $[\alpha]_{D} = -54.7^{\circ} (c = 0.17, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 5.98 (s, 1H), 5.92 (s, 1H), 4.09 (dd, J = 8.6, 3.8 Hz, 1H), 3.26 (dd, J = 11.5, 3.9 Hz, 1H), 2.71 (d, J = 14.5 Hz, 1H), 2.55 (h, J = 6.9 Hz, 1H), 2.48 (dd, J = 14.5, 5.3 Hz, 1H), 2.43 – 2.34 (m, 1H), 2.10 – 2.00 (m, 2H), 1.90 (d, J = 1.6 Hz, 3H), 1.21 (s, 3H), 1.11 (dd, J = 11.4, 9.1 Hz, 1H), 1.03 (s, 3H), 0.92 (s, 9H), 0.73 (dt, J = 8.7, 4.1 Hz, 1H), 0.66 (d, J = 7.5 Hz, 3H), 0.62 (d, J = 6.5 Hz, 3H), 0.06 (s, 2H), 0.03 (s, 3H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 208.0, 142.4, 142.3, 136.5, 130.5, 81.1, 71.6, 46.8, 37.7, 36.8, 33.4, 33.1, 29.0, 26.0, 24.8, 24.1, 21.4, 18.5, 18.4, 15.6, 15.4, 13.4, -4.6, -4.7.

Synthesis of **SI-9**: To a solution of **SI-8** (46.2 mg, 0.107 mmol, 1.0 equiv) in *t*-BuOH (1 mL) and H₂O (1 mL) was added OsO₄ (2.5 wt% in *t*-BuOH, 0.31 mL, 0.0214 mmol 0.2 equiv) and NMO (50% w/w in H₂O, 0.15 mL, 0.642 mmol, 6.0 equiv) at room temperature. The reaction mixture was stirred at 80 °C for 4 h. Saturated Na₂SO₃ (5 mL) was added, the mixture was extracted with Et₂O (3×5 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The reaction mixture was stirred over the crude product was dissolved in toluene (2 mL). To this solution was added *N*,*N*-carbonyldiimidazole (54 mg, 0.333 mmol, 3.1 equiv) at room temperature. The reaction mixture was extracted with Et₂O (3×5 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated pressure. The reaction mixture was extracted with Et₂O (3×5 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The reaction mixture was extracted with Et₂O (3×5 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 20:1) afforded **SI-9** (38.8 mg, 65%) as a colorless oil.

Physical state: colorless oil

 $R_f = 0.2$ (Hex/EtOAc = 20:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₇H₄₃O₅Si, [M+H]⁺, 475.2880; found, 475.2882

 $[\alpha]_{D} = +19.6^{\circ} (c = 0.27, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 6.03 (d, *J* = 1.8 Hz, 1H), 4.55 (s, 1H), 3.86 (d, *J* = 3.3 Hz, 1H), 2.72 (d, *J* = 11.8 Hz, 1H), 2.30 – 2.20 (m, 1H), 2.21 – 2.11 (m, 1H), 2.01 (dd, *J* = 15.9, 6.6, 2.7 Hz, 1H), 1.91 (dd, *J* = 15.5, 11.4 Hz, 1H), 1.87 (d, *J* = 1.6 Hz, 3H), 1.81 (ddd, *J* = 16.0, 7.6, 6.5 Hz, 1H), 1.61 (d, *J* = 15.6, 1H), 1.15 (s, 3H), 1.04 (s, 3H), 1.00 (dd, *J* = 11.8, 8.8 Hz, 1H), 0.94 (s, 9H), 0.93 (d, *J* = 6.6 Hz, 3H), 0.85 (d, *J* = 6.8 Hz, 3H), 0.67 (dt, *J* = 8.8, 6.5 Hz, 1H), 0.16 (s, 3H), 0.05 (s, 3H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 205.0, 154.4, 135.1, 134.7, 95.1, 90.0, 77.1, 72.7, 52.4, 41.7, 39.0, 31.2, 28.8, 26.1, 25.0, 23.6, 23.2, 19.8, 18.4, 15.7, 15.3, -3.6, -4.4.

Synthesis of **23**: A plastic Falcon[®] tube was charged with **SI-9** (38.8 mg, 0.082 mmol, 1.0 equiv) and CH₃CN (3 mL). 48% aqueous HF (0.15 mL, 3.60 mmol, 43.9 equiv) was added and mixture was heated to 50 °C. After stirring for 3 h, the reaction mixture was cooled to room temperature and quenched by the slow addition of saturated aqueous Na₂SO₃ (6 mL). The mixture was extracted with EtOAc (3×8 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 4:1) afforded **23** (25.0 mg, 85%) as a colorless crystalline solid.

Physical state: colorless crystalline solid

 $R_f = 0.25$ (Hex/EtOAc = 3:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₁H₂₈NaO₅, [M+Na]⁺, 383.1834; found, 383.1848

 $[\alpha]_{D} = +12.7^{\circ} (c = 0.15, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 5.92 (d, J = 1.6 Hz, 1H), 4.58 (s, 1H), 3.87 (s, 1H), 3.19 (d, J = 7.8 Hz, 1H), 2.87 (dd, J = 11.3, 1.2 Hz, 1H), 2.34 (ddd, J = 9.6, 6.9, 2.5 Hz, 1H), 2.15 (dtq, J = 16.9, 6.9, 3.5 Hz, 1H), 2.08 – 1.99 (m, 1H), 1.90 (d, J = 1.5 Hz, 3H), 1.84 (ddd, J = 16.1, 9.6, 6.6 Hz, 1H), 1.75 (dd, J = 15.8, 11.3 Hz, 1H), 1.69 (dd, J = 15.6, 2.4 Hz, 1H), 1.18 (s, 3H), 1.11 (dd, J = 11.3, 8.9 Hz, 1H), 1.040 (s, 3H), 1.037 (d, J = 7.2 Hz, 3H), 0.81 (d, J = 6.8 Hz, 3H), 0.71 (ddd, J = 8.9, 6.5, 4.6 Hz, 1H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 211.9, 154.0, 136.4, 133.1, 94.4, 89.4, 76.8, 72.2, 50.0, 41.7, 38.4, 37.6, 31.7, 29.0, 23.9, 23.7, 22.5, 19.3, 18.7, 15.4, 15.2.

Synthesis of **SI-10**: To a solution of **23** (23.0 mg, 0.064 mmol, 1.0 equiv) in toluene (2 mL) was added Martin's sulfurane (86.0 mg, 0.128 mmol, 2.0 equiv) at room temperature. The solution was heated to 110 °C for 10 min. Then, toluene was removed under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 20:1) afforded **SI-10** (21.1 mg, 96%) as a colorless oil.

Physical state: colorless oil

 $R_f = 0.25$ (Hex/EtOAc = 5:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₁H₂₇O₄, [M+H]⁺, 343.1909; found, 343.1902

 $[\alpha]_{D} = -2.8^{\circ} (c = 0.18, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 6.10 (q, *J* = 1.6 Hz, 1H), 5.81 – 5.71 (m, 1H), 4.53 (s, 1H), 3.65 (d, *J* = 10.9 Hz, 1H), 2.65 (d, *J* = 18.3 Hz, 1H), 2.40 (d, *J* = 18.2, Hz, 1H), 2.25 (td, *J* = 6.8, 2.8 Hz, 1H), 2.14 (ddd, *J* = 16.1, 7.4, 2.9 Hz, 1H), 1.91 (d, *J* = 1.6 Hz, 3H), 1.84 (dt, *J* = 16.1, 6.5 Hz, 1H), 1.67 (s, 1H), 1.16 (s, 3H), 1.06 (s, 3H), 0.99 – 0.95 (m, 1H), 0.97 (d, *J* = 6.8 Hz, 3H), 0.72 (dt, *J* = 8.4, 7.1 Hz, 1H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 206.3, 154.0, 135.1, 134.4, 132.9, 124.1, 92.4, 90.9, 77.8, 46.1, 44.9, 39.6, 31.4, 28.8, 24.1, 23.6, 23.5, 18.3, 15.6, 15.5.

Synthesis of **7**: To a solution of **SI-10** (4.2 mg, 0.0123 mmol, 1.0 equiv) in THF (0.5 mL) was added 10% NaOH_(aq) (0.5 mL) at room temperature. After stirring for 1 h, the reaction mixture was quenched by saturated NH₄Cl_(aq) (2 mL). The mixture was extracted with Et₂O (5×3 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The crude residue and 1-methylcyclohexane-1-carboxylic anhydride (32.7 mg, 0.123 mmol, 10.0 equiv) was dissolved in THF (2 mL). To this stirring solution was slowly added *t*-BuOK (6.9 mg, 0.0616 mmol, 5.0 equiv) at room temperature. The reaction mixture was stirred at room temperature for 2 min and quenched by the slow addition of H₂O (2 mL). The mixture was extracted with EtOAc (3×3 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 14:1) afforded **7** (2.9 mg, 54%) as a colorless oil.

Physical state: colorless oil

 $R_f = 0.2$ (Hex/EtOAc = 14:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₈H₄₁O₄, [M+H]⁺, 441.3005; found, 441.3010

 $[\alpha]_{D} = +67.2^{\circ} (c = 0.25, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 5.99 (q, *J* = 1.6 Hz, 1H), 5.71 (s, 1H), 4.92 (s, 1H), 4.06(d, *J* = 1.6 Hz, 1H), 2.49 (s, 1H), 2.43 – 2.28 (m, 3H), 2.19 (ddd, *J* = 15.7, 7.9, 3.1 Hz, 1H), 2.09 – 1.98 (m, 2H), 1.81 – 1.72 (m, 1H), 1.76 (d, *J* = 1.5 Hz, 3H), 1.64 (s, 3H), 1.62 – 1.48 (m, 2H), 1.46 – 1.22 (m, 6H), 1.20 (s, 3H), 1.12 (s, 3H), 1.04 (s, 3H), 0.96 (d, *J* = 7.1 Hz, 3H), 0.91 (dd, *J* = 11.8, 8.4 Hz, 1H), 0.68 (td, *J* = 8.1, 6.2 Hz, 1H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 209.5, 178.9, 136.1, 134.1, 132.6, 123.8, 85.8, 81.0, 75.1, 48.0, 44.2, 43.8, 37.4, 35.8, 35.7, 31.6, 28.8, 25.8, 24.8, 23.8, 23.7, 23.6, 23.39, 23.35, 18.3, 15.72, 15.67.

Synthesis of **5**: To a solution of **7** (2.0 mg, 0.0045 mmol, 1.0 equiv) in THF (1 mL) was added SeO₂ (2.5 mg, 0.023 mmol, 5.0 equiv) at room temperature. The flask was sealed with a plastic cap and the suspension was stirred at 50 °C for 1 h. After cooling to room temperature, the reaction mixture was filtered through a plug of silica gel (hexanes/EtOAc = 1:1) to provide a clear yellow solution. A yellow oil was obtained after concentration *in vacuo*, followed by dissolution in MeOH (1 mL). After cooling to -78 °C, CeCl₃·7H₂O (8.5 mg, in 0.5 mL MeOH, 0.023 mmol, 5.0 equiv) was added, then NaBH₄ (1.7 mg, 0.045 mmol, 10.0 equiv) was slowly added to the flask. After stirring for 10 min at -78 °C, H₂O (5 mL) was carefully added to quench this reaction, followed by dilution with Et₂O (5 mL). The mixture was extracted with Et₂O (3 × 5 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 2:1) afforded **5** (1.1 mg, 53%) as a colorless oil.

Physical state: colorless oil

 $R_f = 0.2$ (Hex/EtOAc = 2:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₈H₄₀NaO₅, [M+Na]⁺, 479.2773; found, 479.2779

 $[\alpha]_{D} = +36.0^{\circ} (c = 0.05, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 6.00 (q, *J* = 2.4 Hz, 1H), 5.98 (d, *J* = 1.7 Hz, 1H), 4.97 (s, 1H), 4.11 (d, *J* = 11.7 Hz, 1H), 3.93 (s, 2H), 2.56 (d, *J* = 17.1 Hz, 2H), 2.55 (s, 1H), 2.41 (td, *J* = 6.8, 3.0 Hz, 1H), 2.37 (d, *J* = 18.4 Hz, 1H), 2.18 (ddt, *J* = 17.0, 12.5, 9.1 Hz, 1H), 2.07 – 2.00 (m, 2H), 1.82 – 1.77 (m, 1H), 1.76 (d, *J* = 1.6 Hz, 3H), 1.62 – 1.56 (m, 2H), 1.44 – 1.27 (m, 6H), 1.20 (s, 3H), 1.12 (s, 3H), 1.05 (s, 3H), 0.96 (d, *J* = 7.0 Hz, 3H), 0.96 – 0.93 (m, 1H), 0.71 (q, *J* = 7.6 Hz, 1H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 209.1, 178.9, 137.7, 136.4, 132.4, 125.7, 85.8, 80.8, 75.1, 67.6, 44.2, 43.8, 43.4, 37.2, 35.8, 35.7, 31.7, 28.8, 25.8, 24.0, 23.6, 23.5, 23.39, 23.35, 18.5, 15.72, 15.70.

Synthesis of **SI-12**: A 100 mL round-bottomed flask was charged with **SI-11** (661 mg, 1.31 mmol, 1.0 equiv), Me₃NO·2H₂O (1455 mg, 13.1 mmol, 10 equiv) and DABCO (160 mg, 1.31 mmol, 1.0 equiv) in acetone/CH₃CN/<u>*0.5 M buffer solution</u> (26.2 mL, 0.05 M, **4:3:3**). Then, OsO₄ solution (2.5 wt. % in *tert*-butanol, 0.65 mL, 0.0655 mmol, 0.05 equiv) was added to this flask. The reaction mixture was stirred vigorously at 50 °C for 18 h, before quenching with saturated aqueous Na₂SO₃ (20 mL). (*After 15 h, the reaction was monitored by TLC every 3 h; when the conversion stopped, the reaction was quenched immediately to prevent further side reactions.) The reaction mixture was extracted with ether (3 × 20 mL). The combined organic layers were washed with brine and dried over Na₂SO₄, filtered and concentrated *in vacuo* to afford a crude diol ($R_f = 0.33$ (Hex/EtOAc = 7:3; anisaldehyde)).

[*0.5 M buffer solution: pH=3, Na₂HPO₄ (280 mg) and citric acid (840 mg) was dissolved in H_2O (10 mL).]

The crude diol was dissolved in hexanes (26.2 mL, 0.05 M) and *N*,*N*-carbonyldiimidazole (1.05 g, 6.5 mmol, 5.0 equiv) was added. The solution was stirred

at room temperature for 11 h and quenched by water (20 mL). The aqueous layer was separated and extracted further with hexanes (2 × 30 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated *in vacuo*. Purification of the crude product was accomplished by subjecting the crude solution to flash column chromatography (silica gel, column packed in hexanes, then hexanes/EtOAc = $20:1 \rightarrow 9:1$) afforded desired product **SI-12** (342 mg, 46% over 2 steps) as a white foam.

Spectral data were identical to those previously reported.¹

Synthesis of **16**: To a solution of **SI-12** (191 mg, 0.338 mmol, 1.0 equiv) in CH₂Cl₂ (7 mL) was added BF₃·Et₂O (420 μ L, 3.38 mmol, 10 equiv) dropwise at -78 °C. The reaction mixture was stirred at this temperature for 2 min before warming to -50 °C. After stirring for 30 min, a 1:1 mixture of Et₃N/MeOH (3 mL) was added at -40 °C. The solution was stirred for an additional 2 min and then saturated aqueous NaHCO₃ (5 mL) was added. The reaction mixture was warmed to room temperature and extracted with CH₂Cl₂ (3 × 25 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, column packed in CH₂Cl₂, then hexanes/EtOAc = 20:1 \rightarrow 10:1 \rightarrow 5:1) afforded **16** (128 mg, 80%) as a white foam.

Spectral data were identical to those previously reported.¹

Synthesis of **SI-13**: To a solution of **16** (590 mg, 1.24 mmol, 1 equiv) in THF (10 mL) was added 10% NaOH_(aq) (10 mL). The reaction mixture was stirred vigorously at room temperature for 1 h. The reaction mixture was then extracted with Et₂O (3×20 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The crude residue was dissolved in CH₂Cl₂ (5 mL). To this solution was added Ac₂O (0.14 mL, 1.49 mmol, 1.2 equiv), Et₃N (0.26 mL, 1.86 mmol, 1.5 equiv) and DMAP (15.0 mg, 0.123 mmol, 0.1 equiv) at room temperature. The reaction mixture was stirred at room temperature for 2 h before addition of saturated NH₄Cl (10 mL). The mixture was extracted with CH₂Cl₂ (3×10 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 5:1) afforded **SI-13** (490 mg, 81%) as a white solid.

Physical state: white solid

 $R_f = 0.51$ (Hex/EtOAc = 7:3; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₈H₄₆NaO₅Si, [M+Na]⁺, 513.3012; found, 513.3006

 $[\alpha]_{D} = +47.7^{\circ} (c = 0.7, CH_2Cl_2)$

This compound shows two sets of NMR peaks due to restricted rotation (rotamers, ratio = 4:6)

¹**H NMR** (600 MHz, Chloroform-*d*) δ 5.64 (s, 1H), 5.04 (s, 0.4H), 4.90 (d, J = 10.5 Hz, 0.6H), 3.89 (d, J = 10.7 Hz, 0.4H), 3.85 (d, J = 4.1 Hz, 1H), 3.19 (d, J = 12.0 Hz, 0.4H), 3.01 (d, J = 12.0 Hz, 0.6H), 2.90 (ddd, J = 10.8, 7.0, 4.0 Hz, 0.4H), 2.58 (d, J = 15.7 Hz, 0.4H), 2.52 – 2.39 (m, 1.6H), 2.39 – 2.31 (m, 0.6H), 2.29 – 2.20 (m, 1.4H), 2.17 – 2.12 (m, 0.6H), 2.11 (s, 1.2H), 2.09 (s, 1.8), 2.05 (brs, 0.6H), 1.72 (dq, J = 15.4, 5.1,

4.5 Hz, 1H), 1.67 (s, 1.2H), 1.60 (s, 1.8H), 1.09 (s, 3H), 1.03 (s, 3H), 0.94 (s, 9H), 0.93 – 0.84 (m, 7H), 0.62 (dq, *J* = 13.1, 6.7, 4.7 Hz, 1H), 0.17 (s, 1.2H), 0.16 (s, 1.8H), 0.06 (s, 1.2H), 0.04 (s, 1.8H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 207.2 , 206.2 , 174.1 , 169.3 , 136.0 , 135.2 , 125.8 , 125.7 , 86.7 , 86.1 , 85.6 , 74.9 , 73.8 , 72.7 , 72.1 , 49.3 , 48.8 , 48.1 , 46.6 , 42.9 , 40.5 , 35.8 , 35.5 , 30.4 , 28.71 , 28.65 , 26.22 , 26.20 , 24.9 , 24.4 , 24.2 , 23.12 , 23.05 , 21.2 , 20.7 , 18.5 , 17.4 , 17.3 , 17.2 , 17.1 , 16.5 , 15.90 , 15.85 , 15.7 , -3.50 , -3.52 , -4.5.

Synthesis of **SI-14** : To a stirred solution of **SI-13** (490 mg, 1.0 mmol, 1.0 equiv) in DMF (10 mL) was added NaH (60% in mineral oil, 80 mg, 2.0 mmol, 2.0 equiv) at 0 °C. After stirring for 15 min, CS₂ (0.6 mL, 10.0 mmol, 10 equiv) was added to the suspension at the same temperature. The reaction mixture was allowed warm to room temperature and stirred for 40 min. Then, MeI (0.62 mL, 10.0 mmol, 10 equiv) was added to the mixture. After stirring for 40 min at room temperature, the reaction mixture diluted with Et₂O (30 mL) and quenched by H₂O (30 mL). The mixture was extracted with Et₂O (3×30 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 20:1) afforded **SI-14** (483.4 mg, 83%) as a pale yellow foam.

Physical state: pale yellow foam

 $R_f = 0.62$ (Hex/EtOAc = 4:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₃₀H₄₈NaO₅S₂Si, [M+Na]⁺, 603.2610; found, 603.2606

 $[\alpha]_{D} = +91.3^{\circ} (c = 0.9, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 5.70 (s, 1H), 5.10 (d, J = 10.2 Hz, 1H), 3.86 (d, J = 3.5 Hz, 1H), 3.17 (d, J = 16.6 Hz, 1H), 2.93 (d, J = 16.4 Hz, 1H), 2.86 (d, J = 11.9 Hz, 1H), 2.55 (s, 3H), 2.39 – 2.18 (m, 3H), 2.06 (s, 3H), 1.85 (ddd, J = 15.9, 5.9, 3.6 Hz, 1H), 1.20 (s, 3H), 1.06 (s, 3H), 0.99 – 0.94 (m, 1H), 0.96 (d, J = 7.0 Hz, 3H), 0.94 (s, 9H), 0.83 (d, J = 7.0 Hz, 3H), 0.72 – 0.65 (m, 1H), 0.16 (s, 3H), 0.02 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 212.6, 205.0, 169.0, 136.0, 124.7, 101.2, 77.2, 74.6, 72.0, 50.4, 43.7, 42.8, 36.2, 31.4, 28.7, 26.1, 25.4, 25.1, 22.8, 20.6, 20.5, 18.4, 17.3, 17.2, 16.2, 15.0, -3.5, -4.5.

Synthesis of **SI-15**: Compound **SI-14** (483.4 mg, 0.83 mmol, 1.0 equiv) was dissolved in degassed 1,2-dichlorobenzene (15 mL) under argon. The mixture was stirred at 170 °C for 5 min. After cooling to room temperature, the reaction mixture was passed through a short plug of silica gel, eluting with hexanes (to remove 1,2-dichlorobenzene), followed by 20:1 hexanes:EtOAc to afford **SI-15** (365.9 mg, 92%) as a pale yellow foam.

Physical state: pale yellow foam

 $R_f = 0.55$ (Hex/EtOAc = 8:2; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₈H₄₄NaO₄Si, [M+Na]⁺, 495.2907; found, 495.2904

 $[\alpha]_{D} = +3.6^{\circ} (c = 0.89, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 6.22 (d, *J* = 1.4 Hz, 1H), 6.09 (s, 1H), 5.87 (d, *J* = 5.3 Hz, 1H), 4.17 (dd, *J* = 8.3, 3.8 Hz, 1H), 3.87 (dd, *J* = 11.3, 3.9 Hz, 1H), 2.94 (h,
J = 7.0 Hz, 1H), 2.70 – 2.59 (m, 1H), 2.06 (s, 3H), 2.03 (dt, *J* = 5.2, 2.9 Hz, 2H), 1.90 (d, *J* = 1.4 Hz, 3H), 1.26 (s, 3H), 1.16 (dd, *J* = 11.3, 9.3 Hz, 1H), 1.04 (s, 3H), 0.92 (s, 9H), 0.75 (dt, *J* = 8.4, 3.9 Hz, 1H), 0.64 (d, *J* = 7.6 Hz, 3H), 0.61 (d, *J* = 6.7 Hz, 3H), 0.08 (s, 3H), 0.03 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 207.5, 169.6, 141.4, 141.0, 138.3, 133.7, 82.9, 79.4, 69.5, 45.9, 40.8, 37.3, 33.0, 29.0, 25.9, 24.8, 24.1, 21.5, 21.2, 18.4, 18.3, 15.4, 15.1, 12.8, -4.6, -4.7.

Synthesis of **20**: To a solution of **SI-15** (365.9 mg, 0.77 mmol, 1.0 equiv) in MeOH (10 mL) was added 10% Pd on carbon (82 mg, 0.077 mmol, 0.1 equiv). H₂ was bubbled into the stirring mixture for 20 s at room temperature. Then, the solvent was concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = $80:1 \rightarrow 50:1$) afforded **20** (282.7 mg, 77%) as a colorless oil.

Physical state: colorless oil

 $R_f = 0.5$ (Hex/EtOAc = 10:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₈H₄₆NaO₄Si, [M+Na]⁺, 497.3063; found, 497.3072

 $[\alpha]_{D} = +25.8^{\circ} (c = 0.12, CH_2Cl_2)$

¹**H** NMR (600 MHz, Chloroform-*d*) δ 5.66 (s, 1H), 4.70 (s, 1H), 3.88 (d, *J* = 4.3 Hz, 1H), 2.61 (d, *J* = 12.1 Hz, 1H), 2.56 – 2.44 (m, 2H), 2.05 (s, 3H), 2.04 – 1.97 (m, 2H), 1.89 (d, *J* = 16.2 Hz, 1H), 1.83 (dt, *J* = 15.7, 5.5 Hz, 1H), 1.68 (ddd, *J* = 14.8, 10.2, 5.5 Hz, 1H), 1.65 (s, 3H), 1.10 (s, 3H), 1.04 (s, 3H), 0.94 (s, 9H), 0.95 – 0.91 (m, 1H), 0.90

(d, *J* = 7.0 Hz, 3H), 0.88 (d, *J* = 6.9 Hz, 3H), 0.68 (td, *J* = 8.9, 6.1 Hz, 1H), 0.16 (s, 3H), 0.04 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 205.6, 169.0, 138.4, 124.2, 74.5, 73.8, 71.5, 51.0, 50.9, 49.2, 37.9, 36.9, 29.6, 28.1, 25.6, 23.7, 23.2, 22.8, 20.3, 17.8, 16.4, 15.6, 15.3, 15.2, -4.2, -5.2.

Synthesis of **21**: To a solution of **20** (282.7 mg, 0.60 mmol, 1.0 equiv) in CH₂Cl₂ (8 mL) was added 20% Pd(OH)₂ on carbon (15.9 mg, 0.03 mmol, 0.05 equiv) and K₂CO₃ (20.7 mg, 0.15 mmol, 0.25 equiv) at room temperature. The mixture was cooled to 0 °C, and TBHP (5.5 M in decane, 0.54 mL, 3.0 mmol, 5.0 equiv) was added with vigorous stirring. Then, the reaction mixture was allowed to warm to room temperature. After stirring for 24 h, the reaction mixture was filtered through a plug of silica gel (washed with CH₂Cl₂). The solvent was removed under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 3:1) afforded **21** (95 mg, 33%) as a colorless crystalline solid.

Physical state: colorless crystalline solid

 $R_f = 0.1$ (Hex/EtOAc = 3:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₈H₄₆NaO₅Si, [M+Na]⁺, 513.3012; found, 513.3018

 $[\alpha]_{D} = +32.9^{\circ} (c = 0.14, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 5.89 (s, 1H), 4.71 (brs, 1H), 4.21 (s, 1H), 3.91 (d, *J* = 3.9 Hz, 1H), 2.69 (d, *J* = 11.7 Hz, 1H), 2.38 (s, 1H), 2.25 – 2.12 (m, 2H), 2.08 (s, 3H), 1.82 (dt, *J* = 15.8, 6.1 Hz, 1H), 1.79 – 1.73 (m, 1H), 1.76 (d, *J* = 1.1 Hz, 3H),

1.13 (s, 3H), 1.04 (s, 3H), 0.95 – 0.91 (m, 1H), 0.933 (s, 9H), 0.926 (d, *J* = 5.4 Hz, 3H), 0.86 (d, *J* = 7.1 Hz, 3H), 0.72 – 0.66 (m, 1H), 0.14 (s, 3H), 0.04 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 205.5, 169.3, 139.8, 129.7, 82.1, 75.8, 72.4, 70.9, 59.7, 50.4, 47.8, 42.5, 29.9, 28.1, 25.5, 23.5, 22.9, 22.8, 20.4, 17.8, 15.7, 15.0, 14.5, 14.0, -4.4, -5.2.

Synthesis of **SI-16**: Compound **21** (10.2 mg, 0.0208 mmol, 1.0 equiv) and 1methylcyclohexane-1-carboxylic anhydride (55.4 mg, 0.208 mmol, 10.0 equiv) was dissolved in THF (2 mL). To this stirring solution was slowly added *t*-BuOK (11.7 mg, 0.104 mmol, 5.0 equiv) at room temperature. The reaction mixture was stirred at room temperature for 2 min and quenched by the slow addition of H₂O (2 mL). The mixture was extracted with EtOAc (3×3 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 20:1) afforded **SI-16** (9.7 mg, 76%) as a colorless oil.

Physical state: colorless oil

 $R_f = 0.17$ (Hex/EtOAc = 20:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₃₆H₅₈NaO₆Si, [M+Na]⁺, 637.3900; found, 637.3893

 $[\alpha]_{D} = +100.0^{\circ} (c = 0.17, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 6.03 (s, 1H), 5.37 (s, 1H), 4.64 (brs, 1H), 3.87 (d, *J* = 4.1 Hz, 1H), 2.58 (d, *J* = 11.9 Hz, 1H), 2.36 (s, 1H), 2.26 – 2.18 (m, 1H), 2.17 – 2.07 (m, 1H), 2.13 (s, 3H), 2.03 – 1.95 (m, 2H), 1.81 (dt, *J* = 15.8, 6.0 Hz, 1H), 1.70 – SI-38

1.63 (m, 1H), 1.66 (d, *J* = 1.2 Hz, 3H), 1.59 – 1.50 (m, 2H), 1.40 – 1.17 (m, 6H), 1.13 (s, 3H), 1.10 (s, 3H), 1.04 (s, 3H), 0.96 – 0.92(m, 1H), 0.94 (d, *J* = 7.2 Hz, 3H), 0.93 (s, 9H), 0.89 (d, *J* = 6.9 Hz, 3H), 0.68 (td, *J* = 8.5, 6.4 Hz, 1H), 0.15 (s, 3H), 0.04 (s, 3H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 205.2, 177.3, 170.0, 137.6, 132.8, 82.1, 74.3, 73.1, 71.9, 57.4, 51.6, 49.6, 43.3, 41.9, 35.7, 30.2, 28.7, 26.7, 26.1, 25.8, 24.3, 23.6, 23.4, 20.9, 18.4, 16.1, 15.8, 15.7, 14.9, -3.6, -4.5.

Synthesis of **SI-17**: To a solution of **SI-16** (6.6 mg, 0.0107 mmol, 1.0 equiv) in THF (1 mL) was added TBAF (1 M, 0.11 mL, 0.107 mmol, 10.0 equiv) and H₂O (2 μ L, 0.107 mmol, 10.0 equiv) at room temperature. The flask was sealed with a plastic cap and the reaction mixture was heated to 65 °C. After stirring for 10 h, the reaction mixture was cooled to room temperature, then water (3 mL) was added. The mixture was extracted with Et₂O (5 × 3 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 5:1) afforded **SI-16a** (5.1 mg, 95%).

To a solution of **SI-16a** (5.1 mg, 0.0102 mmol, 1.0 equiv) in toluene (2 mL) was added Martin's sulfurane (8.9 mg, 0.0132 mmol, 1.3 equiv) at room temperature. The solution was stirred at 85 °C for 10 min. Toluene was then removed under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 20:1) afforded **SI-17** (4.4 mg, 90%).

Physical state: colorless oil

 $R_f = 0.3$ (Hex/EtOAc = 10:1; anisaldehyde) SI-39

HRMS (*m*/*z*): calcd for C₃₀H₄₂NaO₅, [M+Na]⁺, 505.2930; found, 505.2932

 $[\alpha]_{D} = -21.9^{\circ} (c = 0.27, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 6.01 (s, 1H), 5.80 (d, J = 5.7 Hz, 1H), 5.24 (s, 1H), 4.86 (brs, 1H), 3.73 (dd, J = 11.4, 5.2 Hz, 1H), 2.82 (s, 1H), 2.32 – 2.24 (m, 1H), 2.18 (s, 3H), 2.00 (d, J = 12.7 Hz, 2H), 1.83 (dt, J = 15.8, 5.9 Hz, 1H), 1.77 – 1.71 (m, 1H), 1.74 (s, 3H), 1.62 (s, 3H), 1.60 – 1.50 (m, 2H), 1.39 – 1.16 (m, 6H), 1.141 (s, 3H), 1.138 (s, 3H), 1.05 (s, 3H), 0.99 (d, J = 7.0 Hz, 3H), 0.94 (dd, J = 11.8, 8.5 Hz, 1H), 0.70 (td, J = 8.4, 6.6 Hz, 1H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 206.0, 177.1, 171.0, 138.7, 136.2, 131.0, 125.5, 81.6, 71.8, 55.9, 44.7, 43.4, 41.5, 35.7, 30.4, 28.7, 26.7, 25.8, 23.8, 23.5, 23.4, 22.8, 21.7, 21.3, 15.7, 15.5, 15.1.

Synthesis of **8**: To a solution of **SI-17** (4.2 mg, 0.0087 mmol, 1.0 equiv) in MeOH (0.8 mL) and THF (0.2 mL) was added K₂CO₃ (6.0 mg, 0.0435 mmol, 5.0 equiv) at room temperature. The reaction mixture was stirred for 2 h at 50 °C before quenching with saturated NH₄Cl_(aq) (2 mL). The mixture was extracted with Et₂O (5 × 3 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 5:1) afforded **8** (2.6 mg, 68%) as a white foam.

Physical state: white foam

 $R_f = 0.25$ (Hex/EtOAc = 7:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₈H₄₀NaO₄, [M+Na]⁺, 463.2824; found, 463.2825

 $[\alpha]_{D} = +10.0^{\circ} (c = 0.21, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 6.12 (s, 1H), 5.67 (d, J = 5.3 Hz, 1H), 5.20 (s, 1H), 3.83 (s, 1H), 3.72 (d, J = 9.9 Hz, 1H), 3.49 (dd, J = 11.6, 4.7 Hz, 1H), 2.52 (d, J = 10.0 Hz, 1H), 2.09 (ddd, J = 7.1, 4.6, 2.8 Hz, 1H), 2.06 – 1.97 (m, 2H), 1.84 – 1.80 (m, 1H), 1.80 (d, J = 1.1 Hz, 3H), 1.77 (s, 3H), 1.66 (ddd, J = 15.6, 9.0, 2.4 Hz, 1H), 1.60-1.51 (m, 2H), 1.42 – 1.20 (m, 6H), 1.16 (s, 3H), 1.08 (s, 3H), 1.04 (s, 3H), 1.00 (d, J = 7.0 Hz, 3H), 0.89 (dd, J = 11.9, 8.4 Hz, 1H), 0.69 (td, J = 8.7, 6.4 Hz, 1H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 205.7, 179.6, 139.4, 137.2, 132.6, 122.1, 85.6, 76.0, 72.2, 59.0, 44.9, 43.5, 42.8, 35.6, 35.5, 30.2, 28.7, 25.8, 23.7, 23.42, 23.36, 23.1, 22.7, 21.8, 15.9, 15.6, 15.2.

Synthesis of **6**: To a solution of **8** (2.5 mg, 0.0057 mmol, 1.0 equiv) in THF (1 mL) was added SeO₂ (1.9 mg, 0.0171 mmol, 3.0 equiv) at room temperature. The flask was sealed with a plastic cap and the suspension was stirred at 60 °C for 1 h. The mixture was cooled to room temperature, then H₂O (2 mL) was added. The mixture was extracted with Et₂O (5×3 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 2:1) afforded **6** (1.2 mg, 46%) as a white foam.

Physical state: white foam

 $R_f = 0.15$ (Hex/EtOAc = 2:1; anisaldehyde)

HRMS (*m*/*z*): calcd for C₂₈H₄₀NaO₅, [M+Na]⁺, 479.2773; found, 479.2767

 $[\alpha]_{D} = +8.0^{\circ} (c = 0.1, CH_2Cl_2)$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 6.09 (d, J = 1.2 Hz, 1H), 5.98 (d, J = 4.5 Hz, 1H), 5.21 (s, 1H), 4.13 (d, J = 12.2 Hz, 1H), 4.05 (d, J = 12.3 Hz, 1H), 4.04 (d, J = 10.8 Hz, 1H), 3.55 (dd, J = 11.9, 5.1 Hz, 1H), 2.55 (d, J = 10.2 Hz, 1H), 2.14 – 2.07 (m, 1H), 2.07 – 1.96 (m, 2H), 1.84 (dt, J = 15.8, 5.9 Hz, 1H), 1.81 (d, J = 1.3 Hz, 3H), 1.69 (ddd, J = 15.9, 8.5, 2.4 Hz, 1H), 1.64-1.49 (m, 2H), 1.41 – 1.22 (m, 6H), 1.17 (s, 3H), 1.10 (s, 3H), 1.05 (s, 3H), 1.00 (d, J = 7.0 Hz, 3H), 0.94 (dd, J = 11.9, 8.4 Hz, 1H), 0.72 (td, J = 8.5, 6.3 Hz, 1H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 205.5, 180.0, 141.6, 137.3, 132.3, 125.9, 85.3, 75.6, 72.2, 67.2, 58.7, 45.0, 43.6, 42.8, 35.53, 35.50, 30.4, 28.7, 25.7, 23.7, 23.4, 22.6, 16.2, 15.7, 15.1.

Synthesis of **SI-19**: In a 3 L round-bottomed flask, **SI-18** (92 g, 941 mmol, 2.0 equiv) was dissolved in THF (1720 mL). IBX (395 g, 1411 mmol, 3.0 equiv) was added and the resulting suspension was stirred at 80 °C for 2 h. The mixture was then cooled to room temperature. After filtration, the filtered residue was washed with THF (573 mL). The filtrate (aldehyde in THF) was kept under argon atmosphere and dried over Na_2SO_4 30 min prior to use for the aldol reaction.

In a another 3 L round-bottomed flask was placed ketone² (65 g, 471 mmol, 1.0 equiv) in THF (143 mL) under argon and the solution was cooled to -78 °C. LiHMDS (1M in THF, 847 mL, 847 mmol, 1.8 equiv) was added dropwise under argon at -78 °C and the solution was stirred at -78 °C for 1 h. The aforementioned solution of aldehyde in THF was added dropwise over 50 min under argon at -78 °C. The mixture was stirred at -78 °C for 2 h then quenched by the addition of saturated aqueous NH₄Cl. The aqueous layer was separated and the aqueous layer was extracted with ethyl acetate. The combined organic fractions were dried with sodium sulfate, and concentrated under vacuum at 45 °C. Purification of the crude product by flash column chromatography afforded **SI-19** (68 g, 56%) as a colorless oil.

Physical state: colorless oil

 $\mathbf{R}_f = 0.26$ (Hex/EtOAc = 9:1; anisaldehyde)

HRMS (m/z): calc. for C₁₅H₂₃O₂ [M+H]⁺= 235.1698; found, 235.1697

 $[\alpha]_{D} = +207.6^{\circ} (c = 1.40, CH_2Cl_2)$

¹**H NMR** (600 MHz, CDCl₃) δ 5.24 (p, *J* = 6.9 Hz, 1H), 4.69 (dt, *J* = 6.4, 3.0 Hz, 2H), 3.96-3.91 (m, 2H), 2.40-2.09 (m, 3H), 1.96 (t, *J* = 8.4 Hz, 1H), 1.85 (ddd, *J* = 14.9, 7.7, 2.2 Hz, 1H), 1.66-1.61 (m, 1H), 1.21 (d, *J* = 7.4 Hz, 3H), 1.15 (s, 3H), 1.11 (s, 3H), 0.92 (td, *J* = 9.1, 7.7 Hz, 1H), 0.41 (t, *J* = 8.3 Hz, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 219.9, 209.1, 86.5, 74.7, 71.8, 50.2, 41.3, 32.9, 27.9, 25.5, 23.3, 20.7, 19.7, 17.4, 14.9.

Synthesis of **SI-20**: In a 4 L round-bottomed flask, ethynylmagnesium bromide (0.5M in THF, 2321 mL, 1161 mmol, 4.0 equiv) was cooled to -78 °C. Compound **SI-19** (68 g, 290 mmol, 1.0 equiv) in THF (288 mL) was added over 35 min at -78 °C. The reaction mixture was stirred at this temperature for 10 min before warming to -15 °C. After stirring for 4 h at -15 °C, the reaction mixture was quenched by saturated aqueous NH₄Cl. The THF layer was then separated and distilled completely. The aqueous layer was extracted with EtOAc and the combined organic layers were filtered through silica gel and dried over Na₂SO₄, then the solution was concentrated under vacuum to provide crude **SI-19a** (77 g).

To a solution of crude **SI-19a** in CH_2Cl_2 (568 mL) was added distilled triethylamine (165 ml, 1183 mmol, 4.0 equiv). Then, TBSOTf (136 ml, 591 mmol, 2.0 equiv) was added dropwise at 0 °C. After 1.5 h, distilled triethylamine (165 mL, 1183 mmol, 4.0 equiv) and TMSOTf (108 mL, 591 mmol, 2.0 equiv) were added dropwise at 0 °C. The reaction mixture was stirred for a further 1.5 h. Then, the reaction was quenched by saturated aqueous NaHCO₃ (500 mL) and diluted with CH_2Cl_2 (500 mL). After separating the aqueous layer, the organic layer was washed again with saturated

aqueous NaHCO₃ (500 mL) and then with water (3×500 mL) (to remove triethylamine). All aqueous layers were extracted with ethyl acetate (3×700 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography afforded **SI-20** (33 g, 25%) as a colorless oil.

Spectroscopic data for SI-19a:

Physical state: colorless oil

 $\mathbf{R}_f = 0.19$ (Hex/EtOAc = 4:1; anisaldehyde)

HRMS (m/z): calc. for C₁₇H₂₅O₂ [M+H]⁺= 261.1855; found, 261.1856

 $[\alpha]_{D} = -27.8^{\circ} (c = 0.80, CH_2Cl_2)$

¹**H NMR** (600 MHz, CDCl₃) δ 5.54 – 5.02 (m, 1H), 4.73 (dt, *J* = 6.3, 2.9 Hz, 2H), 4.16-4.13 (m, 1H), 3.09 (s, 1H), 2.68 (s, 1H), 2.64-2.51 (m, 3H), 1.70 (dd, *J* = 14.9, 7.0 Hz, 1H), 1.59 – 1.47 (m, 2H), 1.35-1.28 (m, 1H), 1.08 (d, *J* = 6.6 Hz, 3H), 1.06 (s, 3H), 0.96 (s, 3H), 0.73 (t, *J* = 8.8 Hz, 1H), 0.38 (dd, *J* = 9.4, 5.2 Hz, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 209.3, 87.6, 86.6, 76.1, 75.1, 74.8, 67.0, 46.2, 38.9, 34.8, 28.8, 24.2, 21.6, 19.9, 17.6, 16.8, 15.4.

Spectroscopic data for SI-20:

Physical state: colorless oil

 $\mathbf{R}_f = 0.66$ (Hex; anisaldehyde)

HRMS (*m/z*): calc. for C₂₆H₄₆NaO₂Si₂ [M+Na]⁺= 469.2934; found, 469.2943

 $[\alpha]$ D= +25.8° (*c* = 0.58, CH₂Cl₂)

¹**H NMR** (600 MHz, CDCl₃) δ 5.49 (q, *J* = 7.0 Hz, 1H), 4.60-4.58 (m, 2H), 4.36 (dd, *J* = 4.0, 1.4 Hz, 1H), 3.04-3.00 (m, 1H), 2.51 (s, 1H), 1.88 – 1.79 (m, 2H), 1.50 – 1.42 (m, 1H), 1.38 (dd, *J* = 5.6, 3.8 Hz, 1H), 1.33 – 1.23 (m, 1H), 1.15 – 1.08 (m, 4H), 1.00 (s, 3H), 0.92 (s, 9H), 0.88 (s, 3H), 0.60 – 0.49 (m, 1H), 0.18 (s, 9H), 0.07 (s, 3H), 0.04 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 208.4, 93.5, 88.1, 76.4, 74.1, 73.5, 68.4, 49.2, 38.6, 35.6, 29.1, 26.0, 21.2, 18.5, 18.1, 18.1, 16.8, 15.8, 15.0, 1.7, -3.8, -4.6.

Synthesis of **15'**: A solution of **SI-20** (20 g, 44.8 mmol, 1.0 equiv) in anhydrous *p*-xylene (4454 mL) was degassed using carbon monoxide for 5 h. 1,5-cyclooctadienerhodium(I) chloride dimer (2.208 g, 4.48 mmol, 0.1 equiv) and dppf (4.89 g, 8.95 mmol, 0.2 equiv) were added. The reaction mixture was transferred into a preheated oil bath and stirred at 140 °C under 1 atm of CO for 18 h. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. Purification of the crude product by flash column chromatography afforded **15'** (5.3 g, 25%) as a yellow solid.

Physical state: yellow solid (m.p. 101-104 °C)

 $\mathbf{R}_f = 0.38$ (Hex/EtOAc = 10:1; anisaldehyde)

HRMS (m/z): calc. for C₂₇H₄₇O₃Si₂ [M+H]⁺= 475.3064; found, 475.3065

 $[\alpha]_{D} = -118.6^{\circ} (c = 0.86, CH_2Cl_2)$

¹**H** NMR (600 MHz, CDCl₃) δ 6.06 (d, J = 1.6 Hz, 1H), 5.88 (d, J = 8.8 Hz, 1H), 4.12 (dd, J = 8.3, 3.1 Hz, 1H), 3.17 – 2.95 (ABq, J = 19.9, 2H), 2.59-2.53 (m, 1H), 2.08 – 1.84 (m, 2H), 1.71 – 1.53 (m, 2H), 1.42 (d, J = 7.4 Hz, 3H), 1.35 – 1.20 (m, 2H), 1.08 (s, 3H), 0.91 (s, 9H), 0.86 (s, 3H), 0.66 (td, J = 9.1, 1.5 Hz, 1H) 0.01 (s, 15H).

¹³C NMR (151 MHz, CDCl₃) δ 205.3, 176.9, 134.8, 133.3, 129.9, 73.5, 73.3, 48.2, 45.0, 43.8, 35.7, 28.4, 25.9, 22.6, 18.5, 17.9, 17.7, 16.4, 15.3, 12.6, 2.0, -4.2, -5.1.

Synthesis of **SI-21**: To a solution of **15'** (602 mg, 1.27 mmol, 1.0 equiv) in THF (64 mL, 0.02 M) was added methylmagnesium bromide (3.0 M in Et₂O, 2.5 mL, 7.62 mmol, 6.0 equiv) over 5 min at -78 °C. The reaction mixture was stirred at this temperature for 5 min before warming to 0 °C. After 15 min, the reaction mixture was cooled to -78 °C and carefully quenched by NH₄Cl_(aq) (30 mL). The mixture was extracted with EtOAc (3 × 50 mL) and the combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 20:1→4:1) afforded **SI-21** (373 mg, 60%) as a colorless foam and recovered **15'** (212 mg, 35%).

Physical state: colorless foam

 $\mathbf{R}_f = 0.50 \text{ (Hex/EtOAc} = 4:1; anisaldehyde)$

HRMS (m/z): calc. for C₂₈H₅₁O₃Si₂ [M+H]⁺= 461.2718; found, 461.2722

 $[\alpha]_{D} = -131.3^{\circ} (c = 0.75, CH_2Cl_2)$

¹**H** NMR (600 MHz, CDCl₃) δ 5.67 (s, 1H), 5.47 (d, J = 8.4 Hz, 1H), 4.06 (dd, J = 8.4, 3.0 Hz, 1H), 2.64 (ABq, J = 14.4 Hz, 2H), 2.42 – 2.37 (m, 1H), 1.95 (dt, J = 14.9, 9.7 Hz, 1H), 1.82 (dd, J = 13.5, 9.7 Hz, 1H), 1.57 (dd, J = 14.9, 8.7 Hz, 1H), 1.42 (t, J = 8.0 Hz, 1H), 1.36 – 1.29 (m, 6H), 1.25 – 0.96 (m, 5H), 0.90 (s, 9H), 0.83 (s, 3H), 0.60 (t, J = 8.4 Hz, 1H), 0.05 (s, 9H), -0.01 (s, 6H).

¹³**C NMR** (151 MHz, CDCl₃) δ 149.7, 139.3, 137.0, 125.3, 79.8, 73.9, 72.8, 52.2, 49.1, 44.0, 35.3, 28.5, 26.7, 25.9, 22.7, 18.7, 18.0, 17.5, 16.5, 15.4, 12.6, 2.3, -4.3, -5.1.

Synthesis of **SI-22**: A 100 mL round-bottomed flask was charged with **SI-21** (246 mg, 0.5 mmol, 1.0 equiv), Me₃NO·2H₂O (556 mg, 5.0 mmol, 10 equiv) and DABCO (305 SI-46

mg, 5 mmol, 2.5 equiv) in acetone/CH₃CN/<u>*0.5 M buffer solution</u> (10.0 mL, 0.05 M, 4:3:3). Then, K₂OsO₄·H₂O (18.4 mg, 0.05 mmol, 0.1 equiv) was added and the flask was sealed with a plastic cap and stirred vigorously at 65 °C. After 12 h, another portion of K₂OsO₄·H₂O (18.4 mg, 0.05 mmol, 0.1 equiv) was added and stirred for 8 h before quenching with the addition of saturated aqueous Na₂SO₃ (10 mL). The reaction mixture was extracted with ether (3 × 20 mL). The combined organic layers were washed with brine and dried over Na₂SO₄, filtered and concentrated *in vacuo* to afford crude diol.

[*0.5 M buffer solution: pH=3, Na₂HPO₄ (280 mg) and citric acid (840 mg) was dissolved in H_2O (10 mL).]

The crude diol was dissolved in CH₂Cl₂ (10.0 mL, 0.05 M). *N*,*N*-Carbonyldiimidazole (305 mg, 2.5 mmol, 5.0 equiv) and DMAP (6.1 mg, 0.05 mmol, 0.1 equiv) were then added. The solution was stirred at room temperature for 7 h before quenching with water (20 mL). The aqueous layer was separated, then extracted further with hexane (2 \times 30 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated *in vacuo*. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 20:1 \rightarrow 15:1 \rightarrow 9:1) afforded desired product **SI-22** (91 mg, 33% over 2 steps) as a colorless oil.

Physical state: colorless oil

 $\mathbf{R}_f = 0.32$ (Hex/EtOAc = 7:3; anisaldehyde)

HRMS (*m/z*): calc. for C₂₉H₅₀NaO₆Si₂ [M+Na]⁺= 573.3038; found, 573.3041

 $[\alpha]_{D} = +2.5^{\circ} (c = 0.52, CH_2Cl_2)$

¹**H NMR** (600 MHz, CDCl₃) δ 5.97 (s, 1H), 4.76 (d, J = 5.1 Hz, 1H), 4.23 (dd, J = 7.6, 4.8 Hz, 1H), 2.81-2.75 (m, 1H), 2.56 (d, J = 14.5 Hz, 1H), 2.33 (d, J = 14.5 Hz, 1H), 1.94-1.87 (m, 1H), 1.67 – 1.47 (m, 2H), 1.45 (s, 3H), 1.32 (ddd, J = 15.2, 10.8, 8.0 Hz, 1H), 1.24 – 1.20 (m, 1H), 1.15 (d, J = 7.7 Hz, 3H), 1.11 – 1.05 (m, 1H), 1.03 (s, 3H), 0.94 (s, 9H), 0.91 (s, 3H), 0.63 (t, J = 9.0 Hz, 1H), 0.21 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 153.7, 151.6, 140.7, 93.7, 87.2, 78.3, 75.3, 72.0, 57.1, 41.2, 41.1, 38.2, 28.9, 28.7, 26.0, 19.6, 19.1, 18.3, 17.4, 15.8, 15.1, 11.7, 2.9, -4.1, -5.1.

Synthesis of **16'** and **SI-23**: To a solution of **SI-22** (50 mg, 0.091 mmol, 1.0 equiv) in CH₂Cl₂ (3.7 mL, 0.025 M) was added BF₃·Et₂O (112 μ L, 3.38 mmol, 10 equiv) dropwise at -78 °C. The reaction mixture was stirred at this temperature for 2 min before warming to room temperature. After stirring for 5 min, the reaction was cooled to -78 °C and a 1:1 mixture of Et₃N/MeOH (0.5 mL) was added. The reaction mixture was warmed to room temperature and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 30:1 \rightarrow 15:1) afforded **16'** (6.0 mg, 14%) and **SI-23** (12.9 mg, 27%).

Spectroscopic data for 16':

Physical state: colorless oil

 $\mathbf{R}_f = 0.53$ (Hex/EtOAc = 4:1; anisaldehyde)

HRMS (*m/z*): calc. for C₂₆H₄₁O₅Si [M+H]⁺= 461.2718; found, 461.2722

 $[\alpha]_{D} = +39.6^{\circ} (c = 0.5; CH_2Cl_2)$

¹**H NMR** (600 MHz, CDCl₃) δ 5.44 (d, J = 1.7 Hz, 1H), 4.88 (d, J = 5.2 Hz, 1H), 4.20 (dd, J = 7.6, 3.8 Hz, 1H), 3.16 (d, J = 18.4 Hz, 1H), 2.88-2.82 (m, 1H), 2.62 (d, J = 18.2 Hz, 1H), 2.32 (dd, J = 11.4, 3.8 Hz, 1H), 2.20 – 1.99 (m, 2H), 1.71 (s, 3H), 1.56 – 1.43 (m, 2H), 1.10 (s, 3H), 1.04 (s, 3H), 1.00 – 0.92 (m, 10H) 0.85 (d, J = 8.0 Hz, 3H), 0.71 – 0.62 (m, 1H), 0.11 (s, 3H), 0.05 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 208.0, 153.2, 134.1, 127.2, 93.3, 91.4, 75.3, 67.4, 54.9, 49.2, 38.2, 36.6, 28.3, 25.7, 25.1, 24.9, 23.6, 23.3, 18.2, 16.2, 15.1, 9.5, -4.9, -4.9.

Spectroscopic data for **SI-23**:

Physical state: colorless foam

 $\mathbf{R}_f = 0.65$ (Hex/EtOAc = 4:1; anisaldehyde)

HRMS (m/z): calc. for C₂₉H₄₉O₅Si₂ [M+H]⁺= 533.3118; found, 533.3121

 $[\alpha]_{D} = +18.0^{\circ} (c = 1.0, CH_2Cl_2)$

¹**H NMR** (600 MHz, CDCl₃) δ 6.42 (s, 1H), 5.03 (s, 1H), 4.90 (s, 1H), 4.70 (d, J = 5.2 Hz, 1H), 4.24 (dd, J = 7.8, 4.8 Hz, 1H), 3.20 (dt, J = 17.0, 2.2 Hz, 1H), 2.81 (dt, J = 17.0, 1.7 Hz, 1H), 2.78 – 2.72 (m, 1H), 1.94 – 1.87 (m, 1H), 1.67 – 1.48 (m, 2H), 1.40 – 1.35 (m, 1H), 1.25 – 1.23 (m, 1H), 1.09 (dd, J = 9.7, 6.1 Hz, 1H), 1.04 (s, 3H), 0.98 (d, J = 7.6 Hz, 3H), 0.93 – 0.92 (m, 12H), 0.65 – 0.62 (m, 1H), 0.21 (s, 9H), 0.07 (s, 3H), 0.05 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 155.9, 153.5, 144.9, 136.9, 106.9, 93.0, 87.7, 76.1, 72.0, 48.2, 41.1, 40.2, 37.6, 28.8, 26.0, 19.5, 19.1, 18.2, 17.4, 15.7, 15.2, 11.0, 2.8, -4.2, -5.1.

Synthesis of **SI-22** and **SI-22a**: To a solution of **SI-23** (87.5 mg, 0.16 mmol, 1 equiv) in THF (3.3 mL, 0.05 M) was added Co(acac)₂ (8.5 mg, 0.033 mmol, 0.2 equiv) and molecular sieves (4Å, 0.44 g, 5 wt equiv). PhSiH₃ (81 µL, 0.66 mmol, 4 equiv) was added slowly while bubbling O₂ through the stirred solution. Then, the reaction was stirred under O₂ atmosphere (no bubbling) at ambient temperature for 10 min. The suspension was then filtered through Celite[®] to remove the molecular sieves and the filtrate was concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = $20:1 \rightarrow 15:1 \rightarrow 9:1 \rightarrow 1:1$) afforded a mixture of **SI-22** and **SI-22a** as a colorless oil [72.3 mg, 80% (**SI-22:SI-22a** = 1:3, the ratio was determined by ¹H NMR spectroscopy)].

Spectroscopic data for SI-22a:

Physical state: colorless oil

 $\mathbf{R}_f = 0.27$ (Hex/EtOAc = 7:3; anisaldehyde)

HRMS (*m/z*): calc. for C₂₉H₅₀NaO₆Si₂ [M+Na]⁺= 573.3038; found, 573.3041

 $[\alpha]_{D} = +1.5^{\circ} (c = 0.39, CH_2Cl_2)$

¹**H NMR** (600 MHz, CDCl₃) δ 6.07 (s, 1H), 4.67 (d, J = 5.3 Hz, 1H), 4.22 (dd, J = 7.6, 4.8 Hz, 1H), 2.78 – 2.72 (m, 1H), 2.63 (d, J = 15.1 Hz, 1H), 2.34 (d, J = 15.1 Hz, 1H), 1.97 – 1.85 (m, 1H), 1.73 – 1.52 (m, 2H), 1.43 (s, 3H), 1.36 (ddd, J = 15.1, 11.0, 8.0 Hz, 1H), 1.22 (t, J = 5.4 Hz, 1H), 1.11 – 1.01 (m, 7H), 0.93 (s, 9H), 0.91 (s, 3H), 0.63 (t, J = 7.8 Hz, 1H), 0.20 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 153.4, 151.9, 141.6, 93.2, 86.6, 77.3, 75.2, 72.1, 57.8, 41.5, 41.1, 38.1, 28.9, 27.0, 26.0, 19.6, 19.0, 18.3, 17.4, 15.9, 15.1, 11.1, 2.9, -4.1, -5.1.

Synthesis of 16' [synthesis via recovered SI-22 and SI-22a (SI-22 : SI-22a = 1:3)]: To a solution of a mixture of SI-22 and SI-22a (54 mg, 0.098 mmol, 1.0 equiv) in CH₂Cl₂ (3.9 mL, 0.025 M) was added BF₃·Et₂O (120 μ L, 0.98 mmol, 10 equiv) dropwise at -78 °C. The reaction mixture was stirred at this temperature for 2 min before warming to -40 °C. After stirring for 5 min, the reaction was cooled to -78 °C and a 1:1 mixture of Et₃N/MeOH (0.5 mL) was added. The reaction mixture was warmed to room temperature and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 30:1 \rightarrow 15:1) afforded 16' (12.1 mg, 16%) and SI-23 (26.8 mg, 51%).

Synthesis of **17**': To a solution of **16**' (45.4 mg, 0.099 mmol, 1.0 equiv) in benzene (5 mL, 0.02 M) was added SeO₂ (55 mg, 0.49 mmol, 5.0 equiv). The flask was sealed with a plastic cap and the suspension was stirred at 80 °C for 21 h. The suspension was cooled to room temperature and was filtered through Celite[®], washed with EtOAc, and then concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 9:1 \rightarrow 4:1) afforded alcohol **17**' (22.0 mg, 47%) as a colorless oil.

Synthesis of **18**': To a solution of **17'** (20.7 mg, 0.043 mmol, 1.0 equiv) in pyridine (1.4 mL, 0.03 M) was added Ac₂O (20 μ L, 0.22 mmol, 5.0 equiv) and DMAP (20.7 mg, 4.3 μ mol, 1.0 equiv). After stirring for 10 min, the mixture was quenched by saturated aqueous NaHCO₃ (2.0 mL) and then extracted with EtOAc (3 × 2 mL). The combined organic layers were washed with brine (2 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, hexanes/EtOAc = 15:1 \rightarrow 9:1) afforded **18'** (15.6 mg, 70%) as a colorless oil.

Spectroscopic data for 17:

Physical state: colorless oil

 $\mathbf{R}_f = 0.43$ (Hex/EtOAc = 7:3; anisaldehyde)

HRMS (m/z): calc. for C₂₆H₄₁O₆Si [M+H]⁺= 477.2667; found, 477.2665

 $[\alpha]_{D} = +92.2^{\circ} (c = 0.37, CH_2Cl_2)$

¹**H** NMR (600 MHz, CDCl₃) δ 5.63 – 5.58 (m, 1H), 4.99 (d, *J* = 5.1 Hz, 1H), 4.26 – 4.18 (m, 2H), 2.94-2.88 (m, 1H), 2.47 (dd, *J* = 11.4, 3.8 Hz, 1H), 2.15-2.06 (m, 2H), 1.79 (s, 3H), 1.62 – 1.47 (m, 2H), 1.12 (s, 3H), 1.05 (s, 3H), 0.97-0.92 (s, 10H), 0.85 (d, *J* = 8.0 Hz, 3H), 0.74 – 0.66 (m, 1H), 0.12 (s, 3H), 0.06 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 207.1, 152.8, 137.9, 129.3, 90.8, 89.1, 86.3, 73.1, 67.3, 49.9, 38.2, 37.8, 28.2, 25.7, 25.0, 24.7, 23.2, 23.1, 18.2, 15.1, 13.8, 10.2, -4.9.

Spectroscopic data for 18'

Physical state: colorless oil

 $\mathbf{R}_f = 0.54$ (Hex/EtOAc = 4:1; anisaldehyde)

HRMS (*m/z*): calc. for C₂₈H₄₂O₇Si [M+H]⁺= 519.2772; found, 519.2763

 $[\alpha]_{D} = +42.9^{\circ} (c = 0.17, CH_2Cl_2)$

¹**H NMR** (600 MHz, CDCl₃) δ 5.91 (s, 1H), 5.35 (d, J = 4.9 Hz, 1H), 5.16 (s, 1H), 4.21 (dd, J = 7.5, 3.9 Hz, 1H), 2.90-2.84 (m, 1H), 2.22 (dd, J = 11.4, 4.0 Hz, 1H), 2.18 (s, 3H), 2.10 – 1.99 (m, 2H), 1.75 (s, 3H), 1.57 – 1.52 (m, 2H), 1.08 (s, 3H), 1.04 (s, 3H), 0.97 (dd, J = 11.3, 8.6 Hz, 1H), 0.94 (s, 9H), 0.81 (d, J = 8.0 Hz, 3H), 0.71 – 0.62 (m, 1H), 0.11 (s, 3H), 0.06 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 206.9, 172.3, 152.7, 133.4, 133.0, 90.8, 89.0, 88.9, 73.0, 67.1, 50.0, 38.7, 37.7, 28.2, 25.7, 25.2, 25.0, 23.4, 23.2, 20.5, 18.2, 15.1, 14.2, 9.6, -4.9.

Synthesis of **SI-24**: A plastic Falcon[®] tube was charged with **18'** (16.6 mg, 0.032 mmol, 1.0 equiv) and CH₃CN (0.64 mL, 0.05 M). 47% aqueous HF (70 μ L, 1.92 mmol, 60 equiv) was added and the mixture was heated to 50 °C. After stirring for 16 h, the reaction was cooled to room temperature and quenched by the slow addition of saturated aqueous NaHCO₃ (4 mL). After dilution with EtOAc (5 mL), the organic layer was separated, then the aqueous layer was extracted with EtOAc (3 × 5 mL). The combined organic fractions were dried over Na₂SO₄, filtered, and concentrated *in vacuo*.

Purification of the crude product by flash column chromatography (silica gel, hex/EtOAc = $9:1 \rightarrow 4:1 \rightarrow 7:3$) afforded recovered **18'** (4.1 mg, 25%) and **SI-24** (9.4 mg, 73%) as a colorless oil.

Physical state: colorless oil

 $\mathbf{R}_f = 0.32$ (Hex/EtOAc = 3:2; anisaldehyde)

HRMS (*m/z*): calc. for C₂₂H₂₉O₇ [M+H]⁺= 405.1913; found, 405.1920

 $[\alpha]_{D} = +18.8^{\circ} (c = 0.51, CH_2Cl_2)$

¹**H** NMR (600 MHz, CDCl₃) δ 5.82 (s, 1H), 5.39 (d, J = 4.7 Hz, 1H), 5.15 (s, 1H), 4.18 (d, J = 8.2 Hz, 1H), 3.12 – 3.03 (m, 1H), 2.40 (dd, J = 11.3, 3.8 Hz, 1H), 2.18 (s, 3H), 2.16 – 2.01 (m, 2H), 1.77 (s, 3H), 1.65 – 1.51 (m, 2H), 1.09 (s, 3H), 1.06 (s, 3H), 0.95 (dd, J = 11.4, 8.5 Hz, 1H), 0.83 (d, J = 8.1 Hz, 3H), 0.74 – 0.70 (s, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ 210.7, 172.2, 152.4, 134.0, 132.3, 91.0, 89.0, 88.4, 72.3, 67.4, 48.7, 37.7, 37.0, 28.4, 25.3, 25.1, 23.0, 22.3, 20.4, 14.9, 14.2, 9.7.

Synthesis of **4'**: To a solution of **SI-24** (19.1 mg, 0.047 mmol, 1.0 equiv) in CHCl₃ (200 μ L) was added Martin's sulfurane (100 mg, 0.15 mmol, 3.2 equiv). The solution was heated to reflux for 1 h. Additional Martin's sulfurane (150 mg, 0.23 mmol, 4.8 equiv) was added portion-wise over 2 h until starting material was fully consumed. The CHCl₃ was removed under reduced pressure, then THF (500 μ L) and 10% aqueous NaOH (500 μ L) were added. The mixture was stirred for 1 h. EtOAc was added and the layers were separated. The aqueous layer was extracted with EtOAc (5 × 2 mL). The combined organic fractions were dried over Na₂SO₄, filtered, and concentrated to provide crude

product. The crude material was purified by column chromatography (Hex/EtOAc = $10:1 \rightarrow 5:1 \rightarrow 2:1 \rightarrow 1:1$) to afforded **4'** (7.1 mg, 54%) as a white solid.

Physical state: white solid (m.p. = 192-195 °C, decomp.)

 $\mathbf{R}_f = 0.38$ (Hex/EtOAc = 1:1; anisaldehyde)

HRMS (m/z): calc. for C₁₉H₂₇O₄ [M+H]⁺= 319.1904; found, 319.1904

 $[\alpha]_{D} = -10.0^{\circ} (c = 0.2, CH_2Cl_2)$

¹**H NMR** (600 MHz, CDCl₃) δ 5.83 (d, J = 1.7 Hz, 1H), 5.77 (dt, J = 4.9, 1.6 Hz, 1H), 4.44 (d, J = 4.4 Hz, 1H), 4.09 (s, 1H), 4.04 – 4.00 (m, 1H), 3.47 (d, J = 10.2 Hz, 1H), 2.53 (d, J = 11.4 Hz, 1H), 2.18 – 1.87 (m, 4H), 1.83 (d, J = 1.5 Hz, 3H), 1.78 (s, 3H), 1.63 (ddd, J = 14.2, 12.7, 3.8 Hz, 1H), 1.11 (s, 3H), 1.05 (s, 3H), 0.93 (dd, J = 12.0, 8.3 Hz, 1H), 0.69 – 0.62 (m, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ 208.4, 138.3, 131.5, 123.2, 83.8, 81.6, 76.2, 69.3, 44.2, 37.0, 28.4, 25.5, 24.5, 23.5, 23.2, 22.1, 15.4, 15.1

Synthesis of **1**': To a solution of **4**' (1.7 mg, 5.3μ mol, 1.0 equiv) in benzene (1.2 mL, 0.005 M) was added SeO₂ (5.9 mg, 0.053 mmol, 10.0 equiv). The suspension was stirred at 80 °C for 9 h. After cooling to room temperature, the reaction mixture was filtered through Celite[®], washed with EtOAc, and then concentrated under reduced pressure. Purification by PTLC (CH₂Cl₂/MeOH = 9:1) yielded **1**' (1.1 mg, 62%) as a colorless oil.

Physical state: colorless oil

 $\mathbf{R}_f = 0.38$ (DCM/MeOH = 9:1; anisaldehyde)

HRMS (*m/z*): calc. for C₁₉H₂₆NaO₅ [M+Na]⁺= 357.1678; found, 357.1670

 $[\alpha]_{D} = -12.7^{\circ} (c = 0.11, CH_2Cl_2)$

¹**H** NMR (600 MHz, CDCl₃) δ 6.07 (d, J = 4.8 Hz, 1H), 5.81 (d, J = 1.6 Hz, 1H), 4.43 (s, 1H), 4.22 – 4.08 (m, 3H), 3.85 (s, 1H), 2.10 – 1.89 (m, 4H), 1.83 (d, J = 1.5 Hz, 3H), 1.66-1.61 (m, 1H), 1.11 (s, 3H), 1.06 (s, 3H), 0.95 (dd, J = 12.0, 8.3 Hz, 1H), 0.71-0.67 (m, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ 208.0, 140.4, 138.7, 130.9, 127.0, 83.7, 81.0, 75.2, 69.3, 67.1, 44.3, 36.7, 28.4, 25.6, 24.6, 23.2, 23.1, 15.5, 15.1.

Synthesis of **SI-25**:³ Compound **1**' (1.5 mg, 4.5 μ mol) was dissolved in a solution of *p*-toluenesulfonic acid monohydrate in acetone (0.2 mg/mL, 0.5 mL) and stirred at room temperature for 0.5 h. The reaction was quenched by few drops of saturated aqueous NaHCO₃ and concentrated under reduced pressure. The residue was dissolved in EtOAc (1.0 mL), washed with brine and concentrated to provide crude product. Purification by PTLC (Hex/EtOAc = 7:3) to afforded recovered **1**' (0.4 mg, 27%) and **SI-25** (1.2 mg, 71%) as a colorless oil.

Physical state: colorless oil

 $\mathbf{R}_f = 0.71$ (Hex/EtOAc = 7:3; anisaldehyde)

HRMS (*m*/*z*): calc. for C₂₂H₃₀NaO₅ [M+Na]⁺= 397.1997; found, 397.1997

 $[\alpha]_{D} = -19.3^{\circ} (c = 0.15, CH_2Cl_2)$

¹**H NMR** (600 MHz, CDCl₃) δ 5.82 (dd, J = 3.9, 1.9 Hz, 1H), 5.79 (d, J = 1.6 Hz, 1H), 4.26 (s, 1H), 4.22 – 4.06 (m, 3H), 3.95 (s, 1H), 2.19 – 2.13 (m, 1H), 2.05 – 1.90 (m, 2H), 1.83 (d, J = 1.5 Hz, 3H), 1.66 – 1.57 (m, 1H), 1.42 (s, 3H), 1.35 (s, 3H), 1.11 (s, 3H), 1.05 (s, 3H), 0.92 (dd, J = 12.0, 8.3 Hz, 1H), 0.70-0.66 (m, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 208.5, 139.4, 136.1, 130.4, 122.0, 100.5, 82.8, 80.4, 73.6, 69.5, 64.1, 44.3, 35.7, 28.4, 26.6, 25.8, 24.5, 23.3, 23.2, 21.0, 15.5, 15.4.

Synthesis of **SI-26**: ³ To a solution of **SI-25** (1.5 mg, 4 µmol, 1.0 equiv) and 1methylcyclohexane-1-carboxylic anhydride (3.2 mg, 12 µmol, 3.0 equiv) in THF (0.4 mL) was added a solution of LiHMDS in THF (1.0 M, 22 µL, 22 µmol, 5.0 equiv) at room temperature. The solution was stirred at room temperature for 10 min, diluted with Et₂O (1 mL), and washed with H₂O. The aqueous phase was extracted with Et₂O (3×1 mL). The combined organic phases were concentrated under reduced pressure. Purification by PTLC (Hex/EtOAc = 4:1) to afforded **SI-26** (1.1 mg, 51%) as a white oil.

Physical state: white oil

 $\mathbf{R}_f = 0.63$ (Hex/EtOAc = 7:3; anisaldehyde)

HRMS (m/z): calc. for C₃₀H₄₃O₆ [M+H]⁺= 521.2879; found, 521.2875

 $[\alpha]_{D} = +2.4^{\circ} (c = 0.21, CH_2Cl_2)$

¹**H** NMR (600 MHz, CDCl₃) δ 5.91 (d, J = 1.6 Hz, 1H), 5.81 – 5.77 (m, 1H), 5.56 (s, 1H), 4.26 – 4.10 (m, 3H), 4.03 (s, 1H), 2.25 (dt, J = 14.3, 3.7 Hz, 1H), 2.11 – 1.86 (m,

3H), 1.73 (d, *J* = 1.6 Hz, 3H), 1.62 – 1.53 (m, 5H), 1.47 (s, 3H), 1.41 (s, 3H), 1,36-1.21 (m, 5H), 1.19 (s, 3H), 1.08 (s, 3H), 1.04 (s, 3H), 0.94 – 0.85 (m, 1H), 0.69-0.65 (m, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 208.7, 178.2, 136.4, 136.1, 132.9, 121.7, 100.3, 83.8, 81.8, 73.7, 68.9, 64.3, 44.0, 43.6, 35.7, 35.6, 35.4, 34.9, 28.4, 26.7, 26.0, 25.8, 25.6, 24.8, 23.3, 23.2, 23.1, 20.8, 15.6, 15.4.

Synthesis of **3'**: ³ A solution of **SI-26** (0.4 mg, 0.8 μ mol) in methanol (0.2 mL), which contains 1 % of concentrated aqueous hydrochloric acid solution, was stirred at room temperature for 1 h. The solution was concentrated under reduced pressure. Purification by PTLC (Hex/EtOAc = 5:5) to afforded **3'** (0.4 mg, 99%) as a colorless oil.

Physical state: colorless oil

 $\mathbf{R}_f = 0.33$ (Hex/EtOAc = 1:1; anisaldehyde)

HRMS (*m/z*): calc. for C₂₇H₃₈NaO₆ [M+Na]⁺= 481.2566; found, 481.2559

 $[\alpha]_{D} = +5.4^{\circ} (c = 0.13, CH_2Cl_2)$

¹**H** NMR (600 MHz, CDCl₃) δ 6.07 (d, *J* = 4.0 Hz, 1H), 5.90 (d, *J* = 1.6 Hz, 1H), 5.43 (s, 1H), 4.18 – 4.12 (m, 3H), 4.08 (s, 1H), 2.15 (dt, *J* = 14.2, 3.8 Hz, 1H), 2.09 – 1.88 (m, 3H), 1.75 (d, *J* = 1.5 Hz, 3H), 1.67 – 1.24 (m, 10H), 1.21 (s, 3H), 1.08 (s, 3H), 1.05 (s, 3H), 0.93 (dd, *J* = 12.0, 8.3 Hz, 1H), 0.70-0.66 (m, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 207.6, 179.0, 139.1, 135.4, 132.8, 128.2, 84.5, 82.9, 77.0 (verify by HSQC), 68.7, 67.5, 43.8, 43.7, 36.0, 35.6, 35.6, 28.3, 25.8, 25.7, 24.8, 23.3, 23.2, 23.1, 15.6, 15.2 (one signal does not appear due to incidental overlap).

Biological experiments:

Table S1. Biological testing of C20-hydroxylated ingenol analogs **5**, **6**, **9**, **10**, **13** and desmethyl compound **3'** compared to reference compound **3**, illuminating the minimally required functional groups on the ingenane core (N/A = not available; green = high potency; yellow = intermediate potency; red = low potency/inactive). This is the full table version of Table 1 (shown in the main text) including E_{max} values.

Table S2. Expression of mRNA of classical and novel PKC isoforms in primary human keratinocytes and neutrophils, respectively. **(A)** Raw data (CT values) from quantitative PCR (qPRC). **(B)** Calculated relative expression normalized to PKCδ expression level (normalization was separately performed for each cell type)

A) <u>Raw data</u> (C _T values)	Primary human keratinocytes (HeKa)			Primary human neutrophils (PMN)	
Gene	Donor 1	Donor 2	Donor 3	Donor 4	Donor 5
PRKCalpha	30.07	29.69	30.38	34.00	34.00
PRKCbeta	35.21	36.94	35.97	25.00	26.50
PRKCgamma	40.00	40.00	40.00	40.00	40.00

PRKCdelta	28.56	28.77	28.91	30.26	30.00
PRKCeta	28.75	28.94	28.54	30.00	30.00
PRKCtheta	31.71	31.95	32.00	34.87	34.00
PRKCepsilon	32.00	32.51	31.14	36.00	34.00
GAPDH	21.94	22.87	21.81	30.40	30.00

B) <u>Relative</u> <u>levels</u> $(x = 2^{-\Delta\Delta C}T)$	Primary human keratinocytes (HeKa)			Primary human neutrophils (PMN)	
Gene	Donor 1	Donor 2	Donor 3	Donor 4	Donor 5
PRKCalpha	0.35	0.53	0.36	0.08	0.06
PRKCbeta	0.01	0.00	0.01	38.26	11.32
PRKCgamma	nd	nd	nd	nd	nd
PRKCdelta	1.00	1.00	1.00	1.00	1.00
PRKCeta	0.88	0.89	1.29	1.20	1.00
PRKCtheta	0.11	0.11	0.12	0.04	0.06
PRKCepsilon	0.09	0.08	0.21	0.02	0.06

Methods

Neutrophil oxidative burst:

Primary human PMN's (polymorphonuclear leukocytes) were isolated and purified from fresh buffy coats by sequential sedimentation, density centrifugation and lysis of contaminating erythrocytes. Buffy coats were incubated with 2% methocel for 30-45 min to differentially sediment red blood cells. The leukocyte-rich supernatant was transferred to LymphoprepTM tubes to remove mononuclear cells by density centrifugation (400xg, 30 min). The pellet was re-suspended and any remaining erythrocytes lysed using 0.2% NaCl for 30 sec before restoring isotonicity by the

addition of 1.2% NaCl. This step was repeated until the cell pellet appeared relatively free of red blood cells. Cells were re-suspended in DPBS (Dulbecco's Phosphate Buffered Saline; without Ca²⁺, Mg²⁺) and the concentration adjusted to 1.4x10⁶ cells/ml in HBSS (Hanks Balanced Salt solution; with Ca²⁺, Mg²⁺) containing 0.1% BSA (Bovine Serum Albumin) and 5mM glucose just prior to assay initiation. Titrated reference and test compounds were pre-mixed with HE (hydroethidine; 10 μ M final assay concentration) before addition to 96-well plates containing 2.5x10⁵ cells. Following 40 min incubation at RT, changes in the respiratory burst was estimated by measuring fluorescence at 579 nm (excitation: 485 nm) using an Envision plate reader.

Test compound titration curves were fitted to a four-parameter sigmoidal curve after normalizing the effect of the test compound to the effect of the positive control ($5x10^{-7}$ M ingenol mebutate). Relative EC50 is defined as the concentration of test compound producing an effect that is midway between the fitted top and bottom. Absolute EC50 is the concentration of test compound that provokes a response corresponding to 50% of the maximal effect associated with the positive control ($5x10^{-7}$ M ingenol mebutate). Results represent average of two independent determinations run in duplicate on individual plates.

HeKa cytokine release (IL-8):

Primary human epidermal keratinocytes (HeKa), were seeded (10.000 cells/well) in 96well plates the day before the assay. Test compounds were diluted in DMSO (dimethyl sulfoxide) and further diluted in assay medium and pipetted into wells of 96 well-plates containing HeKa cells. The plates were incubated for 6h at 37°C in humidified air with 5% CO2. Plates were centrifuged briefly to spin down cells at 4°C, the supernatant was removed and analyzed by Meso Scale Discovery (MSD) 4-spot cytokine assay (Proinflammatory II Ultra Sensitive kit, MSD, MD, USA). The MSD assay employs a sandwich immunoassay format where capture antibodies are coated in a patterned array on the bottom of the wells of a 4-Spot- Multi-MSD plate. Standard samples were incubated in the MULTI-SPOT plates as well, and the cytokine (IL-8) binds to its corresponding capture antibody spot. The cytokine level was quantitated on a SECTORTM Imager using a cytokine-specific Detection Antibody labeled with MSD SULFO-TAGTM reagent.

Test compound titration curves were fitted to a four-parameter sigmoidal curve after normalizing the effect of the test compound to the effect of the positive control $(1.5 \times 10^{-7} \text{ M PEP0005})$. Results represent average of two independent determinations run in duplicate on individual plates.

Human PKC delta (PKC\delta) activation

The potency and efficacy of test compounds in stimulating human recombinant protein kinase C (PKC) delta isoform was determined by measuring phosphorylation of a PKC substrate peptide using 33P-ATP. Data points for the EC50 determinations were performed in duplicate. The assay was performed at Millipore (Dundee, UK).

Human PKC delta (PKCô, Millipore cat# 14-504) was diluted in 20 mM HEPES, 0.03% Triton X-100. Amount of enzyme in each assay was 7.25 ng, final assay volume 25 µl. All compounds for testing were diluted to 1 mM in 100% DMSO as an intermediary dilution. The compounds were then diluted further to 50 µM, and then serially diluted in 100% DMSO in semi-logarithmic decrements for 12 points. 0.5 µL of each concentration, in duplicate, was pipetted into a dry 96 well assay plate using a TTP Mosquito. Control and blank wells received 0.5 µL of 100% DMSO instead of compound. This was followed by addition of 14.5 µL of assay mixture, containing appropriately diluted enzyme and 20 mM HEPES pH 7.4, 0.03% Triton X-100, 0.05 mg/mL phosphatidylserine, and 50 μM of the substrate peptide ERMRPRKRQGSVRRRV. The assay was started with the addition of 10 µL ATP containing γ -33P-ATP (specific activity approx. 500 cpm/pmol) to a final assay concentration of 15 µM. The reaction was allowed to proceed at room temperature for 40 min before the addition of 5 µL 3% ortho-phosphoric acid. Blank wells were acid blanks, and had 5 µL 3% ortho-phosphoric acid added before the addition of ATP. 10 μ L of the stopped reaction products was transferred to a P30 filtermat which was then washed 4 times in 75 mM ortho-phosphoric acid, and once in methanol before drying. The filter was read by liquid scintillation counting using a Wallac Trilux.

Human PKC beta II (PKCß II) activation

The potency and efficacy of test compounds in stimulating human recombinant protein kinase C (PKC) beta II isoform was determined by measuring phosphorylation of the PKC substrate histone H1 using 33P-ATP. Data points for the EC50 determinations were performed in duplicate. The assay was performed at Millipore (Dundee, UK).

Human PKC beta II (PKC β II, Millipore cat# 14-496) was incubated with 20 mM HEPES pH 7.4, 0.03% Triton X-100, 0.1 mM CaCl₂, 0.1 mg/mL phosphatidylserine, 0.1 mg/mL histone H1, 10 mM Mg(OAc)₂. Amount of enzyme in each assay was 1.8 ng (final assay volume is 25 µL). The compounds were then diluted to 500 µM, and then serially diluted in 100% DMSO in semi-logarithmic decrements for 12 points. 0.5 µL of each concentration, in duplicate, was pipetted into a dry 96 well assay plate using a TTP Mosquito. Control and blank wells received 0.5 µL of 100% DMSO instead of

compound. 14.5 μ l kinase in assay buffer was added to each well. The assay was started with the addition of 10 μ L ATP containing γ -33P-ATP] (specific activity approx. 500 cpm/pmol), to a final assay concentration of 70 μ M. The reaction was allowed to proceed at room temperature for 40 min before the addition of 5 μ L 3% orthophosphoric acid. Blank wells were acid blanks, and had 5 μ L 3% orthophosphoric acid added before the addition of ATP. 10 μ L of the stopped reaction products was transferred to a P30 filtermat which was then washed 4 times in 75 mM ortho-phosphoric acid, and once in methanol before drying. The filter was read by liquid scintillation counting using a Wallac Trilux.

PKC isoform expression in primary human keratinocytes and polymorphonuclear cells

RNA was extracted from freshly isolated PMN (two different donors) or mono-layers of primary human epidermal keratinocytes (three different donors). Following RNA reverse-transcription, relative gene expression levels of classical (α , β , γ) and novel (δ , η , ϵ , θ) PKC isoforms was determined by real-time quantitative PCR (qPCR) using validated gene expression assays (Applied Biosystems; Hs99999905_m1 / GAPDH, Hs_00925195_m1 / PRKCalpha, Hs_00176998_m1 / PRKCbeta, Hs_00177010_m1 / PRKCgamma, Hs_00178914_m1 / PRKCdelta, Hs_00178933_m1 / PRKCeta, Hs_00178455_m1 / PRKCepsilon, Hs_00989970_m1 / PRKCtheta) and ABI PRISM® 7900HT sequence detection system. Data was normalized to GAPDH and relative quantitation of PKC isoform gene expression was done using the Comparative ($\Delta\Delta C_T$) Method (cf. Applied Biosystems, <u>User Bulletin #2</u>).

X-ray Crystallographic Data

Figure S1. X ray structure for **SI-4**

Table S3. Crystal data and struct	ture refinement for SI-4 .	
Identification code	CCDC #1415412	
Empirical formula	C22 H30 O3	
Formula weight	342.46	
Temperature	273(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21	
Unit cell dimensions	a = 6.6579(4) Å	$\square = 90^{\circ}.$
	b = 8.2473(5) Å	$\Box = 90.413(3)^{\circ}.$
	c = 17.4458(10) Å	$\Box = 90^{\circ}.$
Volume	957.92(10) Å ³	
Z	2	
Density (calculated)	1.187 Mg/m ³	
Absorption coefficient	0.077 mm ⁻¹	
F(000)	372	
	SI-63	

Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.000° Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole 0.330 x 0.300 x 0.250 mm³ 2.335 to 26.374°. -8<=h<=8, -10<=k<=10, -21<=l<=21 16246 3911 [R(int) = 0.0515] 99.9 % Multi-scan Full-matrix least-squares on F² 3911 / 1 / 231 1.052 R1 = 0.0324, wR2 = 0.0810 R1 = 0.0335, wR2 = 0.0821 -0.2(4) n/a 0.238 and -0.153 e.Å⁻³

Table S4. Crystal data and structure refinement for 26.

Identification code	CCDC #1415413		
Empirical formula	C20 H28 O2		
Formula weight	300.42		
Temperature	100(2) K		
Wavelength	1.54178 Å		
Crystal system	Orthorhombic		
Space group	P 21 21 21		
Unit cell dimensions	a = 10.1761(2) Å	$\Box = 90^{\circ}.$	
	b = 12.9916(3) Å	$\Box = 90^{\circ}.$	
	c = 12.9959(3) Å	$\Box = 90^{\circ}.$	
Volume	1718.11(7) Å ³		
Z	4		
Density (calculated)	1.161 Mg/m ³		
Absorption coefficient	0.564 mm ⁻¹		
F(000)	656		
Crystal size	0.400 x 0.350 x 0.320	0.400 x 0.350 x 0.320 mm ³	
Theta range for data collection	5.521 to 68.411°.		
Index ranges	-12<=h<=12, -12<=k<=15, -15<=l<=15		
Reflections collected	10817		
Independent reflections	3077 [R(int) = 0.0250]		
Completeness to theta = 66.000°	98.8 %		

SI-65

Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole Semi-empirical from equivalents 0.954 and 0.900Full-matrix least-squares on F² 3077 / 0 / 208 0.996R1 = 0.0265, wR2 = 0.0660 R1 = 0.0266, wR2 = 0.0661 0.05(4) [abs stereochem confirmed] 0.0040(13) $0.179 \text{ and } -0.117 \text{ e.Å}^{-3}$

Figure S3. X ray structure for 23

Table S5. Crystal data and structure refinement for 23.

Identification code	CCDC #1415411			
Empirical formula	C21 H28 O5			
Formula weight	360.43			
Temperature	100(2) K			
Wavelength	1.54178 Å			
Crystal system	Monoclinic			
Space group	P 21			
Unit cell dimensions	a = 6.9165(3) Å	$\Box = 90^{\circ}.$		
	b = 8.7203(3) Å			
94.5150(10)°.				
	c = 15.8818(6) Å	$\Box = 90^{\circ}.$		
Volume	954.92(6) Å ³			
Z	2			
Density (calculated)	1.254 Mg/m ³			
Absorption coefficient	0.718 mm ⁻¹			
F(000)	388			
Crystal size	0.330 x 0.300 x 0.230	0.330 x 0.300 x 0.230 mm ³		
Theta range for data collection	2.791 to 68.331°.	2.791 to 68.331°.		
Index ranges	-8<=h<=8, -10<=k<=10, -18<=l<=19			

Reflections collected Independent reflections Completeness to theta = 66.500° Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole 12279 3434 [R(int) = 0.0238] 99.7 % Multi-scan Full-matrix least-squares on F^2 3434 / 1 / 243 1.067 R1 = 0.0296, wR2 = 0.0803 R1 = 0.0297, wR2 = 0.0804 0.06(4) n/a 0.188 and -0.163 e.Å⁻³

Figure S4. X ray structure for 21

Table S6. Crystal data and struct	ture refinement for 21 .	
Report date	2015-03-04	
Identification code	CCDC #1415410	
Empirical formula	C28 H46 O5 Si	
Molecular formula	C28 H46 O5 Si	
Formula weight	490.74	
Temperature	100.0 K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 10.0766(2) Å	□=90°.
	b = 15.6158(4) Å	$\Box = 90^{\circ}.$
	c = 18.4872(4) Å	$\Box = 90^{\circ}.$
Volume	2909.04(11) Å ³	
Z	4	
Density (calculated)	1.120 Mg/m ³	
Absorption coefficient	0.968 mm ⁻¹	
F(000)	1072	

Crystal size Crystal color, habit Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 68.000° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole

0.357 x 0.217 x 0.209 mm³ **Colorless Block** 3.705 to 68.262°. -11<=h<=12, -18<=k<=15, -22<=l<=22 21090 5254 [R(int) = 0.0397]99.1 % Semi-empirical from equivalents 0.3200 and 0.2156 Full-matrix least-squares on F^2 5254 / 0 / 319 1.026 R1 = 0.0301, wR2 = 0.0784R1 = 0.0307, wR2 = 0.07880.020(8)n/a 0.205 and -0.168 e.Å⁻³

Figure S5. X ray structure for 4'.

Table S7. Crystal data and struct	ure refinement for 4'.	
Report date	2015-04-14	
Identification code	CCDC #1415409	
Empirical formula	C19 H26 O4	
Molecular formula	C19 H26 O4	
Formula weight	318.40	
Temperature	100.0 K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 6.5753(4) Å	$\square = 90^{\circ}.$
	b = 8.2073(5) Å	$\Box = 94.490(2)^{\circ}.$
	c = 15.4143(9) Å	$\Box = 90^{\circ}.$
Volume	829.29(9) Å ³	
Z	2	
Density (calculated)	1.275 Mg/m ³	
Absorption coefficient	0.709 mm ⁻¹	
F(000)	344	
Crystal size Crystal color, habit Theta range for data collection Index ranges **Reflections collected** Independent reflections Completeness to theta = 68.000° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole

0.253 x 0.131 x 0.127 mm³ Colorless Block 6.754 to 68.023°. -7<=h<=7, -9<=k<=9, -18<=l<=18 20860 2889 [R(int) = 0.0391] 97.4 % Semi-empirical from equivalents 0.3197 and 0.2253 Full-matrix least-squares on F^2 2889 / 1 / 215 1.065 R1 = 0.0277, wR2 = 0.0705R1 = 0.0278, wR2 = 0.07050.04(5) n/a 0.174 and -0.140 e.Å⁻³

References

- Jørgensen, L.; McKerrall, S. J.; Kuttruff, C. A.; Ungeheuer, F.; Felding J.; Baran, P. S. Science 2013, 341, 878–882.
- 2. Paquette, L. A.; Ross R. J.; Shi, Y. J. Org. Chem. 1990, 55, 1589-1598.
- 3. Liang, X.; Grue-Sørensen, G.; Petersen, A. K.; Högberg, T. Synlett **2012**, 23, 2647–2652.

SUPPORTING INFORMATION

Part 2: NMR Spectrum

Table of Contents

Spectra for compounds	page	SI-77~178
Compound SI-1 ¹ H NMR	page	SI-77
Compound SI-1 ¹³ C NMR	page	SI-78
Compound 17 ¹ H NMR	page	SI-79
Compound 17 ¹³ C NMR	page	SI-80
Compound 25 ¹ H NMR	page	SI- 81
Compound 25 ¹³ C NMR	page	SI-82
Compound SI-3 ¹ H NMR	page	SI-83
Compound SI-3 ¹³ C NMR	page	SI-84
Compound 12 ¹ H NMR	page	SI-85
Compound 12 ¹³ C NMR	page	SI-86
Compound 10 ¹ H NMR	page	SI-87
Compound 10 ¹³ C NMR	page	SI-88
Compound SI-4 ¹ H NMR	page	SI-89
Compound SI-4 ¹³ C NMR	page	SI-90
Compound 14 ¹ H NMR	page	SI-91
Compound 14 ¹³ C NMR	page	SI-92
Compound 13 ¹ H NMR	page	SI-93
Compound 13 ¹³ C NMR	page	SI-94
Compound 13 2D NOESY	page	SI-95
Compound SI-5 ¹ H NMR	page	SI-96
Compound SI-5 ¹³ C NMR	page	SI-97
Compound 26 ¹ H NMR	page	SI-98
Compound 26 ¹³ C NMR	page	SI-99
Compound 11 ¹ H NMR	page	SI-100
Compound 11 ¹³ C NMR	page	SI-101
Compound 9 ¹ H NMR	page	SI-102
Compound 9 ¹³ C NMR	page	SI-103
Compound 9 2D NOESY	page	SI-104
Compound 22 ¹ H NMR	page	SI-105
Compound 22 ¹³ C NMR	page	SI-106
Compound SI-6 ¹ H NMR	page	SI-107
Compound SI-6 ¹³ C NMR	page	SI-108
Compound SI-7 ¹ H NMR	page	SI-109
Compound SI-7 ¹³ C NMR	page	SI-110
Compound SI-8 ¹ H NMR	page	SI-111
Compound SI-8 ¹³ C NMR	page	SI-112
Compound SI-9 ¹ H NMR	page	SI-113
Compound SI-9 ¹³ C NMR	page	SI-114
Compound 23 ¹ H NMR	page	SI-115
Compound 23 ¹³ C NMR	page	SI-116
Compound SI-10 ¹ H NMR	page	SI-117
Compound SI-10 ¹³ C NMR	page	SI-118

Compound 7 ¹ H NMR	page	SI-119
Compound 7 ¹³ C NMR	page	SI-120
Compound 5 ¹ H NMR	page	SI-121
Compound 5 ¹³ C NMR	page	SI-122
Compound 5 2D NOESY	page	SI-123
Compound SI-13 ¹ H NMR	page	SI-124
Compound SI-13 ¹³ C NMR	page	SI-125
Compound SI-13 2D NOESY	page	SI-126
Compound SI-14 ¹ H NMR	page	SI-127
Compound SI-14 ¹³ C NMR	page	SI-128
Compound SI-15 ¹ H NMR	page	SI-129
Compound SI-15 ¹³ C NMR	page	SI-130
Compound 20 ¹ H NMR	page	SI-131
Compound 20 ¹³ C NMR	page	SI-132
Compound 21 ¹ H NMR	page	SI-133
Compound 21 ¹³ C NMR	page	SI-134
Compound SI-16 ¹ H NMR	page	SI-135
Compound SI-16 ¹³ C NMR	nage	SI-136
Compound SI-17 ¹ H NMR	nage	SI-137
Compound SI-17 ¹³ C NMR	nage	SI-138
Compound 8^{1} H NMR	nage	SI-130
Compound 8 ¹³ C NMR	nage	SI-140
Compound 6^{1} H NMR	page	SI 140 SI_141
Compound 6 ¹³ C NMR	page	SI-141 SI-142
Compound 6 2D NOESY	page	SI-142 SI-1/13
Compound SI-10 ¹ H NMR	page	SI-143 SI-144
Compound SI-19 11 WIR	page	SI-144 SI-145
Compound SI-19 C NMR	page	SI-145 SI 146
Compound SI-19a 11 NMR.	page	SI-140 SI 147
Compound SI-198 CINVIK	page	SI-147
Compound SI-20 H NMR.	page	SI-140
Compound SI-20 °C NMR	page	SI-149 SI 150
Compound 15 [°] H NMR	page	SI-150
Compound 15 [°] ¹⁵ C NMR	page	SI-151
Compound SI-21 $^{\circ}$ H NMR.	page	SI-152
Compound SI-21 ¹³ C NMR	page	SI-153
Compound SI-22 ¹ H NMR.	page	SI-154
Compound SI-22 ¹³ C NMR	page	SI-155
Compound SI-22a ¹ H NMR	page	SI-156
Compound SI-22a ¹³ C NMR	page	SI-157
Compound 16 ^{° 1} H NMR	page	SI-158
Compound 16 ^{° 13} C NMR	page	SI-159
Compound SI-23 ¹ H NMR	page	SI-160
Compound SI-23 ¹³ C NMR	page	SI-161
Compound 17' ¹ H NMR	page	SI-162
Compound 17' ¹³ C NMR	page	SI-163
Compound 18 ' ¹ H NMR	page	SI-164
Compound 18 ¹³ C NMR	page	SI-165
Compound SI-24 ¹ H NMR	page	SI-166
Compound SI-24 ¹³ C NMR	page	SI-167
Compound 4' ¹ H NMR	page	SI-168

page	SI-169
page	SI-170
page	SI-171
page	SI-172
page	SI-173
page	SI-174
page	SI-175
page	SI-176
page	SI-177
page	SI-178
	page page page page page page page page

2D NOESY

2D NOESY

2D NOESY

																								· ·
30	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
												fl (ppm))											

 12.5
 12.0
 11.5
 11.0
 10.5
 10.0
 9.5
 9.0
 8.5
 8.0
 7.5
 7.0
 6.5
 6.0
 5.5
 5.0
 4.5
 4.0
 3.5
 3.0
 2.5
 2.0
 1.5
 1.0
 0.5
 0.0
 -0.5
 -1

 fl (ppm)
 fl
 fl

HSQC