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Frequency and Complexity
of De Novo Structural Mutation in Autism
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Genetic studies of autism spectrum disorder (ASD) have established that de novo duplications and deletions contribute to risk. However,

ascertainment of structural variants (SVs) has been restricted by the coarse resolution of current approaches. By applying a custom

pipeline for SV discovery, genotyping, and de novo assembly to genome sequencing of 235 subjects (71 affected individuals, 26 healthy

siblings, and their parents), we compiled an atlas of 29,719 SV loci (5,213/genome), comprising 11 different classes. We found a high

diversity of de novo mutations, the majority of which were undetectable by previous methods. In addition, we observed complex

mutation clusters where combinations of de novo SVs, nucleotide substitutions, and indels occurred as a single event. We estimate a

high rate of structural mutation in humans (20%) and propose that genetic risk for ASD is attributable to an elevated frequency of

gene-disrupting de novo SVs, but not an elevated rate of genome rearrangement.
Introduction

Structural variants (SVs), such as deletions and duplica-

tions, are a major source of genetic differences between

humans and contribute significantly to risk of common

disease.1 In particular, studies of copy-number variation

(CNV) have been seminal in establishing a role for rare

genetic variants in the etiology of autism spectrum

disorder (ASD [MIM: 209850]).2,3 Despite this success,

characterization of SVs from individual genomes remains

a major challenge. Identification of SVs in human

populations and disease has been restricted by the

limited sensitivity of microarray- and sequencing-based

approaches.4–6

Large CNVs detectable by microarrays represent a small

fraction of structural variation in the genome. Recent

methodological advances have enabled the discovery of a

wide variety of SV classes from whole-genome sequencing

(WGS) datasets, including small deletions and duplications

down to 50 bp in length, inversions, translocations, mo-

bile-element insertions (MEIs), and more-complex rear-

rangements. By applying a combination of specialized

methods, each tailored to specific classes of variation, the

1000 Genomes (1000G) Project has produced the most

complete catalog of SVs to date by creating an integrated
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call set of eight classes of SV by using low-coverage

(7.43) WGS in 2,504 human genomes.7 In a study of 250

population-control families, analysis of low-coverage

(133) WGS data allowed for detection of de novo dele-

tions, tandem duplications, and MEIs.8 However,

advanced analytical methods for SV discovery and geno-

typing have not been applied in genetic studies of ASD.

Initial forays into the application of WGS to the detection

of SVs in neurodevelopmental disorders have been

restricted to CNVs larger than 1 kb,9 focused on a subset

of variant calls prioritized by putative clinical rele-

vance,9,10 or limited to the characterization of CNVs previ-

ously detected by microarrays.6

More comprehensive ascertainment of SV is needed for

elucidating the genetic mechanisms that underlie ASD

risk. In this study, we applied a suite of complementary

SV-discovery methods, coupled with custom methods for

SV genotyping and detection of de novo mutations, to

assess global patterns and rates of structural mutation

in ASD.

Material and Methods

Recruitment

Individuals were primarily referred from clinical depart-

ments at Rady Children’s Hospital, including the Autism
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Discovery Institute, the Departments of Psychiatry,

Neurology, and Speech and Occupational Therapy, and

the Developmental Evaluation Clinic. Further referrals

came directly through our project website. The Autism

Center of Excellence at the University of California, San

Diego (UCSD), contributed a further 11 trios. Each child

included in the study has an existing ASD diagnosis and

received a diagnosis of ASD on the basis of an evaluation

by a licensed clinician.11 Prior to appointments, families

were provided with institutional-review-board-approved

consent forms and Health Insurance Portability and

Accountability consent forms. DNA was obtained from

5 ml blood draws. We recalled a subset of individuals

with specific genetic findings to confirm the original

ASD diagnoses. These included individuals with SVs

in TMEM185A (MIM: 300031), TESC (MIM: 611585),

NRXN1 (neurexin 1 [MIM: 600565]), and CACNG2

(MIM: 602911). A diagnosis of ASD was confirmed in all

affected individuals.

WGS

WGS was performed on 246 samples, which included 11

monozygotic twin pairs. One sibling from each twin

pair was excluded from the dataset, which brought the

final sample size to 235. WGS of 206 samples was per-

formed with an Illumina HiSeq at the Illumina Fast Track

service laboratory in San Diego. For 161 samples, prepara-

tions consisted of 313 bp libraries and 100 bp paired-end

reads. For the remaining 45 samples, library size and read

length were 493 and 125 bp, respectively. In addition, a

subset of our data consisted of 40 samples sequenced

with an Illumina HiSeq at the Beijing Genomics Institute

as described previously (SVs were not reported in this pub-

lication),12 and genomes were realigned to the human

reference genome (UCSC Genome Browser build hg19)

with the Burrows-Wheeler Aligner (BWA-mem version

0.7.12).13

To generate sequence alignment and variant calls on

families, we implemented our WGS analysis pipeline on

the Comet compute cluster at UCSD. Short reads were

mapped to the hg19 reference genome by BWA-mem

v.0.7.12.13 Subsequent processing was carried out with

SAMtools v.1.2,14 Genome Analysis Toolkit (GATK)

v.3.3,15 and Picard Tools v.1.129, which consisted of the

following steps: sorting andmerging of the BAMfiles, indel

realignment, removal of duplicate reads, and recalibration

of base quality scores for each individual.16

SV Detection

We utilized three complementary algorithms to detect SVs.

ForestSV is a statistical-learning approach that integrates a

wide variety of features, including signal from read depth

and discordant paired-ends, from WGS data to identify

deletions and duplications.17 Lumpy uses signal from

discordant paired ends and split reads to identify break-

points for deletions, duplications, inversions, translo-

cations, and complex SVs.18,19 Finally, Mobster uses signal
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from discordant paired ends and split reads in combina-

tion with consensus sequences of known active transpos-

able elements to identify MEIs.20

SV Post-processing

We assembled call sets of deletions, duplications, inver-

sions, complex SVs, and MEIs detected in 246 individuals.

For monozygotic twins, we generated a consensus call

set for each twin pair from the raw SV calls as an initial

processing step.

SV Filtering

SVs were filtered if they overlapped centromeres,

segmental duplications (genomicSuperDups), regions

with low mappability and 100 bp reads (wgEncodeCrg-

MapabilityAlign100-mer), and regions subject to somatic

V(D)J recombination (parts of antibodies and T cell re-

ceptor genes) by 50%. Genome annotations used for

filtering were downloaded from UCSC Genome Browser

build hg19. Filtered regions are provided in the Web

Resources.

ForestSV

ForestSV was run with default parameters. Large SVs that

were fragmented into multiple calls by ForestSV were

stitched together as a function of their separation distance

and divided by the total length of the individual calls. SVs

between individuals were collapsed on the basis of >50%

reciprocal overlap, and the same median start and end co-

ordinates were assigned to each call.

Lumpy

SVs were called within families according to the default

parameters of the SpeedSeq SV pipeline (v.0.0.3a), which

uses Lumpy (v.0.2.9) to process samples and SVtyper

(v.0.0.2) to genotype variants.18,19 The pipeline outputs

deletions, duplications, inversions, and breakpoints that

cannot be assigned to one of the three classes. To detect

complex SVs, we wrote a custom algorithm to cluster

overlapping pairs of breakpoints and resolve the patterns

and ordering of breakpoint alignments to the reference

genome. We detected five classes of complex SVs, both

intra- and interchromosomal. For intrachromosomal

events, if two or more sets of breakpoints overlapped

within an individual, we considered them to be part of

the same SV event, and then on the basis of the patterns

and orientations of discordant paired ends, we deter-

mined the SV type (as shown in Figure S3). For interchro-

mosomal duplications, we required that two or more sets

of breakpoints map to the same two chromosomes and

that at least one breakpoint from each set map within

one read length of each other (which restricted the size

of target-site duplications and deletions that we could

detect). Calls between individuals were considered to be

the same SV if they shared the same start and end coordi-

nates within a margin of error defined by the read length

(100 bp for most samples).
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Mobster

Mobile elements were called by Mobster v.0.1.6 within

families and were included in the call set if they had at least

five reads, including discordant paired ends at both the

30 and 50 sides of the insert point,20 supporting the call in

one individual in the family. The parameters used in the

Mobster properties file are available for download in the

Web Resources. Calls between individuals were considered

to be the same SV if they shared the same insertion coordi-

nates within a margin of error defined by the read length

(100 bp for most samples).

SV Genotyping and Calling of De Novo Mutations

We utilized gtCNV and SVtyper,18 two complementary

methods for assigning genotype likelihoods to SVs. Specif-

ically, gtCNV integrates signal from depth of coverage,

paired ends, and split reads and is most suitable for CNVs

(i.e., deletions or duplications). SVtyper does not use

coverage signal and therefore is more suitable for genotyp-

ing balanced SVs and the smallest (<500 bp) CNVs. We

used estimates of genotype likelihood to derive a quality

score for each SV site, defined as the median genotype like-

lihood for individuals genotyped as non-reference. We sys-

tematically genotyped a merged set of CNV calls (biallelic

deletions and duplications) from ForestSV and Lumpy.

CNVs that were called by both methods (i.e., overlapping

CNVs in the same individual) and had different break-

points were both genotyped, and the coordinates with

the best genotype likelihoods were retained in the SV call

set (Data S1). All 246 individuals were genotyped with

gtCNV for all CNVs called by the two algorithms.

We filtered the finalized call sets solely on quality scores

by using thresholds of 12 for deletions genotyped with

gtCNV, 8 for duplications genotyped with gtCNV, and

100 for SV breakpoints genotyped with SVtyper. The

false-discovery rate (FDR) of the combined call set was

estimated from Illumina 2.5M SNP array data with the in-

tensity-rank-sum (IRS) test implemented in the Structural

Variation Toolkit (see Web Resources).

From the finalized call set, we extracted de novo

mutations that had a non-reference genotype in the child,

reference genotypes in both parents, and a parent allele

frequency of 0 in the cohort.

gtCNV

To classify CNV genotypes, we developed gtCNV, a likeli-

hood-based support-vector-machine (SVM) approach that

genotypes deletions and duplications. The classifier was

trained on high-coverage CNV data from 27 individuals

sequenced as part of the 1000G Project.21

When training the SVM, we selected read depth, discor-

dant paired ends, and split reads as features. We extracted

features for all deletion and duplication calls made by

ForestSV and Lumpy. When determining coverage, we

masked regions overlapping segmental duplications. For

each SV, we calculated mean coverage, which we then

normalized to the mean chromosomal coverage for each
The Am
sample. We also extracted all discordant paired ends and

split reads (mapping quality > 20) by implementing the

SAMtools application programming interface for Python

in pysam.14 Discordant paired ends were defined as reads

with insert sizes more than 5 SDs from the mean.

The SVM training utilized a radial-basis-function (RBF)

kernel, which we implemented in Python by using scikit-

learn.22,23 In order to determine the optimal parameters

of the RBF kernel, we used the IRS test to estimate the

FDR for deletions and duplications in the call set. Optimal

parameters were C ¼ 1 and gamma ¼ 0.005, which had an

FDR of 7.0% for deletions at a quality score of R12. The

optimal parameters for duplications were C ¼ 1 and

gamma ¼ 0.01, which had an FDR of 9.2% at a quality

score of R8. The gtCNV software can be found on GitHub

(see Web Resources), and the method will be further

detailed in a companion paper in the near future.

SVtyper

Genotyping of Lumpy calls was performed with SVtyper as

part of the SpeedSeq SV pipeline.18 SVtyper is a Bayesian

SV-breakpoint-genotyping algorithm that estimates the

likelihood that a genotype is non-reference on the basis

of allele counts at each junction. A quality score for each

individual SV locus was derived on the basis of the median

genotype likelihood for individuals genotyped as non-

reference. An optimal quality-score threshold for Lumpy

was determined as described in the section above. We per-

formed family-based calling and genotyping for Lumpy

calls and kept variants that had a median quality score R

100 across the cohort. For complex variants with multiple

overlapping breakpoints, we kept variants that had a me-

dian quality score R 100 for at least one breakpoint.

We assessed the performance of SVtyper by using the IRS

test described above. The FDR of CNV sites was 3.3% for

deletions, 9.5% for tandem duplications, 0% for deletions

in complex events, and 11.5% for duplications in complex

events (complex combined FDR ¼ 7.5%).

Sensitivity Analysis of CNVDetection andGenotyping

Pipeline

To assess the sensitivity of our CNV-calling pipeline, we

applied it to 27 samples sequenced with a high-coverage

PCR-free protocol in phase 3 of the 1000G Project. Raw

CNV calls from ForestSV and Lumpy were merged, geno-

typed, and then filtered as detailed above. Because our gen-

otyping method, gtCNV, was originally trained on these

data, we used a leave-one-out strategy to generate geno-

type likelihoods for calls in each sample (we excluded the

test sample from the training set before genotyping SV

calls in the sample). We then intersected our call set to

the non-reference deletions and biallelic duplications

found in the 1000G phase 3 SV call set for these 27 sam-

ples. Calls that had 50% reciprocal overlap with phase 3

CNVs were counted as overlapping within each sample.

Sensitivity values were then calculated and binned accord-

ing to CNV size (<100 bp, 100 bp to 1 kb, and >1 kb).
erican Journal of Human Genetics 98, 667–679, April 7, 2016 669



Parent of Origin of De Novo SVs

For deletions, we extracted from the VCF file generated by

GATK HaplotypeCaller all SNPs that mapped within the

deletion breakpoints and that were homozygous alternate

(alt) in the proband, heterozygous in one parent, and ho-

mozygous reference in the other parent. The parental

origin was then inferred to be on the haplotype of the

parent who had homozygous reference alleles for informa-

tive SNP markers. For duplication CNVs, we extracted all

SNPs that mapped within the breakpoints and that were

heterozygous in the proband, had a ~2:1 ratio of reference

to alt alleles (or vice versa), and were heterozygous in one

parent and homozygous reference in the other parent. The

allele with double the expected number of reads indicates

which parental haplotype the duplication originated on.

In the case of the MEI in C3orf35 (chromosome 3 open

reading frame 35 [MIM: 611429]), we validated the MEI

(and flanking 30 UTR sequence) by cloning it into a vector

and sequencing it. The paternal origin was determined

from an informative variant within the cloned locus

(rs35484794).

From the exonic NRXN1 deletion, which is de novo in

the mother, we selected three SNPs (rs2042471,

rs12468395, and rs13031783) that were hemizygous in

the mother. SNPs were PCR amplified and Sanger

sequenced from the mother and grandparents. We further

performed paternity testing (DNA Solutions) of saliva and

confirmed that both grandparents are the biological

parents of the mother.

CNV Validation by SNP Microarray

We performed genome-wide assessment of CNVs in the

majority of individuals (n ¼ 205) in this study via Illumina

2.5M SNP microarrays. CNVs were detected by trio-based

calling implemented in the PennCNV algorithm24 and

were retained if they had at least eight supporting probes.

For de novo CNVs with fewer than eight probes, we as-

sessed the median log R ratio (LRR) of the probes within

the CNV locus for all individuals in the study and consid-

ered the CNV validated if the child’s median LRR was more

than 2 SDs below (for deletions) or above (for duplications)

the mean in the cohort.

PCR Validation of SVs

We designed PCR primers flanking breakpoints for small

CNVs, complex SVs, and balanced SVs. We attempted vali-

dation of nine putative de novo MEIs, six Alu insertions,

and three L1 insertions. For Alu elements, primers were de-

signed to flank the insertion point, and for L1 elements,

one primer was designed to flank the insertion point,

and two were designed within the element (both sense

and antisense because the orientations of the insertions

were unknown). Primers for SV validation are listed Table

S5. PCR amplification validated three de novo Alu ele-

ments when it was run on an agarose gel; the remaining

putative de novo variants were false positives. PCR prod-

ucts were cloned with TOPO-TA vectors. Resulting clones
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were screened and sequenced with M13 primers from

both ends of the vector insert. We assigned the subfamily

by using BLAST to compare the sequence results with the

consensus Alu sequences.

Assembly of Breakpoints

For deletion and duplication SVs, we used Velvet25 to

perform de novo assembly of clipped reads and determined

the precise breakpoint down to a single-base-pair resolu-

tion for 60.8% of deletions (n ¼ 11,168). We observed

that 17.9% of deletions had an inserted sequence at the

breakpoint. For duplications, we determined the break-

points for 31% (n ¼ 733). Breakpoint positions were as-

signed to SV coordinates where applicable in Data S1.

SV Burden

We assessed the burden of de novo SVs between ASD indi-

viduals in this study and the combined control individuals

from this study and a study from the Genome of the

Netherlands (GoNL) Consortium by using a case-control

permutation test implemented in PLINK.26

MEI Permutations

To permute the enrichment and/or depletion of MEI inser-

tions in genomic features, we used BedTools27 to shuffle

the position of the observed MEI sites across the genome

while maintaining the orientation of the MEI (sense or

antisense) but excluding any overlap with the filtered

regions above. We counted the number of times that a

shuffled MEI overlapped the following genomic features:

exons, introns (sense and antisense orientations sepa-

rately), promoters, 50 UTRs, and 30 UTRs. We performed

10,000 permutations and compared the observed overlap

to the expected overlap.

Overlap between SVs and Known Polymorphic SV

Events

Deletions, duplications, and inversions were intersected

with the 1000G SV call set with BedTools and were consid-

ered part of the same polymorphic or recurrent SV event if

they had >50% reciprocal overlap. MEIs were considered

to overlap if their insertion point was located within

100 bp of an MEI event of the same class from the

1000G integrated SV set or the database of retrotransposon

insertion polymorphisms.

Overlap between SVs and Published CNV Data

We permuted the expected overlap between SVs and CNV

regions (CNVRs) previously associated with ASD, intellec-

tual disability (ID), and developmental delay (derived

from two large-scale microarray CNV studies28,29). These

CNVRs are significantly more abundant in affected indi-

viduals than in control individuals and are either hotspots

flanked by segmental duplications or enrichment peaks

derived from the intersection of multiple breakpoints.

Using BedTools, we randomly shuffled the position of

the observed rare SVs in children (including SVs that
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are de novo or have a frequency < 1% in parents) while

maintaining the size of the CNVs and the chromosome

but excluding any overlap with sequencing gaps. We

counted the number of times that at least 90% of a shuf-

fled CNV overlapped a CNVR. When a single gene was

implicated by a CNVR, we stipulated that the CNV had

to overlap only one exon of the gene to be counted.

This method is conservative because it allows small

CNVs overlapping only a small proportion of larger

CNVRs to be counted, i.e., the overlap is not required

to be reciprocal.

When performing gene-set enrichment analysis with

published exome sequencing data, we determined the

number of SVs overlapping genes affected by one or

more loss-of-function SNVs and indels in studies of ASD

and ID, and we then permuted the SV positions while

maintaining the total number of genes disrupted.

Detection of De Novo SNVs and Indels

We called putative de novo SNVs by using ForestDNM,

a custom machine-learning pipeline that uses a random

forest classifier to predict the validation status of putative

de novo SNVs identified by the GATK UnifiedGenotyper.12

Putative denovo indelswere calledwith threedifferent algo-

rithms: GATK, Platypus, and Scalpel.15,30,31 First, we called

variants genome-wide by using GATK and Platypus. Then,

we used Scalpel for targeted de novo assembly of the locus

around this set of putative de novo indels. We kept de

novo indels called by at least two out of three algorithms.

We then excluded (1) any indels observed more than once

in the GATK or Platypus VCF files of the entire cohort and

(2) common indels in the population from 1000G data.

The genome-wide burden of de novo SNVs in case and con-

trol individuals was 66.9 and 63.3, respectively; for indels, it

was 6.67 and 6.11 for case and control individuals, respec-

tively. Analysis of de novo SNVs and indels will feature in

a future publication.

Mutational Clustering

To assess whether de novo SVs cluster with nucleotide sub-

stitutions or indels, we used a window-based permutation

approach. We took windows of 100 bp, 1 kb, 10 kb, 100 kb,

1 Mb, and 10 Mb around the breakpoints of de novo SVs

and intersected the windows with de novo SNVs and in-

dels in the same individuals. We then used BedTools to

shuffle the position of these windows in the genome either

randomly (excluding regions that were filtered during SV

calling) or across detected inherited SV breakpoints and

calculated the expected number of windows overlapping

DNMs by performing 100,000 permutations.

Transmission-Disequilibrium Test

Using a haplotype-based group-wise transmission-disequi-

librium test32 and assuming an additive model, we tested

whether variants private to families in our study and not

present in the 1000G call set were transmitted to affected

children more than expected by chance.
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Genome Sequencing Uncovers a Diverse Landscape of

Structural Variation

We recruited ASD-affected individuals and their families

(235 subjects, including 71 affected individuals and 26

typically developing siblings) from Rady Children’s Hospi-

tal, San Diego, and local pediatric clinics. WGS of blood-

derived genomic DNA was performed at a mean coverage

of 40.63 (Table S1 and Material and Methods).

We developed a SV-discovery pipeline that utilizes a com-

bination of three specialized methods each optimized to

capture a specific subtype of variation (Figure S1 andMate-

rial and Methods): (1) ForestSV17 is a statistical-learning

approach that we developed to integrate a variety of fea-

tures from WGS data into a random-forest classifier and is

optimized to detect deletions and duplications; (2)

Lumpy19 utilizes information from discordant paired ends

and split reads and is optimal for the detection of balanced

rearrangements, such as inversions and translocations; and

(3)Mobster20 utilizes discordant paired ends and split reads

to detectMEIs. Aswe have shownhere, this combination of

methods is highly efficient and provides accurate detection

ofmost known classes of SV. For each subject, unfiltered SV

calls from the three methods were merged into a set of

consensus calls (see Material and Methods).

The final call set from our 235 study subjects included

1,225,067 SVs (5,213 SVs/genome) from 29,719 sites

(Figure 1). The primary variant calls comprised seven ma-

jor classes, including deletions (3,383 alleles/individual;

18,359 sites), duplications (423 alleles/individual; 2,360

sites), inversions (51 alleles/individual; 211 sites), and

four classes of MEIs (1,105 alleles/individual; 7,915 sites)

(Figure 1, Data S1, and Table S2). FDRs for deletion and

duplication calls were estimated from Illumina 2.5M SNP

array data (with the Structural Variation Toolkit; see Mate-

rial and Methods), which were collected on a majority of

samples (n ¼ 205) in our study. The FDR was determined

to be 7.0% for deletions and 9.2% for duplications

(Figure S2). We assessed our sensitivity for detecting

deletions and biallelic duplications by applying our

methods to 27 individuals sequenced at high coverage in

the 1000G Project.21 We captured a majority (59%) of

SVs in the phase 3 call set. In addition, 40% of deletions

and 99% of duplications were unique to our call set

(Figure S2). The sensitivity for detecting 1000G phase 3 de-

letions was 75%, 61%, and 25% for lengths >1,000 bp,

100–1,000 bp, and <100 bp, respectively (Table S3).

The complete call set and detailed descriptive informa-

tion for all calls are provided in Data S1. A comparison of

our SV call set with the phase 3 SV call set from the

1000G Project is described in Figure S2.
Detection of Complex Rearrangements

A recent study using a combination of microarrays and

sequencing of large-insert (‘‘jumping’’) libraries has shown
erican Journal of Human Genetics 98, 667–679, April 7, 2016 671



de novo Figure 1. Structural Variation Detected
from WGS in 235 Individuals
Circos plot in which concentric circles
represent the following (from outermost
to inner): ideogram of the human genome
with colored karyotype bands (UCSC
Genome Browser build hg19), deletions,
MEIs (four different classes), tandem dupli-
cations, balanced inversions, and complex
SVs (four different classes). Circles indicate
the location of de novo SVs, and their
colors match the five SV types. Arrows
represent interchromosomal duplications.
that a variety of complex SVs are observed in a subset

(24%) of ASD.6 In all subjects in our study, we identified

dense clusters of SVs with overlapping breakpoints. Most

of such instances could be resolved into one of four

‘‘complex’’ SV classes: tandem duplications with nested

deletions, non-tandem duplications, deletion-inversion-

deletion events, and duplication-inversion-duplication

events6 (Figure S3 and Table S4). Non-tandem duplications

were the most common form of complex SV (Table S4),

and these have not been documented in previous

genome-wide studies. Insertions occurred in direct and in-

verted orientations with equal probability, and 22% were

interchromosomal (Figure 1C [arrows] and Figure S4).

The majority (73%) had target-site deletions at the inser-

tion point. We detected an average of 251 complex SVs

per individual; thus, complex SVs represent common

forms of genetic variation in humans.

SV Genotyping and Detection of De Novo Mutations

Previous studies by our group and others found that de

novo SVs occur at significantly higher rates in ASD-affected

individuals than in typically developing offspring.2,4 The

more comprehensive SV dataset here provides an opportu-

nity to investigate de novo structural mutation with much

greater sensitivity. Identification of de novo SVs fromWGS

data, however, is a significant challenge. Given the ex-

pected number of false positives in our call set (>200/sub-

ject), the overwhelming majority of putative de novo
672 The American Journal of Human Genetics 98, 667–679, April 7, 2016
mutations will be errors.8 To address

this challenge, we performed joint

genotyping of SVs across all samples

by using gtCNV, a SVM-based algo-

rithm we developed here to estimate

genotype likelihoods for deletions

and duplications on the basis of mul-

tiple features including read depth,

discordant paired ends, and split

reads. Breakpoints called by Lumpy

were genotyped with SVtyper, which

performs Bayesian likelihood estima-

tion on the basis of the observed

discordant paired ends and split reads

at each junction.18 Putative de novo

SVs were validated by microarray
analysis or through PCR and Sanger sequencing (Table

S5). We detected 31 de novo SVs and validated 19 in 97

offspring. De novo SVs consisted of a diversity of mutation

classes, including deletions (n ¼ 11), duplications (n ¼ 2),

inversions (n ¼ 1), Alu insertions (n ¼ 3), and complex SVs

(n ¼ 2; Table 1); their positions are indicated by circles in

the Circos plot in Figure 1. The overall FDR for de novo

SV calls was 39% (12/31). Compared to the 93% FDR

from a recent study by the GoNL Consortium,8 this repre-

sents a substantial improvement in the accuracy of calling

de novo SVs. Furthermore, 12 false-positive de novo muta-

tions in a call set of 29,719 SV sites represents a very low

error rate overall (0.04%).

High Rate of De Novo Structural Mutation in Humans

In this study, de novo SVs were observed in 19.7% of

affected individuals (95% confidence interval [CI] ¼
11.3%–32.2%) and 19.2% of control individuals (95%

CI¼ 7.3%–42.2%), a 3-fold and 10-fold higher rate, respec-

tively, than what was reported in previous studies of ASD

(Figure 2). The higher rate of de novo SV observed here is

driven by the fact that our methods have increased sensi-

tivity for detecting copy-neutral and smaller SVs. The

majority of de novo SVs (58% [11/19]) were undetectable

by a high-density (2.5M) SNP microarray (Figure S6).

Unlike in previous studies, the rate of de novo SVs was

not higher in affected individuals (Figure 2) than in control

individuals in this study (p ¼ 0.39) or than in a combined



Table 1. De Novo SVs

hg19 Coordinatesa Type Size (bp)b Locus Mechanism
Parental
Origin ID Status Gender

chr3: 37,476,966–37,476,979 AluYb8 14j134 C3orf35 (30 UTR) MEI paternal 74-0115-01 ASD female

chr13: 107,803,685–107,803,696 AluYa5 12j277 intergenic MEI NA REACH000120 ASD male

chr7: 112,115,899–112,123,778 complex 70j454j128 IFRD1, LSMEM1 MMBIR NA REACH000141 ASD male

chr14: 61,548,613–61,552,405 complex 23j140 SLC38A6 (intron 16/16) MMBIR paternal REACH000182 ASD male

chr2: 74,482,718–74,511,562 deletion 28,844 SLC4A5 (5/32 exons) MMBIR NA REACH000239 ASD male

chr6: 93,142,763–93,142,954 deletion 192 intergenic NHEJ NA REACH000001 ASD male

chr10: 69,823,502–69,823,806 deletion 305 HERC4 (intron 3/25) MMBIR NA REACH000288 ASD male

chr12: 117,519,631–117,537,968 deletion 18,338 TESC (1/8 exons) NHEJ paternal REACH000163 ASD male

chr13: 21,131,642–21,135,198 deletion 3,557 intergenic NAHR paternal REACH000292 ASD male

chr22: 36,969,581–37,097,776 deletion 128,195 CACNG2 (1/4 exons) NHEJ paternal REACH000001 ASD male

chrX: 148,682,301–148,736,750 deletion 54,450 TMEM185A (4/7 exons) NAHR maternal REACH000145 ASD male

chr15: 22,701,351–28,574,000 duplication 5,872,650 15q11.2–13.1 (PWS/AS)c NAHR maternal REACH000316 ASD female

chr20: 29,804,201–30,388,100 duplication 583,900 20q11.21 (18 genes) NAHR paternal REACH000141 ASD male

chr16: 60,410,404–61,926,470 inversion 1,516,067 CDH8 (9/12 exons) NHEJ NA L7H6W_01 ASD male

chr14: 58,985,087–58,985,102 AluYa5 16j312 KIAA0586 (intron 30/31) MEI NA REACH000176 control female

chr5: 111,391,882–111,398,120 deletion 6,238 intergenic NHEJ maternal REACH000300 control female

chr6: 100,911,772–100,916,248 deletion 4,476 SIM1 (upstream) NHEJ NA REACH000162 control male

chr12: 19,257,899-19,293,874 deletion 35,975 PLEKHA5 (3/35 exons) NHEJ maternal REACH000076 control female

chr12: 98,296,358–98,297,335 deletion 977 intergenic NHEJ NA REACH000236 control male

Abbreviations are as follows: AS, Angelman syndrome; ASD, autism spectrum disorder; NA, not available; MEI, mobile-element insertion; MMBIR, microhomol-
ogy-mediated break-induced replication; NAHR, non-allelic homologous recombination; NHEJ, non-homologous end joining; and PWS, Prader-Willi syndrome.
aCoordinates are based on breakpoint sequence alignments; however, coordinates for three NAHR-mediated SVs (15q11.2–13.3, 20q11.21, and Xq28) are based
on ForestSV boundaries.
bPipes (j) separate the sizes of individual elements within complex structural variants; further details can be found in Figure 4 and Table S5.
cCritical region for PWS and AS.
set of 276 control trios from this study and a study from

the GoNL Consortium (p ¼ 0.17). Although the mutation

rate was not elevated in affected individuals, de novo SVs

were larger (median length of 10.9 and 1.2 kb in ASD

and control individuals, respectively; permutation p ¼
0.026), and a greater proportion of SVs intersected an

exon of at least one gene (11.1% and 2.8% in case and con-

trol individuals, respectively; permutation p ¼ 0.01).
Figure 2. Frequency of De Novo SVs
A forest plot indicates the averagemutation frequency per genome
(m) from published microarray studies of ASD, from the ASD-
affected and control individuals in our study, and from a whole-
genome study from the GoNL Consortium. Error bars represent
the 95% CIs according to a Poisson distribution, and boxes are
proportional to the sample sizes tested.

The Am
Fine-Scale Characterization of De Novo SVs

Multilayered genetic information extracted from the

genome sequences of individuals can provide further

insights into the origin, mutational mechanism, and

functional impact of de novo SVs. For de novo events,

we assessed the parent of origin and the junction se-

quences obtained by local de novo assembly of break-

points. As an illustrative example, a de novo CACNG2

deletion detected in an individual is presented in Figure 3.

After detection of the deletion (Figure 3A) and genotype-

likelihood estimation of family members (Figure 3B), the

paternal origin of the deletion could be inferred from

allelic ratios of SNPs within the deleted region

(Figure 3C). The complete sequence of the breakpoint

junction could be assembled from reads that partially

mapped near the deletion boundaries (Figure 3D). From

the assembled breakpoint sequence, we inferred that

the deletion eliminates exon 2 and all but 634 bp of

intron 1 (Figure 3E) and that the deletion occurred by a

non-homologous end-joining mechanism.33 The mutant

transcript lacking exon 2 of CACNG2 was confirmed in a

fibroblast line derived from the individual and is

predicted to result in the in-frame deletion of 30 amino
erican Journal of Human Genetics 98, 667–679, April 7, 2016 673
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Figure 3. Detection, Genotyping, and Sequence Characterization of De Novo SVs
(A) Heatmaps show a deletion signal from the total sequence coverage (copy number) and the number of discordant paired ends.
(B) SVs were genotyped with gtCNV, a SVM algorithm we developed. The contour plot shows the Phred-scaled genotype likelihoods for
homozygous reference (green), heterozygous (blue), and homozygous (red) genotypes (for simplicity, only read depth and discordant
paired ends are plotted). The colored diamonds indicate the genotype likelihoods for the proband and the parents.
(C) A majority of SNP alleles between the deletion boundaries were derived from the mother (shown in black), confirming a deletion of
the paternal haplotype.
(D) De novo assembly of clipped reads resolved the breakpoint to single-base-pair resolution. Unaligned sequences within clipped reads
are highlighted in gray.
(E) Aligning the assembled contig to the genome revealed the deletion breakpoint. Unique sequence proximal and distal to the break-
point suggests a non-homologous-end-joining (NHEJ) mechanism.
(F) The mutant transcript of CACNG2 was sequenced from a fibroblast line derived from the individual and results in an in-frame dele-
tion of exon 2.
acids of its extracellular AMPA receptor-binding domain

(Figure 3F).

MEIs, balanced SVs, and complex rearrangements have

not been systematically ascertained genome-wide in previ-

ous studies of ASD. Our results highlight how detection of

these SV classes is useful for gene identification. For

example, one validated MEI was a partial AluYb8 insertion

in the 30 UTR of C3orf35 (Figure 4A). This single observa-

tion was surprising given the low rate of de novo MEIs

and the strong depletion of MEIs within 30 UTRs in our
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call set (odds ratio [OR] ¼ 0.44; 95% CI ¼ 0.34–0.60;

Figure S7). Additionally, we identified a de novo inversion

(1.52 Mb) that disrupts cadherin-8 (CDH8 [MIM: 603008];

Figure 4B). These results strengthen the evidence from pre-

vious studies implicating C3orf354 and CDH834 in ASD.

Complex Mutation Clusters

The complexity of de novo SVs consisted not only of clus-

ters of deletions, duplications, and inversions occurring as

single events (Figure 4C) but also of co-occurring de novo
016
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Figure 4. De Novo SVs of Genes Detect-
able through Genome Sequencing
Discordant paired-end mapping identified
de novo SVs.
(A) A de novo AluYb8 element insertion
into the 30 UTR of C3orf35. Discordant
paired ends and split reads mapped to
both the 30 and 50 sides of the insert point,
as well as the Alu. The partial AluYb8
(134 bp) was inserted into the positive
strand with a 14 bp target-site duplication
(shown in blue).
(B) A 1.52 Mb simple inversion with a
distal breakpoint in intron 3 of CDH8.
(C) A non-tandem duplication and a non-
tandem inverted duplication inserted into
the promoter of LSMEM1 with a concomi-
tant deletion at the insertion point (note
that segments are not shown to scale).
Arrows indicate the discordant orientation
and location of paired-end reads in rela-
tion to the reference genome (UCSC
Genome Browser build hg19) and the
concordant pattern of paired-end reads in
relation to the resolved structure. Black
segments are unchanged in the SV events,
green segments are inverted, blue seg-
ments are duplicated, and red segments
are deleted.
nucleotide substitutions and indels in the surrounding re-

gion (Figure 5). We observed greater clustering of de novo

SVs and point mutations within individual genomes than

would be expected by chance. In total, six de novo muta-

tions (five SNVs and one indel) were located within

100 kb of de novo SV breakpoints, a 72-fold enrichment

over random mutation (permutation p ¼ 0.0001; Table

S6). Adjacent de novo SVs and SNVs were located tens of

kilobases apart; therefore, the enrichment of de novo sub-

stitutions around SV breakpoints could not be explained as

an artifact because of the mismapping of reads at the junc-

tion. An alternative hypothesis for the mutational clus-

tering is that the mutation rate of SNVs, indels, and SVs

is elevated within certain mutational hotspots. If this

were the case, we would expect de novo SNVs and indels

to also cluster near breakpoints of SVs that are inherited.

However, when we repeated the analysis, building a null
The American Journal of Huma
model by shuffling the de novo SV

breakpoints across the inherited SV

breakpoints, instead of randomly,

gave us similar results (Table S6).

Figure 5 and Table S7 detail examples

of complex mutation clusters.

Pathogenic Inherited SVs

We examined the call set for known

pathogenic SVs and observed five

rare or de novo CNVs overlapping

known ASD or ID risk variants in

affected individuals (expected ¼ 2;

95% CI ¼ 0–5; p ¼ 0.063; OR ¼ 2.42).
We did not observe significant overlap with genes affected

by de novo loss-of-function variants identified in ASD and

ID by exome sequencing (observed ¼ 13; expected ¼ 14.9;

95%CI¼ 8–23; p¼ 0.72; OR¼ 0.84). Inherited risk variants

were identified in four (6%) unrelated affected individuals.

One de novo SV identified in this study, a duplication of

15q11.2–13.1 (MIM: 608636; Table 1), has also been previ-

ously implicated in ASD.35 We observed two paternally in-

herited deletions of 15q11.2 (MIM: 615656).36 Inherited

X-linked variants included a Xp21.1–21.2 duplication-

inversion-duplication event that duplicates the Dp71 iso-

form of DMD (MIM: 300377) and disrupts TAB3 (MIM:

300480; Figure S3). Duplications and deletions of DMD

are associated with Duchenne muscular dystrophy, and

some alleles can predispose to ASD.36–38 Lastly, we detected

a maternally inherited deletion of NRXN1.36 Follow-up

genetic analysis of the extended family revealed that the
n Genetics 98, 667–679, April 7, 2016 675
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Figure 5. Mutational Clustering of SVs, Indels, and SNVs
Two examples of complex mutation clusters are shown in individuals.
(A) REACH000182, a 143 bp sequence near the 30 UTR of SLC38A6, was duplicated and inserted into intron 16 of the gene with a
concomitant deletion of 23 bp at the insertion site. Additionally, a de novo indel and SNV occurred at 211 bp and 34,611 bp proximal
to the insertion site.
(B) REACH000300, a 6.2 kb de novo deletion, was detected at 5q22.2, and three de novo SNVs occurred within 100 kb of the breakpoints.
The 200 kb zoomed-in locus below the ideogram shows the positions of the de novo mutations in relation to each other. Gene tracks
below the mutation show the longest transcript of each gene within the locus (arrows indicate the strand, and bars indicate the exons
of genes).
deletion occurred de novo in the mother and that the

mutation originated in the grandmother (Figure 6). This

observation highlights the fact that although these dis-

ease-associated variants were inherited from a parent,

they occur within regions that are prone to frequent recur-

rent rearrangements and are likely to be mutations that

occurred in recent ancestry.
Discussion

Wehaveassembledwhat is, toourknowledge, themost com-

plete set of SVs in ASD to date.WGS of trio families reveals a

diverse landscape of structural variation throughout the

genome and a higher rate and complexity of structural mu-

tation than previously recognized. Structural mutations de-

tected in individuals include previously undetectable events

that disrupt genes and are likely to influence disease risk.

The combined frequencyof denovo SVs thatweobserved

(m¼ 0.195) is more than triple the estimate from a previous

WGS study of autism (m ¼ 0.058).9 Our estimate is also

slightly higher than the rate observed in a family-based

study by the GoNL Consortium (m ¼ 0.16).8 The mutation

rate reported here will ultimately prove to be an underesti-

mate as well given the challenges of detecting SVs by using

short-read next-generation sequencing technology.

With the improved ascertainment of small deletions, in-

versions, and MEIs, we observed a similar overall mutation

rate in case and control individuals, unlike in previous

studies by our group2 and others that were based onmicro-

array technology.29,39 Thus, a genetic contribution of de
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novo SVs to ASD is evident not from an elevated frequency

of genomic rearrangement but instead from the greater

proportion of new mutations that disrupt genes. In this

respect, the contribution of de novo structural mutation

to ASD bears a similarity to that of de novo loss-of-function

mutations detected by exome sequencing.40,41

Studies of genetic diversity in populations reveal a

diverse spectrum of SVs7 but do not fully illuminate the

mutational process that gives rise to that diversity. Here,

we have shown that one-third of de novo SVs consist of

mobile elements, balanced mutations, or complex muta-

tions, underlining the role that these mutational mecha-

nisms play in generating genetic diversity and disease

risk. Candidate loci for ASD were identified from two

such de novo SVs, including aMEI inC3orf35 and an inver-

sion disrupting CDH8. Published studies of ASD provide

additional evidence implicating both genes, including a

de novo deletion disrupting C3orf355 and segregating

CDH8 deletions observed in ASD-affected families.34

Our results highlight how clusters of SVs arise through

complex mutational events that generate combinations of

deletions, duplications, insertions, and inversions (and

sometimes all of the above). Adding further complexity to

the mutational process, we have shown that 16% (3/19) of

de novo SVs co-occur with clusters of de novo SNVs and in-

dels. These results expand upon our previous study report-

ing the observation of de novo nucleotide substitution

‘‘showers.’’12 Our current findings suggest that sequence

variation and structural variation can arise from common

mechanisms. We hypothesize that such complex mutation

clusters form as a consequence of break-induced replication
016
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Figure 6. Identification and Validation of
the Pathogenic NRXN1 Deletion
(A) A 166 kb deletion disrupting three
exons of NRXN1 leads to a frameshift in
the longer isoform (a-NRXN1).
(B) Breakpoint mapping shows a unique
sequence flanking the breakpoint, suggest-
ing a NHEJ mechanism.
(C) A forward PCR primer was designed
proximal to the breakpoint, and two
reverse primers were designed (one within
the deletion region produces a 302 bp
product, and one spanning the break-
points produces a 225 bp product in the
presence of a deletion). We confirmed the
deletion in this pedigree in the proband
(III-2) and mother (II-1), but not in the fa-
ther, sibling, or maternal grandparents.
(D) Pedigree of the family affected by
multiplex ASD. The NRXN1 deletion
occurred de novo in the mother and was
passed on to her younger son. The mother
is unaffected, and the older son has ASD
but did not inherit the deletion, suggesting
that other de novo and/or inherited vari-
ants contribute to ASD in this family.
(E) Sanger sequencing of rs2042471 within
the NRXN1 locus indicated that this dele-
tion originated on the grandmaternal
haplotype.
(BIR) during the repair of double-stranded breaks. BIR is

significantlymore error prone thannormalDNA replication

and occurs over hundreds of kilobases,42 a scale that is

similar to the length of themutation clusters observed here.

The observation of complex mutation clusters is inter-

esting in light of a previous study from the 1000G Project,

which found that SNPs and indels in the population are

enriched within 400 kb of deletion breakpoints. It was

further hypothesized that the observed enrichment of

SNPs and indels is due to relaxed selection at these loci.43

On the basis of our results, we suggest that the observed

correlation between SNPs and SVs is in part attributable

to the underlying mutational processes and is not driven

entirely by selection.

With our high-coverage and complementary SV-discov-

ery methods, we were able to detect 5,213 SVs per individ-

ual, 27% more alleles per genome than we and others

recently reported in the 1000G call set (n ¼ 4,095/

genome).7 However, as we demonstrated (Figure S2), our

methods do not present a complete catalog of SVs. Further-

more, the short-read shotgun sequencing technology used

here possesses significant technical limitations that

impeded our ascertainment of SVs. Application of new

long-read sequencing technologies44 will be another sig-

nificant step toward uncovering the complexity of struc-

tural variation in autism.
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Web Resources

The URLs for data presented herein are as follows:

1000Genomes SV data, ftp://ftp-trace.ncbi.nih.gov/1000genomes/

ftp/phase3/integrated_sv_map/

Autism Center of Excellence, https://autism-center.ucsd.edu

BED file of filtered regions, http://bit.ly/1PDkVPQ

Comet, https://portal.xsede.org/sdsc-comet

ForestSV, http://sebatlab.ucsd.edu/index.php/software-data

gtCNV, https://github.com/dantaki/gtCNV

Mobster, https://sourceforge.net/projects/mobster/

Mobster properties file, http://bit.ly/1PlX4IB
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OMIM, http://www.omim.org

Picard Tools, http://broadinstitute.github.io/picard/

Pysam, https://github.com/pysam-developers/pysam

REACH Project, http://reachproject.ucsd.edu

SpeedSeq pipeline, https://github.com/hall-lab/speedseq

Structural Variation Toolkit, https://sourceforge.net/projects/

svtoolkit/

UCSC Genome Browser hg19 data, http://hgdownload.soe.ucsc.

edu/goldenPath/hg19/database/
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Figure S1 Structural Variant Discovery Pipeline. Flowchart detailing our custom pipeline for the discovery, genotyping, and
validation of structural variants and de novo mutations. CNV = Copy Number Variant; SV = Structural Variant; MEI = Mobile
Element Insertion; PCR = Polymerase Chain Reaction.



A B

Current Study
Current Study

1000G
Phase 3

1000G Phase 3

Deletions Duplications

Figure S2 Overlap between SV calls made using our methods and 1000 genomes phase 3 methods on high-coverage genomes.
Venn diagrams indicate the overlap of non-reference deletion and biallelic duplication calls made on 27 individuals sequenced at high
coverage as part of the 1000G project.
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Figure S3 Comparison between current study call set and 1000 Genomes Phase 3. A) Histograms of the log10 structural variant
(SV) size distributions for deletions, tandem duplications and balanced inversions in our study and 1000 genomes phase 3 (1000G)
SV call set. B) Histograms showing the number of novel versus known SVs across a range of parent frequencies.
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Figure S4 Complex Structural Variation Detected using Genome Sequencing. Examples of each class are taken from our call set of
SVs. A) deletion-inversion-deletion, B) tandem duplication with nested deletion, C) non-tandem duplication, D) non-tandem inverted
duplication, E) duplication-inversion-duplication (including genes in the vicinity of the SV event). Heat maps indicate changes in
copy number observed from the depth of coverage at each locus, normalized to the chromosomal average. Lettered segments
indicate the structure of the chromosome in the reference and the observed genome. Black segments are unchanged in the SV
events, green segments are inverted, blue segments are duplicated, and red segments are deleted. Arrows indicate the discordant
orientation and location of paired-end reads relative to the hg19 reference genome and the concordant pattern of paired end reads
relative to the resolved structure. n.b. segments not shown to scale.
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Figure S5 Distribution of Non-Tandem Structural Variants. a) Histogram of the lengths of non-tandem duplications (blue) and
non-tandem inverted duplications (green). b) Histogram of translocation distances. c) Histogram of target site deletions or
duplications at the non-tandem event’s insertion point.
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Figure S6 Comparison of Structural Variation Detection using Microarrays and Genome Sequencing. Circos plots comparing
structural variant calls for 205 individuals in this study derived from a) Illumina 2.5 million single nucleotide polymorphism (SNP)
microarray, and b) from WGS at 40⇥ coverage on the Illumina HiSeq platform. Concentric circles represent from outermost to inner
in panel: ideogram of the human genome with karyotype bands (hg19), deletions, mobile element insertions (four di↵erent classes),
tandem duplications, balanced inversions, complex structural variants (four di↵erent classes). The circles indicate the location of de
novo SVs, and their colors match the five SV types. Arrows represent interchromosomal duplications.
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Figure S7 Mobile Element Insertion Overlap with Published Databases and Genomic Features. A) Venn diagrams showing the
overlap of MEIs detected in our study with MEIs from the 1000 genomes project (1KG) phase 3 integrated SV call set and the
database of retrotransposon insertion polymorphisms (dbRIP), calls were considered to overlap if they were within 100 base-pairs of
each other. B) Histogram showing the number of novel versus known MEIs across a range of parent frequencies. C) Bar chart
showing the odds ratio of the overlap of observed common (frequency �5%) and rare MEIs with genomic functional elements
compared to expected overlap through permutation. Error bars represent the 95% confidence interval for odds ratio.


	Frequency and Complexity of De Novo Structural Mutation in Autism
	Introduction
	Material and Methods
	Recruitment

	WGS
	SV Detection
	SV Post-processing
	SV Filtering
	ForestSV
	Lumpy
	Mobster
	SV Genotyping and Calling of De Novo Mutations
	gtCNV
	SVtyper
	Sensitivity Analysis of CNV Detection and Genotyping Pipeline
	Parent of Origin of De Novo SVs
	CNV Validation by SNP Microarray
	PCR Validation of SVs
	Assembly of Breakpoints
	SV Burden
	MEI Permutations
	Overlap between SVs and Known Polymorphic SV Events
	Overlap between SVs and Published CNV Data
	Detection of De Novo SNVs and Indels
	Mutational Clustering
	Transmission-Disequilibrium Test

	Results
	Genome Sequencing Uncovers a Diverse Landscape of Structural Variation
	Detection of Complex Rearrangements
	SV Genotyping and Detection of De Novo Mutations
	High Rate of De Novo Structural Mutation in Humans
	Fine-Scale Characterization of De Novo SVs
	Complex Mutation Clusters
	Pathogenic Inherited SVs

	Discussion
	Supplemental Data
	Conflicts of Interest
	Acknowledgments
	Web Resources
	References

	ajhg_2059_mmc1.pdf
	Abstract


