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ABSTRACT Many biological processes depend on the sequential assembly of protein complexes. However, studying the
kinetics of such processes by direct methods is often not feasible. As an important class of such protein complexes, pore-forming
toxins start their journey as soluble monomeric proteins, and oligomerize into transmembrane complexes to eventually form
pores in the target cell membrane. Here, we monitored pore formation kinetics for the well-characterized bacterial pore-forming
toxin aerolysin in single cells in real time to determine the lag times leading to the formation of the first functional pores per cell.
Probabilistic modeling of these lag times revealed that one slow and seven equally fast rate-limiting reactions best explain the
overall pore formation kinetics. The model predicted that monomer activation is the rate-limiting step for the entire pore formation
process. We hypothesized that this could be through release of a propeptide and indeed found that peptide removal abolished
these steps. This study illustrates how stochasticity in the kinetics of a complex process can be exploited to identify rate-limiting
mechanisms underlying multistep biomolecular assembly pathways.
INTRODUCTION
The proper assembly of macromolecular complexes such as
ribosomes or multisubunit membrane channels is essential
for biology. However, the mechanisms by which multimeric
complexes form are still poorly understood. Systems such
as cytoskeletal proteins, which allow in vitro assembly
of homomeric soluble complexes, have been particularly
attractive model systems (1–3). By contrast, studying the
assembly of multisubunit membrane complexes has been
notably difficult. A favorable situation is provided by
pore-forming proteins, the best-characterized subclass of
which is formed by bacterial pore-forming toxins (PFTs)
(4). These proteins can generally be produced recombi-
nantly and in a soluble monomeric form. At high concen-
trations, as encountered upon binding to target cells, they
oligomerize into ringlike structures that insert into the
plasma membrane.

Despite increasing knowledge about the mode of action
of PFTs (4,5), the mechanisms and the kinetics of self-
assembly of these complexes remain largely enigmatic. In
particular, it is not known whether oligomerization occurs
through the sequential addition of monomers or through
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interaction of multimeric intermediates, whether oligomeri-
zation is a limiting step in the pore-formation process, and
whether all PFTs assemble through similar mechanisms.
This incomplete picture is mostly due to the fact that inter-
mediates have generally not been visualized by biochemical
or structural methods.

Here, we aimed at investigating whether the distribution
of individual pore formation times measured at the single-
cell level could provide mechanistic information on the as-
sembly process. A similar approach has been successfully
used to study membrane fusion events of single viruses
(6). We chose the well-characterized PFT aerolysin pro-
duced by Aeromonas hydrophila. This toxin is produced
by the bacterium as an inactive precursor called proaeroly-
sin, which harbors a C-terminal peptide (CTP) (7). Proteo-
lytic enzymes present in the gut or at the surface of target
cells hydrolyze a peptide bond between the CTP and the
mature toxin peptide, aerolysin, which can subsequently oli-
gomerize into heptameric pores of z2 nm in diameter (8).
We measured cell permeabilization times at the single-cell
level using two independent live-cell imaging methods, in
erythrocytes and in nucleated cells. Mathematical modeling
of the stochasticity in the permeabilization times allowed us
to determine the minimal number of steps required for pore
formation. Our analysis suggests that the limiting steps for a
functional aerolysin pore to form consist in the conversion
of each monomer to an assembly competent state, plus an
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additional event that we hypothesis could be related to
membrane insertion.
MATERIALS AND METHODS

Toxin preparation and generation of CTP-free
aerolysin

Aerolysin was prepared as described previously in Buckley (9) and

Heuck et al. (10). The purity of aerolysin, WT, and Y221G, was checked

by sodium dodecyl sulfate-polyacrylamide electrophoresis. The activity

assessed by hemolysis as previously described in Iacovache et al. (11).

The activity of Y221Gwas assessed by monitoring its ability to oligomerize

(12). Synthetic custom CTP was generated by EZBiolab (Carmel, IN).

The proaerolysin S453P mutant harboring a C-terminal histidine tag was

produced in Escherichia coli and purified as described in Iacovache et al.

(11). Proaerolysin S453P at 0.5 mg/mL in 20 mM Tris, 150 mM NaCl,

pH 8 was subsequently processed with prewashed trypsin immobilized on

agarose beads (Sigma-Aldrich, St. Louis, MO) on a rotary shaker for 2 h

at 4�C (11). The trypsin agarose beads were removed by centrifugation at

7000 rpm in a tabletop Eppendorf centrifuge. The sample was subsequently

incubated with Nickel agarose beads and CTP-free aerolysin was recovered

in the unbound fraction (11).
Bulk hemolysis

Blood samples were obtained from human donors. Red blood cells (RBCs)

were prepared by three rounds of centrifugation and washing with cold

PBS (phosphate-buffered saline; 2.7 mM KCl, 150 mM NaCl 1.5 mM

KH2PO4, 6.5 mM Na2HPO4) at 2500 rpm for 5 min at 4�C, and mixed

1:1 with anticoagulation buffer afterwards. Anti-coagulation buffer was

prepared in the following way for 100 mL: 479 mg citric acid 1-H2O

(MW 210.14), 1.5 g sodium citrate �2H2O (MW 294.1), 2.75 g glucose

1-H2O (MW 198.17). Before the experiments the RBCs were centrifuged

and 0.2 mL from the pellet was diluted in 25 mL of cold PBS. Hemolytic

activity of aerolysin was measured after activating the toxin as follows:

Trypsin was taken from a 1 mg/mL stock solution and added to the proaer-

olysin sample at a concentration of 10 mg/mL for 10 min at room temper-

ature. Bulk hemolysis was measured after serial dilution of the toxin in

PBS in 96-well plates. RBCs were added in a 1:1 mix and the plate was

immediately put in a 96-well plate reader (SpectraMax M2e; Molecular

Devices, Eugene, OR) to measure the absorbance at 450 nm for 2 h with

a time interval of 40 s.
FIGURE 1 Single-cell hemolysis upon treatment with aerolysin. (A)

Phase contrast images of single red blood cells subjected to 10 ng/mL of

aerolysin. (Inset) Magnification of a single cell showing change in intensity

upon pore formation. (B) Representative trace illustrating the typical

morphological changes that occur upon toxin treatment. During the lag

time, Tlag, the toxins bind, aggregate, and form the first pores (yellow).

Then the cells osmotically swell (orange) and finally lyse when the pressure

becomes too big (red). (C) Signal intensities of a selection of single-cell

traces from the recording in (A) at 10 ng/mL aerolysin.
Live-cell imaging

Erythrocytes were injected with the toxins into a microfluidic chamber

ultraviolet imager (Ibidi, Martinsried, Germany) directly under an Axiovert

200M microscope (Carl Zeiss, Jena, Germany) and recorded with phase

contrast with a 10 s time interval at 10� magnification. The Affi-Gel

Blue Beads (Bio-Rad, Hercules, CA) were soaked in 100 mL of activated

aerolysin (1000 ng/mL) for 30 min at room temperature before addition

to an erythrocyte cell lawn (MatTek, Ashland, MA). HeLa cells were

diluted to 500,000 cells/mL, plated inside the microchamber ultraviolet

imager, and loaded for 30 min at 37�C with calcium-sensitive dye Fura-

FF (6 mM). After washing and incubating for a further 20 min with full

medium, the cells were directly incubated with a toxin (containing Hanks

Salt buffer and 1 mM thapsigargin) under an epifluorescence microscope

(Axiovert 200M, Carl Zeiss) equipped with the following setup: oil-immer-

sion objective Neofluar 25� (Carl Zeiss), using 200 ms exposure times

at 340 and 380 nm, respectively, with a time interval of 2 min between

each acquisition. Binning was equal to 2. Filter sets were from Chroma

Technology (Bellows Falls, VT).
Image and data analysis

Movies were analyzed using ImageJ (National Institutes of Health, http://

rsbweb.nih.gov/ij/). Each movie was projected and converted to a black-

and-white threshold image to use as a mask to define the regions of

interest for each cell. The intensity traces of each movie were exported

to MATLAB (The MathWorks, Natick, MA). A background region was

extracted for normalization of the signal. For the calcium assay, the

regions of interest were defined by hand and extracted for both excita-

tion wavelengths. The portions of the traces before the lysis were fitted

to a sigmoidal function to detect the times of first pore formation Tlag
(Fig. 1 B).
Digital holographic microscopy

Holographic microscopy was performed in Professor Magistretti’s labo-

ratory at the École Polytechnique Fédérale de Lausanne (Lausanne,

Switzerland). Measurements were made with a transmission DHM setup

(DHM T1000; Lynceé Tec, Lausanne, Switzerland) (13). The setup is a

Mach-Zehnder interferometer in which an object beam illuminates the
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specimen and interferes with the reference beam on the charge-coupled

device camera. The measured interference pattern allows reconstructing

the phase retardation induced by the biological specimen. This quantitative

phase signal is related to cell parameters including cell volume, cell shape,

and integral refractive index.
Mathematical modeling and data fitting

The lag times until pore formation Tlag measured in single cells were

normalized by the average lag time hTlagi for each monomer concentra-

tion. A stochastic model was used to describe these rescaled lag times.

In particular, we considered a generic model in which a sequence of sto-

chastic reactions with rates ki¼1:::N describing N limiting sequential steps is

required to form a functional pore. A key aspect of the model is that N is

not known and will be estimated from the data. In such models, for any

set of reactions rates, the total time to form a pore follows a phase-type

distribution,

P
�
Tlag

� ¼ aeS TlagSb;

where a ¼ ð1; 0;.; 0Þ, b ¼ ð1; 1;.; 1Þ, and S is the rate matrix, as:
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where we assumed that the lag times are identically and independently

distributed. Applying Bayes rule and a scale-uniform prior over the rates
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To estimate the posterior mean and the posterior standard deviation of the

parameters, the posterior distribution was sampled using a standard Markov

Chain Monte Carlo (MCMC) algorithm. Finally, we selected the optimal

number of limiting reaction N using the Bayesian Information Criterion

(BIC), which prescribes to select the model (in our case, N) that minimizes

the following score:

BIC ¼ �2 ln
�bL�þ N lnðDÞ;

where bL is the maximum of the likelihood function (obtained by numerical

optimization using an interior-point algorithm), and D is the number of data

points (number of analyzed cells). The second term in the above formula

can be understood as a penalization factor for the complexity of the model,

thus preventing overfitting. Note that, when comparing two models, the

one with the lowest BIC score is preferred. A guideline is given in Kass

and Raftery (14) to evaluate the strength of the evidence against the model

with higher BIC score. In summary, a score difference between 2 and 6 rep-

resents positive evidence; between 6 and 10, strong evidence; and>10, very

strong evidence.
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RESULTS AND DISCUSSION

Lag times until pore formation in single
erythrocyte cells

The activity of PFTs is classically determined by moni-
toring the bulk release of hemoglobin after erythrocytes lysis
(15,16). The readout of this assay results in a typical
sigmoidal curve, the slope of which varies with the toxin con-
centration as illustrated for aerolysin (Fig. S1 in the Support-
ing Material). However, this analysis at the population level
masks all cell-to-cell variability. To assess this variability, we
imaged toxin-exposed erythrocytes by phase contrast light
microscopy. Conveniently, due to the light-absorbing nature
of hemoglobin, erythrocytes appear as black spots when
intact and become undetectable when lysed (see Movie
S1). It is evident from this assay that not all cells lyse at the
same time, even if subjected to the same toxin concentration.
The stochastic nature of lysis was particularly striking when
placing an aerolysin-soaked bead on a lawn of erythrocytes,
to create a toxin concentration gradient emanating from the
bead. As expected, the closer the cells were to the toxin
source, the faster the lysis occurred (Fig. S2). At a given dis-
tance from the bead, the variability in lysis time across indi-
vidual cells was, however, extremely high.

For a more detailed analysis of lysis at the single-cell level,
we plotted the change in contrast of single erythrocytes as
a function of time (Fig. 1 A; Movie S1). Three phases could
be distinguished (Fig. 1 B): a lag phase with no change; a
gradual decrease in contrast; and a final quasi-instantaneous
increase. To unambiguously determine what these phases
represent, aerolysin-treated erythrocytes were analyzed by
digital holographic microscopy, a method that allows the
direct monitoring of cell shape changes (13) (Fig. S3).
Initially, cells had their typical biconcave shape (yellow phase
in Fig. 1 B). During the following phase, cells underwent
rounding, as expected upon osmotic swelling after formation
of the first pores (Fig. S3 C and orange phase in Fig. 1 B).
Finally, the cells lysed, leading to an abrupt change in phase
contrast (red phase in Fig. 1 B). This third phase of hemoglo-
bin release is monitored when bulk hemolysis is performed
at the population level (Fig. S1 A). In contrast, microscopic
analysis using single cells not only allows determining the
lysis time, but also the lag time (Tlag) that precedes formation
of the first pore. The value Tlag encompasses multiple events:
diffusion of soluble monomers toward the erythrocyte mem-
brane, binding to surface receptors, diffusion of the recep-
tor-bound toxin in the two-dimensional membrane surface,
possible conformational changes, oligomerization, mem-
brane insertion, and, finally, membrane permeabilization.
Lag timescale with monomer concentration

To quantify the variability in the lag times leading to
membrane permeabilization, we next recorded the triphasic
light intensity curves for thousands of individual cells in
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microfluidics chambers (Fig. 1 C). Automatic analysis at
different toxin concentrations allowed us to extract lag times
Tlag for a large number of cells (n ¼ 787 for aerolysin at
10 ng/mL z 0.2 nM). The value Tlag showed asymmetric
right-tailed distributions (skewness > 0.7) at all concentra-
tions tested (Fig. 2). The distributions clearly showed that
the rate-limiting step in aerolysin pore formation cannot
be a single, one-step transition, because this would lead to
exponentially distributed lag times.

The distributions for Tlag showed a clear concentration-
dependence, with a shift toward shorter times as the toxin
concentration increased (Fig. 2). The mean hTlagi scaled as
a power law of the initial toxin concentration c: hTlagi ¼
const � c�x with x ¼ 0.67 5 0.07 (Fig. 3 A). Moreover,
the standard deviation (SD) of Tlag scaled with a power
law with the same exponent x, so that the SD varied linearly
with respect to the mean, across all tested concentrations,
with a slope b ¼ 0.4 5 0.01 (Fig. 3 B). This indicates that
the coefficient of variation (CV ¼ b ¼ SD/hTlagi), a measure
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FIGURE 2 Distributions of pore formation lag times. Histograms of lag

times Tlag for different initial concentrations of aerolysin. The distribution

of lag times shifts to shorter times and gets narrowed with higher concen-

trations of aerolysin.
of the stochasticity of the underlying biochemical process, is
independent of initial monomer concentration.Most notably,
the distributions for the different concentrations collapsed
into a single curve after rescaling the times by the concentra-
tion-dependent means, indicating that not only the mean and
SD scaled with concentration, but so did the full distributions
(Fig. 3 C). Such a scaling strongly constrains the underlying
pore formation process. Importantly, it indicates that the rates
of all reactions underlying the pore formation process must
follow the same dependence on the monomer concentration.
Kinetics of aerolysin pore formation

A simple yet quite general kinetic model that satisfies the
scaling constraint is a sequential process of N independent
and irreversible reactions that need to occur to produce a
functional pore. When the rates of the individual reactions
are taken as ki(c)¼ ai c

x (the index i denotes the ith reaction),
the corresponding reaction times for that step are distributed
exponentially with mean 1/ki(c). Hence, given N reaction
steps, the distribution of lag times Tlag represents the convo-
lution of N exponential distributions, which is a particular
case of the phase-type distribution (Materials and Methods).

To determine the minimal number of underlying reaction
steps N that best explain the overall pore formation process,
as well as their rate constants, we calculated a likelihood
function as the probability that the measured and rescaled
lag times, Tlag, were drawn from a phase-type distribution
as introduced above (Materials and Methods). Because the
number of reactions N is not known, we used the BIC, which
explicitly penalizes the model complexity and hence con-
trols for overfitting (Materials and Methods). The lowest
BIC score, and thus most favorable model, was obtained
for N ¼ 8 (Fig. 4 A, blue line), which indicates that eight
rate-limiting reactions are required to form a pore.

Next, to obtain estimates and errors for the eight reaction
rate constants, we calculated the posterior distribution over
the rates using theBayes theoremand the likelihood function,
which we then sampled using a MCMC algorithm. Remark-
ably,we found that one slow reaction represented 295 2%of
the average lag time hTlagi while the other seven reactions
represented ~10% each (the largest and smallest values being
13 5 3% and 8 5 3%, respectively; see Fig. 4 B). The rate
constants of these seven fast reactions were not significantly
different (p-value¼ 0.12 between the largest and the smallest
values according to a two-sample Z-test; Fig. 4 B), which
suggests that the same reaction had to occur seven times
to form a pore. To strengthen this hypothesis statistically,
we computed the BIC score of a reduced model consisting
of seven equal fast steps plus an additional slow step (this
model is termed the ‘‘7eqþ1’’ model), which was clearly
favored over the model with N different reactions (red dot
in Fig. 4 A). The corresponding fit to the 7eqþ1 model gives
a slow reaction that accounts for 305 1% of hTlagi and seven
fast reactions that account for 105 0.2%each (dashed line in
Biophysical Journal 110, 1574–1581, April 12, 2016 1577
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FIGURE 3 Scaling properties of lag times with

monomer concentration. (A) Scaling of the average

pore formation time hTlagi as a power law in func-

tion of the initial aerolysin concentration. (Inset)

Double logarithmic plot. The fitted slope is a ¼
0.67 5 0.07. (B) Linear scaling of the SD of Tlag
in function of the average of hTlagi. The fitted slope
b ¼ 0.4 5 0.01 represents the coefficient of varia-

tion (CV ¼ SD/hTlagi) of the lag times Tlag and is

independent of the concentration. (C) Cumulative

distributions for different aerolysin concentrations

collapse after being rescaled with a concentra-

tion-dependent power law.
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Fig. 4B). The result of the fitting is shown on the rescaled dis-
tributions in Fig. 4C (dotted line). To gain further confidence
that our inference procedure can identify the proper model,
we tested it on simulated lag times (n ¼ 5000) drawn from
a 7eqþ1 reaction model. The model was rightly inferred us-
ing the BIC score (see Fig. S4 A). Furthermore, the reaction
rates were also correctly estimated (see Fig. S4, B and C).

Hence, only four parameters are sufficient to accurately
capture the entire data set comprised of ~5000 measure-
ments of lag times (see Fig. S5). Two of these parameters
describe the rescaled distribution of lag times, namely the
number of reactions N ¼ 8 and the partition of the mean
lag time between the seven equal reactions and the addi-
model
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tional slow reaction (70–30%). The two other parameters
specify the mean lag time hTlagi as a function of the initial
concentration c, namely the constant a and the exponent x.
Pore formation times in nucleated cells

To test whether the distribution of Tlag described above is
specific to erythrocytes or is independent of cell type, we
analyzed aerolysin pore formation kinetics in nucleated
HeLa cells. Because phase contrast microscopy could not be
used for this cell type, we followed the influx of calcium,
which has previously been shown to occur after pore forma-
tion by aerolysin (17,18). HeLa cells were loaded with a
ction
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calcium-sensitive fluorescent dye and changes in fluorescence
were monitored by live microscopy as a function of time. The
changes in fluorescence intensities at the single-cell level
showed a lag time after toxin addition and then a steep in-
crease in intracellular calcium (Figs. S6, A and B, and S7),
which was not observed with the aerolysin mutant Y221G
that is unable to form pores (Fig. S6 B) (12). We again per-
formed experiments at different aerolysin concentrations al-
lowing us to determine the lag times until pore formation
Tlag for each cell (Fig. S6 C). As for erythrocytes, the SD in
Tlag varied linearly with respect to the mean across all tested
concentrations, with a slope b ¼ 0.35 5 0.02 (Fig. S6 D).
Similar to the erythrocytes, the estimated number of limiting
reactionswasN¼ 8 (Fig. S6,E andF). This set of experiments
shows that irrespective of the cell type used, the number of
rate-limiting steps necessary to explain aerolysin pore forma-
tion was eight. We also compared the scaling of Tlag on eryth-
rocytes and Hela cells and found exponents of x¼ 0.785 0.1
forHeLa cells and x¼ 0.675 0.07 for erythrocytes (Figs. 3A
and S6 C). Taken together, the number of reactions N and the
exponent x for aerolysin are independent of the cell type or the
method used to determine them (phase contrastmicroscopy or
calcium imaging), suggesting that the mechanisms leading to
pore formation are similar across cell types.
Role of the C-terminal peptide of aerolysin

The kinetic analysis of pore formation by aerolysin revealed
that the process requires a minimum of seven limiting equal
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steps plus one additional slow step. Previous studies demon-
strated that binding of proaerolysin or aerolysin to its recep-
tor and diffusion of these lipid-anchoredmolecules at the cell
surface are not limiting (19,20). We have, however, shown
that after proteolytic processing of proaerolysin, the CTP is
not released as a consequence of proteolysis (11) as was pre-
viously thought (21). Importantly, we found that excess CTP
inhibits oligomerization, indicating that CTP release is
required for heptamerization (11) consistent with it being ab-
sent from the aerolysin heptamer (22). These observations
led us to speculate that the release of the CTP, within each
monomer, could be the limiting step. If the seven equal steps
indeed correspond to CTP release at the monomer level,
the prediction would be that the addition of excess synthetic
CTP should lower the rate without markedly altering the
number of reactions. In contrast, artificial removal of the
CTP should bypass the seven limiting steps and revealing
the next limiting steps in the overall pore formation process.

To test this hypothesis we repeated the single-cell hemo-
lysis assay in the presence of excess synthetic CTP. Consis-
tent with our hypothesis, the lag times were increased: the
average Tlag for 10 ng/mL aerolysin increased from of
1026 5 407 s under control conditions, to 1668 5 607 s
(p < 0.0001) in the presence of excess CTP (Fig. 5 A).
Also, the minimum number of steps required to explain
the process remained eight (seven equal steps plus one
slow step; Fig. 5 C, red dot).

To generate aerolysin devoid of CTP, we made use of a
proaerolysin mutant carrying a single point mutation in the
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CTP, S453P.We have previously shown that upon proteolytic
cleavage, the CTP, which carries the mutation, is released
from the mature protein (11). The single-cell assay was
performed with thus-generated CTP-free toxin at different
concentrations. Again consistent with our hypothesis, the
rescaled Tlag distribution profile was significantly different
from that obtained under control conditions (Fig. 5, B
and D). The average Tlag for 10 ng/mL CTP-free aerolysin
slightly but significantly (p < 0.001) decreased to 927 5
351 s (Fig. 5 A). More importantly, the probabilistic analysis
revealed that the number of limiting steps N dropped from
eight to two (Fig. 5 D).

Identifying the two steps that become limiting once the
CTP has been removed will require further investigation.
However, we cannot exclude that some contaminating
CTP remains present in the sample and could affect the
observed kinetics. The low number of limiting steps, how-
ever, indicates that they no longer occur at the monomer
level, but probably later. These steps could represent the
completion of the heptamer and/or membrane insertion of
the complex. In fact, this last step was found to be limiting
for other PFTs, such as a-hemolysin from Staphylococcus
aureus (23). Interestingly, a requirement for the conversion
of monomers to oligomerization-competent protomers has
also been proposed for other PFTs, such as S. aureus a-he-
molysin (24), Clostridium perfringens PFO (25), and E. coli
ClyA (26).
CONCLUSIONS

In summary, we developed a live microscopy assay using
microfluidics to monitor pore formation on a large number
of single erythrocytes over a broad range of toxin concentra-
tions. Three distinct phases could be extracted from the
single-cell light intensity curves. The most informative
parameter was Tlag, the lag time separating toxin addition
from the initiation of erythrocyte swelling, the distribution
of which was analyzed using mathematical modeling. Using
this approach, we found that Tlag could be accurately ex-
plained by seven independent reactions with equal rates
plus an additional slow reaction. Using aerolysin devoid
of its bound C-terminal peptide, we could reveal that
the seven equal reactions correspond to the release of the
CTP in each of the seven monomers, before heptameriza-
tion. Our approach thus enabled us to identify the limiting
step in the aerolysin pore formation process. Many PFTs,
however, are not produced as protoxin; for example,
S. aureus a-hemolysin. In this case, diffusion of monomers
was found to be the limiting step, as observed by single-
molecule tracking and Monte Carlo simulations (24). Our
study, however, has not addressed how the seven monomers
assemble. Using single-molecule spectroscopy, it was
recently observed that assembly of the dodecameric ClyA
pores does not occur by sequential addition of monomers but
through the combinatorial assembly of various oligomeric
1580 Biophysical Journal 110, 1574–1581, April 12, 2016
intermediates (26). Similarly, assembly of S. aureusg-hemo-
lysin hexamers was found to occur preferentially through the
association of dimers or trimers (27). In contrast, assembly of
a-hemolysin heptamers were proposed to assemble through
the sequential addition of monomers (24). This proposed
approach is highly dynamic and applicable to any PFT
without labeling, and should prove useful to compare toxins
of different structures and different pore stoichiometries.
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Figure S1. Bulk hemolysis with aerolysin. A) Red blood cells were treated with a 

serial dilution of 13-500ng/ml aerolysin and the absorbance at 450nm was recorded 

over time. Average of triplicates are shown. B) Half maximal lysis times in function 

of different initial aerolysin concentrations. Inset: Log-log plot. C) Spherization times 

extracted from the single-cell for different initial concentrations of aerolysin. 
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Figure S2. Stochastic lysis of erythrocytes in a gradient of toxin. A) Images of a 

lawn of erythrocytes at 0, 19, 20, 30, 40 and 50 minutes after the aerolysin-soaked 

bead exposure (dark circle in the upper-left corner). B) Light intensity as function of 

time and radial distance from the aerolysin-soaked bead. 

 

 

 

 

 

 

 

 

 



 

 

 
 

Figure S3. Digital holographic microscopy of erythrocytes treated with aerolysin. 

A) Surface reconstruction of a subset of red blood cells treated with 50ng/ml of 

aerolysin. B) Representative single-cell traces for 5 different cells. C) Cross section of 

a red blood cell at time t=0 min and at time t=5min. 
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Figure S4. Test of the inference procedure on simulated data from a 7eq+1 

model. A) BIC scores of models with reactions of different rates (blue) or with n 

reactions of equal rates plus an additional reaction (red dots). B) Posterior mean 

reaction times (bars) and posterior standard deviation (error bars) of an N=8 different 

reaction model computed via MCMC sampling. Dashed line represents the fitted 

reaction times of a 7eq+1 reaction model. C) Fit of a 7eq+1 reaction model (dashed 

line) to the rescaled pore formation lag times (bars). 
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Figure S5. Quantile-quantile plots. A, B) Quantile-quantile plots of the pore 

formation lag time distributions of aerolysin against the fits of 7eq+1 model 

distributions with N=8 (see main text). 

 
 
 
 

 

lag time quantiles
0 1 2 3 4

th
e
o

re
ti

c
a
l 
q

u
a
n

ti
le

s

0

1

2

3

4

All data

lag time quantiles
0 1 2 3 4

th
e
o

re
ti

c
a
l 
q

u
a
n

ti
le

s

0

1

2

3

4

Simulated data

lag time quantiles
0 1 2 3 4

th
e
o

re
ti

c
a
l 
q

u
a
n

ti
le

s

0

1

2

3

4

2.5 ng/ml WT

lag time quantiles
0 1 2 3 4

th
e
o

re
ti

c
a
l 
q

u
a
n

ti
le

s

0

1

2

3

4

5 ng/ml WT

lag time quantiles
0 1 2 3 4

th
e
o

re
ti

c
a
l 
q

u
a
n

ti
le

s

0

1

2

3

4

10 ng/ml WT

lag time quantiles
0 1 2 3 4

th
e
o

re
ti

c
a
l 
q

u
a
n

ti
le

s

0

1

2

3

4

20 ng/ml WT



 

 
 
 

Figure S6. Pore formation lag times in nucleated cells. A) Thapsigargin treated-

HeLa cells loaded with the calcium-sensitive dye Fura-FF, imaged every 2 minutes 

after aerolysin (100 ng/ml) treatment. B) Example of calcium influx in a cell from A) 

upon pore formation. No calcium increase is observed upon treatment with the pore 

formation mutant Y221G (dotted line) or without toxin (dashed line). C) Signature of 

pore formation time Tlag versus initial toxin concentration. Inset: Log-log plot. D) 

Linear scaling of standard deviation (SD) in function of mean pore formation times 

Tlag. E) BIC scores of models with reactions of different rates (blue) or with 7 

reactions of equal rates plus an additional reaction (red dot). F) Distribution of 

rescaled lag times for aerolysin fitted to a 7eq+1 model distribution. 
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Figure S7. Calcium traces of aerolysin-treated HeLa cells. Subset of single-cell 

traces obtained for HeLa cells loaded with the calcium-sensitive dye Fura-FF and 

challenged with 100 ng/ml of aerolysin. 
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