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1 Summary of experimental predictions

The model makes several testable predictions throughout the Results sec-
tion. For convenience, we tabulate these predictions here. Note that these
predictions presume that the cell is exhibiting blebs before the perturbation.

Table S1: Model predictions for experimental perturbations.

Experimental perturbation Parameter Prediction

Increasing hydrostatic pressure P ↑ Larger blebs
Increasing molecular size of adhesion molecules D ↑ Abolish blebbing
Decreasing molecular size of adhesion molecules D ↓ Slower bleb healing
Increasing myosin contractility M ↑ Abolish blebbing
Decreasing myosin contractility M ↓ Slower bleb healing
Increasing membrane tension γM ↑ Faster bleb travel
Increasing abundance of adhesions kon ↑ Slower bleb travel

2 Details of geometry of cortical and cytoplasmic actin

In 3D, the cell surface and cortex are curved, discontinuous two-dimensional
manifolds and the cytoplasm is a 3D field. In full generality, the cortex
and cytoplasmic actin network have a density at each point in space. We
assume that actin-myosin contractility is isotropic and generates local stress
proportional to the local density of cortical actin c. This stress therefore
has two components: a tangential component due to connection with nearby
cortex

σt = σMwcc∇yC , (S1)

and a normal stress due to connection with the cytoplasmic actin network

σn = σMcyC . (S2)

We find that the normal contractile force is necessary for asymetric bleb
healing, as occurs during bleb travel. This necessity can be understood from
Fig. 1A: In the absence of cytoplasmic actin, the tangential stress pulls the
membrane tangentially, but there is no force driving the cortex into the place
of the cell. Our goal is to understand in 3D. To this end, we find it informative
to study simplified 2D systems and 1D systems as an analytical tool. The 2D
model is equivalent to either the geometries shown in Supplemental Fig. 1C
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Figure S1: Approximations of cortex and cytoplasmic actin geometry in 3D.
(A-B) Bleb geometry in 3D including only tangential cortical contractility
(A), and both tangential and normal contractility (B). (C-D) Representation
of 2D model. (E) Hypothetical 1D “non-spatial” model corresponding to
ODE system used in Main Text.

or D. The 1D model, which we refer to as the ODE model in the Main Text,
corresponds to the geometry shown in Supplemental Fig. 1E.
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Table S2: Estimates of parameters used in non-dimensionalization.

Model parameter Estimated value Source
r 0.1/s (11)
kon 100/ µm2 · s (21)
koff 1/s (11)
kA 10 pN/µm (21)
σM 0.1Pa/ µm2 (21)

Π̂ 100Pa/ µm (21)
y0
M 3µm (8)
γM 100 pN/ µm (45)

3 Parameter estimation

Using these estimates, the correspondence between dimensional and non-
dimensional parameters are given by

x = χ · 0.2µm (S3)

t = τ · 10s (S4)

a = A · 100/µm2 (S5)

yM = YM · 3µm (S6)

yC = YC · 3µm. (S7)

Note that model parameters not included in Table S2 do not impact the
non-dimensionalization.

4 Model variants

4.1 Bending

The inclusion of higher-order derivatives in the mechanical energy transform
the system into a higher-order boundary value problem. For example, the
bending energy term transforms the membrane shape equation to a fourth-
order equation. We simulate the base model with the addition of bending
terms β > 0, shown in Fig. S2. We find that the excitable parameter regime
and traveling parameter regimes are unchanged. For β = 100, the velocity of
travel is increased by approximately two-fold and healing is delayed compared
to no bending.
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Figure S2: Influence of membrane bending rigidity. (A) Traveling bleb on a uniform surface
with no bending energy β = 0. (B) Traveling bleb with large bending rigidity β = 100. The
bleb velocity is increased by approximately two-fold and healing is delayed (but eventually
occurs, not shown).

5 Details of numerical method

5.1 Base model

The base model, Eqs. 10-13, comprise a two-dimensional boundary value
problem of elliptic type at each instant in time, coupled to two first-order (in
time) partial differential equations. To solve the base model, we discretize
space into a uniform grid of width ∆χ = 0.1 and time step size ∆t = 0.01.
We use a standard five-point stencil finite difference method in space and
forward-Euler in time.
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5.2 Non-uniform tension

The inclusion of non-uniform tension changes the boundary value problem
to a non-uniform elliptic equation. The equations takes the form

P = f(χ1, χ2)YM(χ1, χ2)−∇ · (Γ(χ1, χ2)∇YM(χ1, χ2)) (S8)

where f and Γ are spatially varying. We use a uniform grid in space and
set ∆χ = 0.1. The functions f, YM and Γ all live at cell edges (f |i,j =
f(i∆χ, j∆χ), i = 1, 2, ..., 2000 ) and we impose periodic boundary condi-
tions. The parameter functions f and Γ must be interpolated to the edges,
which we do by uniform averaging. The resulting discretization stencil is
given by

P =

(
f |i,j +

1

2∆x2
(γ|i+1,j + γ|i−1,j + γ|i,j+1 + γ|i,j−1 + 4γ|i,j)

)
YM|i,j

− 1

2∆x2
((γ|i+1,j + γ|i,j)YM|i+1,j + (γ|i,j + γ|i,j−1)YM|i−1,j)

− 1

2∆x2
((γ|i,j + γ|i,j+1)YM|i,j+1 + (γ|i,j + γ|i,j−1)YM|i,j−1)

Since this equation remains linear, it can be written into a sparse matrix and
solved as a linear system.

5.3 Higher-order models including bending forces

Adding higher order terms, including bending forces, transforms the bound-
ary value problem into a higher-order boundary value problem. The bending
term, in particular, introduces a fourth-order bilaplacian operator. This sig-
nificantly increases the computational cost of solving the equations, therefore
we use a more sophisticated solver described here. We solve the following
equations:

∂C

∂t
= αA− C (S9)

ε
∂A

∂t
=

C

1 + C
exp

(
−
(

1

D

MC

A+MC
Ym

))
− A exp

(
1

F0

MC

A+MC
Ym

)
(S10)

P = hYm −∇ · (Γ∇Ym) +B∇4Ym (S11)

h =
AMC

A+MC
+ P, (S12)
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where α = 57, ε = 0.1, D = 0.15, F0 = 1,M = 0.007 and P = 0.1. The
nondimensional bending modulus is B ≡ β/γx3

c . In non-uniform tension
models, B = 0 and the non-uniform tension term Γ = 1 + θC where θ = 0.1
or θ = 0.2. For bending models, Γ = 1 and B ∈ {10−2, 10−1, 1, 101, 102}.

All variables satisfy periodic conditions at all boundaries. The initial
condition for Ym and C is their steady state value Y ss

m = 0.5582 and Css =
15.8236. A is also set to steady state Ass = 0.2776 except that A = 0 where
r =

√
x2 + y2 < 5.

The system is solved in a square computational domain [−200, 200]2. The
domain is initialized to a 64×64 mesh with a maximum of 5 refinement levels.
At the finest level, grid length is 400/(64× 25) ≈ 0.2. The time step is 10−2.

We use the implicit second order Crank-Nicholson scheme for time dis-
cretization in Eqs. (S9) and (S10). Spatial derivatives are discretized using
central difference approximations. Eq. (S11) is reformulated as a system of
two second order equations. Block structured Cartesian refinement is used
to efficiently resolve the multiple spatial scales. In particular, the mesh is
refined in regions with large spatial gradients of Ym (typically around the
bleb). The equations at implicit time level are solved by the adaptive non-
linear multigrid method developed in (46).

6 Description of Supplemental Movies

• Supplemental Movie 1. We simulate the 2D model with boundary
conditions at the top and bottom (12-o-clock and 6-o-clock). Corre-
sponds to parameters in Fig. 4A

• Supplemental Movie 2. Stationary bleb in 3D. Corresponds in Fig
2B.

• Supplemental Movie 3. Traveling bleb in 3D on a uniform surface.
Travel is unrestricted and the excitation spreads in all directions.

• Supplemental Movie 4. Traveling bleb with surface heterogeneity.
Corresponds to Fig. 4B.

• Supplemental Movie 5. Traveling bleb with global pressure. Corre-
sponds to Fig. 6A.
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