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ABSTRACT Blebs are pressure-driven cell protrusions implicated in cellular functions such as cell division, apoptosis, and cell
motility, including motility of protease-inhibited cancer cells. Because of their mechanical nature, blebs inform us about general
cell-surface mechanics, including membrane dynamics, pressure propagation throughout the cytoplasm, and the architecture
and dynamics of the actin cortex. Mathematical models including detailed fluid dynamics have previously been used to under-
stand bleb expansion. Here, we develop mathematical models in two and three dimensions on longer timescales that recapit-
ulate the full bleb life cycle, including both expansion and healing by cortex reformation, in terms of experimentally accessible
biophysical parameters such as myosin contractility, osmotic pressure, and turnover of actin and ezrin. The model provides con-
ditions under which blebbing occurs, and naturally gives rise to traveling blebs. The model predicts conditions under which blebs
travel or remain stationary, as well as the bleb traveling velocity, a quantity that has remained elusive in previous models. As
previous studies have used blebs as reporters of membrane tension and pressure dynamics within the cell, we have used
our system to investigate various pressure equilibration models and dynamic, nonuniform membrane tension to account for
the shape of a traveling bleb. We also find that traveling blebs tend to expand in all directions unless otherwise constrained.
One possible constraint could be provided by spatial heterogeneity in, for example, adhesion density.
INTRODUCTION
The eukaryotic cell surface is the site of cell-cell communi-
cation (1), cell-environment interactions including motility
and mechanosensing (2), and cell morphogenesis (3),
among other processes. Many of these processes involve
mechanical forces and deformation, making mechanics
of the cell surface an increasingly important topic of
investigation.

The study of cell-surface mechanics is complicated by
dynamic interactions among its multiple constituents with
distinct material properties. The plasma membrane is fluid
(4); it resists deformation and experiences surface tension
on the order of 10–100 pN/nm (5,6) that is spatially and
temporally nonuniform (7). Below the membrane is an
� 100 nm layer of F-actin with microarchitecture distinct
from that of the cytoplasmic F-actin farther into the cell
(8), termed the cortex. The cortex is anisotropic porovis-
coelastic material (9,10) that generates internal active con-
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tractile stresses by association with myosin (6). The
membrane and cortex are decorated with a myriad of mol-
ecules, some of which interact with both of them, thereby
facilitating dynamic adhesion between them (11). This
complexity obscures fundamental questions such as, how
quickly is hydrostatic pressure propagated through the
cortex (12–14), or surface tension across the membrane
(4,7,15)? These questions have functional consequences,
since membrane bending and tension are implicated in,
for example, endocytosis (5), motility (15,16), and cell po-
larization (17), and the cortex is implicated in cell division,
initiation of filopodia and other cellular protrusions (18),
both facilitation and prevention of vesicle export (19),
and wound healing (9).

An example of a cell process that involves all the above
components is offered by cellular blebbing, pressure-driven
protrusions that occur in many cell types and conditions
(20–22). An individual bleb begins with an initiation phase
during which the membrane separates from the cortex,
either spontaneously or under experimental triggering
such as laser ablation (8,20). Initiation is followed by a rapid
ð� 10 sÞ expansion phase, which, unlike other cellular
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FIGURE 1 (A) Micrograph of a single bleb induced by laser ablation on

the surface of a HeLa cell 43 s after initial formation, taken from (64). (B)

Model components. At each location on the surface of the cell, x, four quan-

tities are represented: the height of the membrane, yMðx; tÞ; the height and
thickness of the actin cortex, yCðx; tÞ and Cðx; tÞ; respectively; and the local
density of membrane-cortex anchoring proteins, Aðx; tÞ. Note that the sche-
matic shows the range of possible model states (e.g., thick or thin cortex,

protruding or proximal membrane), whereas specific predicted dynamics

will be determined by simulation. To see this figure in color, go online.
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protrusion, is not actively driven by cytoskeletal polymeri-
zation (23). After expansion, blebs can exhibit a range of dy-
namic behaviors: Stationary blebs heal in place with a
slower timescale (on the order of minutes). Other classes
of bleb that have been experimentally observed travel
around the periphery of the cell—a phenomenon termed
circus movement (24–26)—or repeatedly bleb on top of
an existing bleb (20). The complete life cycle is determined
by a complex interplay between flow of cytosol into the
bleb, contractive forces in the cortex, and the formation
and maintenance of membrane-cortex adhesions. Blebs are
implicated in nonlamellipodial cell motility (27,28) (for
example, in protease-inhibited cancer cells (29)), as well
as in maintaining homeostasis during division (30), and it
is speculated that they have a role in the origin of eukaryotic
life (31).

Traveling waves of protrusion are increasingly reported in
different cell types (17,32), but these protrusions are typi-
cally F-actin-enriched (although see (33)), whereas blebs
represent regions with reduced F-actin. A fundamental
question in the understanding of any traveling-wave phe-
nomenon (3) is what determines the traveling velocity of a
traveling bleb. And, in the case of blebs which may be sta-
tionary or travel, even simultaneously at different locations
on the same cell, what determines whether a bleb will travel
or heal in place?

Several theoretical models of blebbing have been devel-
oped to capture various aspects of the process. Compu-
tational fluid dynamics models (12,34,35) have been
developed to understand the initial expansion phase during
which cytosolic fluid follows the protruding membrane.
Due to the computational cost of solving the fluid
equations, along with their mechanical interaction with
immersed structures (which typically have subsecond
dynamics (12,34)), simulations of these models are typi-
cally limited to two-dimensional (2D) approximation and
timescales of seconds. Other researchers (26) have used
force-balance models (33,36) to obtain computationally
tractable models describing the full life cycle. These
models are in 2D and must assume an a priori bleb-healing
velocity to generate traveling blebs. Continuum analytical
models (37–39) have also been developed that move
beyond the typical small-deformation approximations typi-
cally used to describe membrane geometry. These models
capture details of the shape of stationary blebs that have,
among other findings, implicated lipid flow in determining
bleb behavior.

A full, 3D description of the full life cycle of traveling
blebs is therefore lacking. In this work, we develop a model
of local cell-surface mechanics on timescales of seconds to
minutes, thereby including cortex turnover and bleb healing.
We exploit two simplifying assumptions: First, we assume
that hydrodynamic equilibrium is reached rapidly. We thus
avoid computationally taxing fluid dynamic simulation,
albeit at the expense of losing information about the expan-
sion phase. Second, our model contains a single, ‘‘effective’’
cortex corresponding to the weighted average of cortical
actin, allowing us to include implicitly the cytoskeleton
further inside the cell.

An emerging feature of this model is that transient
detachment between membrane and cortex can lead to 1)
rapid healing, 2) stationary bleb formation, and 3) sponta-
neous bleb travel, depending on model parameters. Our
model makes two main contributions: First, since traveling
blebs arise naturally, we can elucidate the determinants of
bleb travel. In particular, several simplifying assumptions
allow us to obtain an analytic expression for bleb travel ve-
locity that provides experimentally accessible perturbations
predicted to accelerate or decelerate travel. Our second
finding is that the biophysical ingredients hypothesized to
account for blebbing produce traveling blebs with unrealis-
tic geometry. This suggests a yet-to-be-identified mecha-
nism that plays a role in cell integrity and the localization
of morphological perturbations. We explore the influence
of dynamic, nonuniform membrane tension; hydrostatic
pressure equilibration occurring at multiple length scales
(i.e., global versus local (34)); and spatial heterogeneity.
We find the latter sufficient to maintain bleb compactness
during travel.
MATERIALS AND METHODS

Our minimal model, summarized schematically in Fig. 1, consists of four

fundamental dynamic variables, as functions of time, t, and location on

the 2D cell surface, parametrized by ðx1; x2Þ. The actin cortex has local
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height described by yCðx1; x2; tÞ; measured normal to the mean cell

surface from its steady-state configuration, yC ¼ 0, and thickness

cðx1; x2; tÞ. The cortical-cytoplasmic actin cytoskeleton can in principle

have complicated morphologies that cannot be accounted for by a single

location, yC, so we think of yC as the weighted average position of

maximal cortical actin. Membrane-cortex adhesions are described by

density aðx1; x2; tÞ in molecules/nm2. Finally, the membrane has local

height yMðx1; x2; tÞ. Note that our model is agnostic about the molecular

constituents of the membrane, and it could include the plasma membrane

and permanently membrane-associated proteins and cytoskeletal net-

works (33). Our approach is similar to previous descriptions of membrane

mechanics (1,7,26,36).
Assembly and turnover

The cortex is an active, anisotropic poroviscoelastic material (9,10). Since

the molecular details of cortex assembly are still under investigation (40),

we assume simple first-order kinetics,

vc

vt
¼ ua� rc: (1)

The first parameter, u, governs cortex assembly, and assumes that new cor-

tex requires adhesion to a nearby membrane (although existing cortex can

exist anywhere), consistent with the observation that cortical actin has

different architecture than cytoplasmic F-actin (8). The second term de-

scribes cortex turnover with rate r � 0:05 s�1 (11). Although we use the

term thickness, we interpret c as a combination of density and spatial thick-

ness, with the fluorescence intensity of labeled F-actin serving as its

experimental proxy. Therefore, c has arbitrary units.

In stereotypical prebleb conditions, the cortex is attached to the mem-

brane via membrane-cortex adhesion molecules, including ezrin-radixin-

moesin family proteins (11), as well as any other membrane proteins

that interact with F-actin (41). Therefore, we use the generic term ‘‘adhe-

sion’’ to describe the combined effect of these proteins. We use similar

first-order kinetics for adhesion assembly and turnover, with three addi-

tional assumptions: 1) adhesion assembly saturates at high cortex thick-

ness; 2) adhesion attachment requires proximity between cortex and

membrane, with characteristic distance d, that describes the ‘‘reach’’ of

adhesion molecules, which may be as large as � 100 nm (8); and 3) adhe-

sion detachment is force-dependent, with characteristic breaking force f0.

These assumptions lead to

va

vt
¼ k on c

c0 þ c
exp

�
�
�
yM � yC

d

��
� k off a exp

�
kðyM � yCÞ

f0

�
; (2)

where k on and k off have units of nm
�2 s�1 and s�1, respectively, and c0 is

the cortex thickness at which adhesion assembly is half-maximal. The

numerator kðyM � yCÞ follows from the assumption that adhesions collec-

tively behave like springs with Hookean stiffness k. Note that adhesion

turnover, k off � 2 s�1 (11), is significantly faster than cortex turnover, lead-

ing to a separation of timescales that we exploit.
Mechanics

The above equations describing assembly and disassembly kinetics are

coupled to a mechanical description of the membrane and cortex via

mechanical energy,

E ¼
ZZ

H1 þHM þHC dx1dx2; (3)
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where

H1 ¼ 1

2
akðyM � yCÞ2 �P: (4)

The first term corresponds to tension on the adhesions. Since these adhe-

sions break at moderate tension, we model them as linear springs. The sec-
ond term is hydrostatic pressure,P, specified below. Membrane mechanics

are described by

HM ¼ 1

2
gMðVyMÞ2 þ

1

2
BM

�
V2yM

�2
; (5)

which corresponds to the standard Canham-Helfrich energy with membrane

tension g and bending rigidity BM (26,36,38,42). These functional forms
M

represent a small-deformation approximation and comprise a simplifying

assumption to make the model more easily amenable to the analysis. We

therefore do not expect our model to capture the shape of a fully expanded

bleb with high accuracy. More geometrically complex models have been

developed for that purpose (39). Finally, the mechanics of the actin-myosin

cytoskeleton is included in

HC ¼ csm

�
y2C þ

1

2
wCðVyCÞ2

�
; (6)

accounting for activity of the cortex, which generates contraction stress

csm, assumed to be proportional to cortex thickness. The first term in Eq.
6 accounts for inward contractility, as the cortical cytoskeleton pulls against

the cytoplasmic cytoskeleton, generating a normal (inward) force, as shown

in Fig. S1 in the SupportingMaterial. Note that this term has been neglected

in previous work (26). The second term accounts for tangential stress in the

plane of the cortex, where wC is the cortex dimension that translates the 3D

contractile stress to a tangential planar contractile tension. Importantly, we

find that in traveling blebs, where the cortex is discontinuous, the tangential

term does not generate sufficient inward force to heal the tail of the bleb

as it travels, highlighting the importance of the normal contractility term.

Cortex elasticity terms describing how the cortex resists deformation are

straightforward to add, but we find that omitting them does not detract

from our key results.

The mechanical features included in the energy equation (Eq. 3) can also

be understood by their equivalent force-balance form, expressed in Eqs. 8

and 9 below.

Pressure propagation inside the complex rheology of the cytoplasm is

under intense investigation (12,30,43). To address the nature of pressure

dynamics, we investigate several pressure model variants. As a base model,

we assume that pressure is locally relaxed when the membrane is allowed to

relax:

P ¼ bP �
�
1� yM

2y0M

�2

; (7)

where y0M sets the characteristic distance at which pressure is signifi-

cantly reduced. The pressure drop would be lessened if the membrane
is locally water-permeable (44), which would have the effect of reducing

the coefficient relating pressure to membrane extrusion. Other model

variants explore the possibility of rapidly equilibrated pressure across

the whole cell surface and a mixture of global and local pressure

relaxation.

The dynamics of membrane tension are also under investigation

(3,6,15,17,45). Under the simplest assumption, membrane tension, gM, is

spatially uniform and constant in time. We use this as our base model,

but we also explore membrane tension that is spatially nonuniform and

dynamically responds to local stretching/unruffling and cortex attachment

(see Results).



TABLE 2 Nondimensional Parameters

Symbol Definition Interpretation

U uk on=gc0k off Cortex intensity

ε r=k off ratio of adhesion and cortex turnover times

D d=y0M adhesion reach

F0 f0=ky
0
M adhesion bond strength

M smc0k off=k onk myosin contractility relative to adhesion

Cell Mechanics of Bleb Travel
Preliminary analysis

Taking the variational derivative of Eq. 3 leads to force-balance equations

for the cortex and membrane:

0 ¼ þakðyM � yCÞ � smcyC þ smc wCV
2yC (8)

d bP
 strength

P bPk off=k onk pressure relative to adhesion strength

0 ¼ �akðyM � yCÞ þ

dyM
þ gMV

2yM � b V4yM: (9)

Physical parameters are summarized in Table 1.

Values for many of these parameters have been estimated (see the Support-

ingMaterial). The spatial terms significantly complicate both numerical solu-

tion and analysis of the model, and we find that their omission does not

significantly influence blebbing dynamics. This is expected for membrane

bending, since bending forces are expected to be negligible on length scales

above� ðb=gMÞð1=4Þ � 100 nm (1). Therefore, unless otherwise noted below,

we neglect the tangential cortex stress, V2yC; and membrane bending, V4yM;

terms. However, see the Supporting Material for solutions with full terms.

We achieve nondimensionality by choosing a characteristic actin cortex

thickness, Cc ¼ c0, a characteristic density of adhesions, Ac ¼ k on=k off , a

characteristic time, tc ¼ 1=r � 30 s (11), a characteristic position, Yc ¼ y0M,

and a characteristic length, xc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gMk off=ðk onkÞ

p � 0:2 mm, resulting in

a nondimensional model,

dC

dt
¼ UA� C (10)

dA C
�

YM � YC

� �
YM � YC

�

e
dt

¼
1þ C

exp �
D

� A exp
F0

(11)

0 ¼ AðYM � YCÞ �MCYC (12)
v2YM

0 ¼ �AðYM � YCÞ þ Pð1� YMÞ þ

vc2
; (13)

with six nondimensional parameters defined in Table 2.

Here, we provide an overview of the roles of each term in Eqs. 10–13.

The first and second terms in the C equation (Eq. 10) describe cortex for-

mation and turnover, respectively. The first and second terms in the A equa-

tion (Eq. 11) describe attachment and detachment of cortex-membrane

adhesions. The first exponential in Eq. 11 arises because the membrane
TABLE 1 Model Parameters

Symbol Dimensions Meaning

u (A.U.) , s�1 cortex assembly rate constant

r s�1 cortex turnover rate constant

k on nm�2 s�1 adhesion assembly rate

k off s�1 adhesion turnover rate

c0 (A.U.) cortex thickness at adhesion saturation

d nm adhesion length between cortex and membrane

k pN= nm adhesion spring constant

f0 pN adhesion breaking strength

gM pN= nm membrane tension

BM pN nm membrane bending modulus

sm Pa/(A.U.) actin-myosin contractility (per unit of c)bP Pa/nm hydrostatic pressure scale

A.U., arbitrary unit.
and cortex must be in proximity for an adhesion to form. The second expo-

nential in Eq. 11 describes the accelerated breaking of adhesions under

force. Equations 12 and 13 describe five forces acting on the membrane

and cortex. The terms, in order of appearance, describe adhesion force on

the cortex; myosin contractility of the cortex; adhesion force on the mem-

brane; pressure; and membrane tension.

Note that our choice of nondimensionalization means that only relative

changes in YM and YC are physically meaningful. We numerically solve

these equations as described in the Supporting Material (46).
RESULTS

Model exhibits blebbing and nonblebbing
behaviors

The quantitative model combines five mechanisms of the
membrane-cortex interaction: force-sensitive adhesions, local
hydrostatic pressure, cortex contractility, membrane tension
and cortex turnover. We numerically simulate the model and
find that three classes of dynamics arise from the same model
at different parameters: stable nonblebbing states, stationary
blebbing, and traveling blebs. We discuss these in turn.

At equilibrium, the membrane and cortex are locally
approximately flat. We apply an initial perturbation corre-
sponding to local ablation by locally reducing the adhesion
density by 99%. In blebbing states, the membrane will
detach from the cortex and protrude locally. The membrane
then continues to move away from the thinning cortex as the
detached region grows in both lateral size (along the sur-
face) and height (i.e., normal to the cell surface) until it
reaches a maximum size around t ¼ 1:75. The adhesions
subsequently accumulate under the protruding membrane
and the cortex is able to reattach and thicken. Under the in-
fluence of cortex contraction, the bleb heals and the mem-
brane returns to its equilibrium. This bleb-like behavior is
observed in 2D (Fig. 2 A, left) and 3D (Fig. 2 B) simulations.
In contrast, at different biophysical parameters, the detached
region of membrane may not grow after perturbation, but
instead may directly and rapidly return to equilibrium, as
shown in Fig. 2 A, right. This stable behavior is observed
in both 2D (Fig. 2 A, right) and 3D (not shown).
Blebs as excitable phenomena

Although numerical simulation of the full model reveals
a range of blebbing behavior, we seek to elucidate how
biophysical parameters determine the class of dynamics,
Biophysical Journal 110, 1636–1647, April 12, 2016 1639
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that only relative changes in YM and YC are physically meaningful. To see this figure in color, go online.
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specifically whether or not a bleb forms. To this end,
we simplify the model by neglecting the tension term in
Eq. 13. Heuristically, we model an (unrealistic) system in
which a patch of cell surface has been cut off from its neigh-
bors (as in Fig. S1 E). This transforms the force-balance
equations (Eqs. 12 and 13) into a pair of algebraic equations,

YM ¼ ðAþ CMÞP
AMCþ APþMCP

(14)

AP

YC ¼

AMCþ APþMCP
; (15)
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shown in Fig. 3 A as a function of A and C. These are then
substituted into the assembly/disassembly equations, yielding

dC

dt
¼ UA� C (16)

dA C
�

1 MPC
�

e
dt

¼
1þ C

exp �
D AMCþ APþMCP

�
1 MPC

�

�A exp þ

F0 AMCþ APþMCP
: (17)
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The model is now a system of two ordinary differential
equations (ODEs) amenable to phase-plane analysis (47).
We plot nullclines in which dA=dt ¼ 0 (Fig. 3, B and D,
green) or dC=dt ¼ 0 (Fig. 3, B and D, orange). Four re-
gimes of behavior are observed in this system: In one
(Fig. 3, B, top left), there is a single stable equilibrium
with no threshold behavior. In this regime, perturbations
rapidly return to their steady state. We identify this with
the stable nonblebbing behavior of the full model.

The stable equilibrium can exhibit excitability (Fig. 3, B
and D, bottom left), a threshold phenomenon in which small
perturbations rapidly return to the equilibrium, but a suffi-
ciently large perturbation results in a large, slow excursion
in parameter space that eventually returns to the equilibrium.
We identify this with blebbing behavior in the full model and
it is characterized by a fold in the dA=dt nullcline.
One such excitation trajectory is shown in Fig. 3 C. Before
the initial perturbation, t < 2, the flat surface is stable to small
perturbations but susceptible to large perturbations such as the
decrease in adhesion density applied here at t ¼ 2. Themem-
brane rapidly finds a newmechanical equilibrium, pushed out
by hydrostatic pressure, which is no longer in competition
with cortical contraction. The comparatively slow timescale
of cortical turnover (Fig. 3, B and D, orange line) leads to
a delay before cortex begins to reform ðtz4Þ, after which
the cortex accumulates, pulling in the membrane. Note that
many excitable trajectories exhibit low-amplitude oscilla-
tions in the cortex as it heals, corresponding to a slight ‘‘over-
shooting’’ of the equilibrium ðtz7Þ. Interestingly, such
overshooting has been observed experimentally (8).

Theminimum threshold to initiate an excitation can be ex-
tracted fromFig. 3 as follows: The stable equilibrium is at the
Biophysical Journal 110, 1636–1647, April 12, 2016 1641
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intersection of the two nullclines. From this point, removing
adhesions corresponds to moving horizontally to the left.
When adhesion removal is sufficient to cross the dA=dt null-
cline, an excitation is initiated. Since the dA=dt nullcline
determines this threshold, it is independent ofmembrane ten-
sion. This is in disagreement with previous estimates of the
threshold, where membrane tension was predicted to be a
strong determinant of the size of initial ablation required
for bleb initiation (21). In contrast, our model predicts that
membrane tension determines how big a bleb grows (later-
ally), but not whether it initially grows. This tension indepen-
dence arises heuristically because, once a patch ofmembrane
has been deadhered, membrane tension promotes bleb
growth by pulling neighboring adhesions and inhibits bleb
growth by pulling in the deadhered region. By the force-bal-
ance condition (Eq. 9), these forces are equal.

We also observe oscillations (Fig. 3, B and D, bottom
right), which could represent continually blebbing cells
(20). At yet other parameters, the same model exhibits bista-
ble states (Fig. 3, B and D, top right) in which the flat,
unperturbed equilibrium is stable but is accompanied by a
second state in which all adhesions are broken, and hydro-
static pressure is too great for the actin cortex to overcome,
so that healing does not spontaneously occur. We expect this
permanently damaged state to not be observed experimen-
tally as other cellular processes adjust to heal the cortex.

Thus, by observing the nullclines for different parameters,
our model makes predictions about the emergence of bleb-
bing after changes in biophysical parameters (Fig. 3 D). We
summarize these predictions here and in Table S1. Increasing
the effective reach of adhesion molecules corresponds to
increasing D and abolishes excitability, whereas decreasing
D is predicted to not abolish blebbing but extends the excit-
able trajectory, therefore predicting a slower healing period.
Increasing hydrostatic pressure, e.g., by decreasing extracel-
lular pressure by modulating osmolites, leads to emergence
of blebbing from nonblebbing states, in agreement with
experiment (6) and intuition. Decreasingmyosin contractility
abolishes excitability, whereas increasing it delays healing.
Biophysical determinants of travel and travel
velocity

The previous section’s analysis predicts when the cell sur-
face will be excitable and how the bleb evolves in height,
but not its dynamics along the cell surface. To understand
bleb travel, we return to the full, spatially extended model,
first in 2D, then in 3D.

Excitableparameter sets all spread laterally.However, some
parameter sets expand in a limited manner, which we identify
as stationary blebs, whereas others trigger traveling pulses
that persist, as shown inFig. 4A.We identify these as traveling
blebs. In 2D, they move in both directions from the site of
initial triggering. The time interval theal from triggering
and expansion to healing is equal to the healing time in the
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local analysis and is determined by the cortex turnover time,
theal � 1=r. The width of the traveling bleb, w, is thus deter-
mined by its travel velocity, w � vtheal.

Traveling pulses are a generic feature of spatially
extended excitable systems (48–50). In many cases, neigh-
boring regions are coupled with the diffusion of a molecular
participant. In these reaction-diffusion systems, a simple
mathematical condition, sometimes called the Maxwell con-
dition (51,52), exists for determining whether an excitation
will induce a traveling pulse or remain localized. Since our
system is not a reaction-diffusion system, the Maxwell con-
dition fails to predict whether the blebs travel or not.

A major goal of this work is to elucidate the determinants
of the traveling velocity, which is known for reaction-diffu-
sion waves and mechanical linear waves (3). Parameter var-
iations, shown in Fig. 5, reveal that the parameter regime that
allows traveling blebs is narrow in all nondimensional pa-
rameters except ε. Indeed, its relative range is< 100:3, corre-
sponding to a twofold change. Themodel therefore predicts a
nondimensional velocity, V � 1=e, yielding the following
dimensional velocity, the principle result of this work:

vz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gMk

3
off

kk on

s
hðU;D;F0;P;MÞ (18)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

s

z

gMk off

kk on

; (19)

where the function h expresses to a weak dependence. We
confirm this prediction in Fig. 5 B by performing a large
panparametric search through parameter space. Eq. 19 pre-
dicts that travel will accelerate with increasing membrane
tension, with a specifically square-root dependence, and
will deceleratewith adhesion formation rate k on, a parameter
that could be varied by increasing the abundance of total
adhesion molecules. The affinity of adhesions for the cortex,
KAhk on=k off , is also predicted to have a decelerating influ-
ence on bleb travel. Interestingly, all other parameters,
including hydrostatic pressure and myosin contractility, are
predicted to have only a minor influence on travel velocity.
Note, however, that these parameters strongly determine
whether or not a bleb can form, and whether or not the bleb
travels laterally. This model prediction is distinct from a
previous prediction (26), which posited that cortex healing
has an intrinsic velocity, and that this velocity determines
bleb travel velocity.
Hypotheses for compact traveling blebs

In 3D, the base model also exhibits excitations that either
travel or heal in place, in agreement with the local analysis
and 2D model. Parameter conditions for excitability and
travel are the same as for the 2D model, as is travel velocity.
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However, we find that a localized initial perturbation spreads
radially in all directions, leading to an expanding bull’s-eye
or target pattern (Fig. 6 B and Movie S3). This is a generic
feature of excitable systems and arises because of inherent
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question of what gives rise to spatially compact traveling
blebs. That is, what breaks the symmetry, inducing travel
in a single direction?

We introduce three hypotheses. The first is that hydro-
static pressure may be reduced globally fast enough that,
once the excited region enlarges past a certain size, there
is no longer sufficient pressure to drive further excitation,
thus limiting the target pattern to a compact region. In our
model, we modify the membrane force-balance equation,
Eq. 9, by including the pressure term:

P ¼ bP �
ZZ �

1� yM
2y0M

�
dx1dx2: (20)

This equation corresponds to a shared, global pressure that
responds to pressure release (via membrane protrusion)
instantly anywhere in the domain. We variously simulated
purely global pressure, purely local pressure, and pressure
with both local and global equilibration, based on recent
theoretical evidence (53).

We find that global pressure dynamics can limit the bleb’s
outward growth when bP is sufficiently large. However, we
do not see symmetry breaking, even upon introduction of
10% parametric noise (Fig. 6 A). Interestingly, at intermedi-
ate global pressures, the bleb does not heal and instead un-
1644 Biophysical Journal 110, 1636–1647, April 12, 2016
dergoes slow oscillations (Fig. 6 A, right). These oscillations
reveal an inherent negative feedback between cortical for-
mation, which builds pressure, which in turn breaks adhe-
sions, weakening the cortex.

The second hypothesis is that bleb compactness and asym-
metry is due to a dynamic, nonuniform membrane tension.
Based on recent evidence (45), we introduce the assumption
that tension increases with increasing local cortical actin
contractility,

gM ¼ gM0 þ gM1C: (21)

We find that this is sufficient to terminate the protrusion
(Fig. 6 B), but again do not observe symmetry breaking.

Our third hypothesis is that large-length-scale heteroge-
neity, specifically on the approximately micron length scale
of blebs, exists in the local density of proteins such as adhe-
sion molecules and cortical actin nucleators. These manifest
as spatial heterogeneity in model parameters such as D and
U. Since these parameters sensitively determine whether the
bleb can travel, such heterogeneity might create specific
paths, forcing traveling blebs to spread only in specific di-
rections. We simulate the model on a surface in which a
small rectangular region has parameters distinct from those
of the surrounding region, as shown in Fig. 4 B, top. Since
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the parameter region allowing traveling blebs is fairly nar-
row (Fig. 5), it is straightforward to find parameter sets
with less than twofold variation for which the equilibrium
is the same but only one set allows travel. As expected, blebs
initiated in the excitable-travel region remain compact and
move with velocity v from Eq. 19, and with front-to-back
width w � vtheal.

We conclude that small differences across large length
scales in the underlying biophysical properties of the cell
surface are sufficient to explain compact traveling blebs.
This hypothesis makes the prediction that subsequent trav-
eling blebs will tend to occur in the same location on the
cell surface, provided that the heterogeneity’s own timescale
of variation is longer than the bleb lifetime.
DISCUSSION

Excitability is a recurrent theme in cell biology (50,54–56).
We find that the conditions for excitability emerge naturally
from the mechanical properties of the cell surface, specif-
ically, the combination of a contractile cortex, a membrane
exposed to internal hydrostatic pressure, and force-sensitive
adhesions connecting them. In addition, membrane mechan-
ical properties (i.e., surface tension) are sufficient for this
excitability to lead to either limited-growth stationary blebs
that heal in place or traveling blebs reminiscent of circus
movement. Notably, three classes of dynamics arise from
the same model at different parameters: stable, nonblebbing
states (Fig. 2 B), stationary blebs (Fig. 2 A and C), and trav-
eling blebs (Fig. 4, A and B). Thus, our model provides
quantitative conditions for bleb growth and whether the
bleb heals locally or travels.

The model makes two main contributions. First, it allows
elucidation of the determinants of the travel velocity in
terms of biophysical parameters such as membrane tension
and adhesion kinetics (Eq. 19). Surprisingly, we find that
hydrostatic pressure and myosin contractility only weakly
determine velocity, whereas they strongly determine other
features, such as whether the bleb forms and bleb height.
This is in contrast to previous assumptions (26) and other
traveling waves in biology (3).

Our second finding is that known biophysical mechanisms
are insufficient to account for the compactness of traveling
blebs in 3D. The excitability inherent in the system leads to
traveling waves. However, a striking distinction from other
excitable waves in a 2D domain is that other waves create
bull’s-eye patterns or spiral patterns. Since local mem-
brane-cortex detachment promotes nearby detachment sym-
metrically, why do blebs travel in a compact shape rather than
spreading in all directions?Generically, for a shape to remain
approximately constant as it travels, the normal velocity on
its perimeter must vary from maximal at its front to zero at
its sides. This observation, termed the graded-radial-exten-
sion condition (57), was made for steady cell motility but
holds in general and therefore must be true for compact trav-
eling blebs. One hypothesis we find sufficient to maintain
compact travel is heterogeneity in the biophysical properties
of the cell surface, such as adhesion density. There is no direct
evidence that such heterogeneity is responsible for deter-
mining bleb travel paths, and it is likely that other mecha-
nisms can explain compact travel. Since membrane tension
is a strong determinant of local expansion velocity, it is
possible that a model including different nonuniform mem-
brane tension can recover a compact bleb in the absence of
parametric heterogeneity. Other alternatives are constraints
set by lipid flow through the neck of the bleb (4), or nematic
ordering in the cortex (33), whichwould break isotropic sym-
metry. For cells adhered to a rigid surface, the curvature is
higher at the cell perimeter. This higher curvature could
also potentially bias bleb formation and travel. We anticipate
that this will be a future direction of research.

A crucial feature of our model is the presence of a normal
stress generated by the cortex, in addition to tangential
stresses. We find that this normal stress is necessary for
the dynamic healing and retraction of a traveling bleb. If
myosin in the cortex generates an isotropic contractile
stress, then it will induce stress in any direction in which
there is F-actin. There is significant F-actin beneath the cor-
tex (~60% of the density in the cortex (8)), which is referred
to as the cytoplasmic actin network and which plays a role in
cell integrity (58). Our results suggest that it also plays a role
in retracting cellular protrusions.

Increasingly, mechanics is included in theoretical models
of cellular processes (7,41,59–61). In these cases and others,
subcellular mechanics equilibrates on subsecond timescales
but drives processes that play out over seconds or more
slowly; therefore, mechanics is included via instantaneous
force-balance or, equivalently, minimization of an energy
functional, as in Eq. 3, at every moment in time. Instead
of reaction-transport (diffusion or advection) partial differ-
ential equations, these models can be expressed as a bound-
ary value problem at each moment in time coupled to local
time-dependent governing equations. This distinct class of
models presents new opportunities for mathematical devel-
opment. For excitable reaction-diffusion systems, a straight-
forward condition termed the Maxwell condition (51,52,62)
can be computed that determines whether the excitation will
generate traveling waves. Analogous conditions for the new
class of mechanical models may exist, and they will be the
subject of future research.

Our model makes several testable predictions about how
bleb behavior will be modulated by experimental perturba-
tions. The specific predictions about bleb formation and
travel velocity, in Results, correspond to changes in hydro-
static pressure, which can be modulated via the extracellular
pressure by, e.g., osmolites; cortical turnover, which can
be promoted or slowed by jasplakinolide or cytochalasin
D (8,30); and myosin contractility, which in blebs has
been demonstrated to be susceptible to blebbistatin and indi-
rectly to Y-compound (6). In addition to these experiments,
Biophysical Journal 110, 1636–1647, April 12, 2016 1645
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our model predicts that the ‘‘reach’’ of the adhesion mole-
cules, d, influences bleb characteristics via the (nondimen-
sional) parameter D. It might be possible to modulate this
parameter by mutagenically elongating or truncating cor-
tex-membrane adhesion molecules.

In addition to the model variants we explored here, this
model is readily extendible to different surface geometries
and assumptions about stresses below and above the cell
surface. An intriguing direction of research is the coupling
of this model of surface mechanochemistry with different
rheological models of how stress evolves inside the cell
(13,53). Another direction is the coupling to extracel-
lular fluid dynamics, which have recently been proposed
to play a role in determining membrane dynamics, even
on slow ð� 1 sÞ timescales (63).
SUPPORTING MATERIAL

Adetaileddescription of themodel, twofigures, two tables, andfivemovies are

available at http://www.biophysj.org/biophysj/supplemental/S0006-3495(16)

30057-1.
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1 Summary of experimental predictions

The model makes several testable predictions throughout the Results sec-
tion. For convenience, we tabulate these predictions here. Note that these
predictions presume that the cell is exhibiting blebs before the perturbation.

Table S1: Model predictions for experimental perturbations.

Experimental perturbation Parameter Prediction

Increasing hydrostatic pressure P ↑ Larger blebs
Increasing molecular size of adhesion molecules D ↑ Abolish blebbing
Decreasing molecular size of adhesion molecules D ↓ Slower bleb healing
Increasing myosin contractility M ↑ Abolish blebbing
Decreasing myosin contractility M ↓ Slower bleb healing
Increasing membrane tension γM ↑ Faster bleb travel
Increasing abundance of adhesions kon ↑ Slower bleb travel

2 Details of geometry of cortical and cytoplasmic actin

In 3D, the cell surface and cortex are curved, discontinuous two-dimensional
manifolds and the cytoplasm is a 3D field. In full generality, the cortex
and cytoplasmic actin network have a density at each point in space. We
assume that actin-myosin contractility is isotropic and generates local stress
proportional to the local density of cortical actin c. This stress therefore
has two components: a tangential component due to connection with nearby
cortex

σt = σMwcc∇yC , (S1)

and a normal stress due to connection with the cytoplasmic actin network

σn = σMcyC . (S2)

We find that the normal contractile force is necessary for asymetric bleb
healing, as occurs during bleb travel. This necessity can be understood from
Fig. 1A: In the absence of cytoplasmic actin, the tangential stress pulls the
membrane tangentially, but there is no force driving the cortex into the place
of the cell. Our goal is to understand in 3D. To this end, we find it informative
to study simplified 2D systems and 1D systems as an analytical tool. The 2D
model is equivalent to either the geometries shown in Supplemental Fig. 1C

2



1D strip2D extended geometry

2D thin protrusion3D with cytoplasmic actin

3D without cytoplasmic actinA

B

EC

D

Figure S1: Approximations of cortex and cytoplasmic actin geometry in 3D.
(A-B) Bleb geometry in 3D including only tangential cortical contractility
(A), and both tangential and normal contractility (B). (C-D) Representation
of 2D model. (E) Hypothetical 1D “non-spatial” model corresponding to
ODE system used in Main Text.

or D. The 1D model, which we refer to as the ODE model in the Main Text,
corresponds to the geometry shown in Supplemental Fig. 1E.
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Table S2: Estimates of parameters used in non-dimensionalization.

Model parameter Estimated value Source
r 0.1/s (11)
kon 100/ µm2 · s (21)
koff 1/s (11)
kA 10 pN/µm (21)
σM 0.1Pa/ µm2 (21)

Π̂ 100Pa/ µm (21)
y0
M 3µm (8)
γM 100 pN/ µm (45)

3 Parameter estimation

Using these estimates, the correspondence between dimensional and non-
dimensional parameters are given by

x = χ · 0.2µm (S3)

t = τ · 10s (S4)

a = A · 100/µm2 (S5)

yM = YM · 3µm (S6)

yC = YC · 3µm. (S7)

Note that model parameters not included in Table S2 do not impact the
non-dimensionalization.

4 Model variants

4.1 Bending

The inclusion of higher-order derivatives in the mechanical energy transform
the system into a higher-order boundary value problem. For example, the
bending energy term transforms the membrane shape equation to a fourth-
order equation. We simulate the base model with the addition of bending
terms β > 0, shown in Fig. S2. We find that the excitable parameter regime
and traveling parameter regimes are unchanged. For β = 100, the velocity of
travel is increased by approximately two-fold and healing is delayed compared
to no bending.
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Figure S2: Influence of membrane bending rigidity. (A) Traveling bleb on a uniform surface
with no bending energy β = 0. (B) Traveling bleb with large bending rigidity β = 100. The
bleb velocity is increased by approximately two-fold and healing is delayed (but eventually
occurs, not shown).

5 Details of numerical method

5.1 Base model

The base model, Eqs. 10-13, comprise a two-dimensional boundary value
problem of elliptic type at each instant in time, coupled to two first-order (in
time) partial differential equations. To solve the base model, we discretize
space into a uniform grid of width ∆χ = 0.1 and time step size ∆t = 0.01.
We use a standard five-point stencil finite difference method in space and
forward-Euler in time.
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5.2 Non-uniform tension

The inclusion of non-uniform tension changes the boundary value problem
to a non-uniform elliptic equation. The equations takes the form

P = f(χ1, χ2)YM(χ1, χ2)−∇ · (Γ(χ1, χ2)∇YM(χ1, χ2)) (S8)

where f and Γ are spatially varying. We use a uniform grid in space and
set ∆χ = 0.1. The functions f, YM and Γ all live at cell edges (f |i,j =
f(i∆χ, j∆χ), i = 1, 2, ..., 2000 ) and we impose periodic boundary condi-
tions. The parameter functions f and Γ must be interpolated to the edges,
which we do by uniform averaging. The resulting discretization stencil is
given by

P =

(
f |i,j +

1

2∆x2
(γ|i+1,j + γ|i−1,j + γ|i,j+1 + γ|i,j−1 + 4γ|i,j)

)
YM|i,j

− 1

2∆x2
((γ|i+1,j + γ|i,j)YM|i+1,j + (γ|i,j + γ|i,j−1)YM|i−1,j)

− 1

2∆x2
((γ|i,j + γ|i,j+1)YM|i,j+1 + (γ|i,j + γ|i,j−1)YM|i,j−1)

Since this equation remains linear, it can be written into a sparse matrix and
solved as a linear system.

5.3 Higher-order models including bending forces

Adding higher order terms, including bending forces, transforms the bound-
ary value problem into a higher-order boundary value problem. The bending
term, in particular, introduces a fourth-order bilaplacian operator. This sig-
nificantly increases the computational cost of solving the equations, therefore
we use a more sophisticated solver described here. We solve the following
equations:

∂C

∂t
= αA− C (S9)

ε
∂A

∂t
=

C

1 + C
exp

(
−
(

1

D

MC

A+MC
Ym

))
− A exp

(
1

F0

MC

A+MC
Ym

)
(S10)

P = hYm −∇ · (Γ∇Ym) +B∇4Ym (S11)

h =
AMC

A+MC
+ P, (S12)
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where α = 57, ε = 0.1, D = 0.15, F0 = 1,M = 0.007 and P = 0.1. The
nondimensional bending modulus is B ≡ β/γx3

c . In non-uniform tension
models, B = 0 and the non-uniform tension term Γ = 1 + θC where θ = 0.1
or θ = 0.2. For bending models, Γ = 1 and B ∈ {10−2, 10−1, 1, 101, 102}.

All variables satisfy periodic conditions at all boundaries. The initial
condition for Ym and C is their steady state value Y ss

m = 0.5582 and Css =
15.8236. A is also set to steady state Ass = 0.2776 except that A = 0 where
r =

√
x2 + y2 < 5.

The system is solved in a square computational domain [−200, 200]2. The
domain is initialized to a 64×64 mesh with a maximum of 5 refinement levels.
At the finest level, grid length is 400/(64× 25) ≈ 0.2. The time step is 10−2.

We use the implicit second order Crank-Nicholson scheme for time dis-
cretization in Eqs. (S9) and (S10). Spatial derivatives are discretized using
central difference approximations. Eq. (S11) is reformulated as a system of
two second order equations. Block structured Cartesian refinement is used
to efficiently resolve the multiple spatial scales. In particular, the mesh is
refined in regions with large spatial gradients of Ym (typically around the
bleb). The equations at implicit time level are solved by the adaptive non-
linear multigrid method developed in (46).

6 Description of Supplemental Movies

• Supplemental Movie 1. We simulate the 2D model with boundary
conditions at the top and bottom (12-o-clock and 6-o-clock). Corre-
sponds to parameters in Fig. 4A

• Supplemental Movie 2. Stationary bleb in 3D. Corresponds in Fig
2B.

• Supplemental Movie 3. Traveling bleb in 3D on a uniform surface.
Travel is unrestricted and the excitation spreads in all directions.

• Supplemental Movie 4. Traveling bleb with surface heterogeneity.
Corresponds to Fig. 4B.

• Supplemental Movie 5. Traveling bleb with global pressure. Corre-
sponds to Fig. 6A.
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