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Supplementary Figure 1. MANCIE workflow. If the rows in the associated matrix and the 
main matrix do not match, the summarization step converts the associated matrix to a 
summarized associated matrix with matched rows. The combination step integrates the 
main matrix with the summarized associated matrix into the adjusted matrix.  
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Supplementary Figure 2. (a) MDS map 
representing genomic data after adjustment by SVA 
of the 61 cell lines. Left: DHS data; Right: 
expression data.  
(b) Adjusted Rand index comparing K-means 
clustering on the data with actual tissue-type 
clustering. K-means clustering was performed 1000 
times with random seeds. Blue: raw data; Red: 
MANCIE adjusted data; Yellow: SVA adjusted data.  
(c) Distribution of GC content of all reads for 61 
ENCODE DNase-seq samples. 
(d) Samples whose DNase-Seq reads’ GC-content 
distributions are distinct from the majority are 
adjused by a greater extent after MANCIE. Each 
dot represents a cell line sample, with x- and y-
axes representing the mean and coefficient of 
variation, respectively, of the CG-content 
distribution of all reads in the DNase-seq dataset. 
The size of the dot represents the magnitude of 
adjustment of MANCIE, measured by the 
Euclidean distance between the sample data 
vectors before and after MANCIE adjustment.  
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Supplementary Figure 3. (a) The Kaplan-Meier plots for an example showing differences 
in survival prediction accuracy and the improvement in P-value, using the Beer gene 
signature. Patient samples were separated into two groups according to the trained risk 
score using the gene signature with the expression data. High-risk group is labeled in red 
and low-risk group is labeled in black. The high-risk group is better separated from the low-
risk group by using the MANCIE-adjusted expression data (right), compared with using the 
raw data (left). 
(b) Distribution of P-value scores (-log10Pvalue) for the prognostic prediction with the Beer 
gene signature, comparing raw expression data (top) and MANCIE-adjusted expression 
data (bottom), from TCGA lung cancer (LUAD) cohort.  
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Supplementary Figure 4. P-value improvement on the METABRIC data (a) and the 6 gene 
signatures from TCGA data (b) under combinations of different MANCIE parameters. Y-axis 
indicates the difference of P-value scores similar to Fig. 3c. Each box plot represents a 
parameter setting, labeled as (cutoff1, cutoff2) at the bottom.  
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Supplementary Note 1

Theoretical Support for MANCIE: an Approximation of Rigorous Statistical Inference

Problem Description. Let mi = (mi1, · · · , miK ) be the i-th row (i.e., feature) of the main 

matrix M , and ci = (ci1, · · · , ciK ) be its counterpart in the associated matrix C, where each 

k ∈ {1, · · · , K} stands for one sample or condition. Since (mik, cik)T are observations of feature 

i from different biological experiments which often contain a lot of uncertainty, it’s natural to 

assume that they are the noised version of the underlying “truth” (m∗ik, c∗ik)T , i.e.,

(mik, cik)T = (m∗ik, c
∗
ik)

T + εik,

where εik is a two-dimensional noise vector. MANCIE aims to remove noise in mi by borrowing 

information from ci, i.e., inferring mi
∗ = (mi

∗
1, · · · , m∗iK ) based on both mi and ci.

Statistical Model & Inference. To simplify the problem, let’s assume that both {(m∗ik, c∗ik)T}Kk=1

and {εik}Kk=1 are i.i.d. samples of Gaussian distributions, i.e.,

(m∗ik, c
∗
ik)

T ∼ N
(
µi,Σi

)
and εik ∼ N

(
0,∆i

)
,

where Σi =

 1 ρi

ρi 1

, ∆i =

 δ2im 0

0 δ2ic

, {(m∗ik, c∗ik)T}Kk=1 and {εik}Kk=1 are independent

of each other, and ρi > 0. Clearly, δ2im and δ2ic stands for the noise-signal ratio of mi and ci

respectively, where a larger δ2 means lower quality of the data. Here, we assume that δ2ic ≥ δ2im

as the main matrix usually enjoys better quality.

Under this model, we have

(mik, cik)
T | (m∗ik, c∗ik)T ∼ N

(
(m∗ik, c

∗
ik)

T ,∆i

)
,

(mik, cik)
T ∼ N

(
µi,Σi + ∆i

)
.

And, it’s easy to check that

ρ̃i = cor(mi, ci) =
ρi√

(1 + δ2im)(1 + δ2ic)
≤ ρi = cor(m∗i , c

∗
i ),

i.e., the correlation coefficient of the observed data (mi, ci) is always smaller than the true

correlation coefficient cov(c∗i ,m
∗
i ), and the difference depends on the noise level (δ2im, δ

2
ic).



Without loss of generality, we can also assume that µi = 0 for any feature i (i.e., the observed

data are centralized).

Now, assume that both Σi and ∆i are known. Based on the Bayes rule, we have the following

posterior distribution for (m∗ik, c
∗
ik)

T :

f
(
(m∗ik, c

∗
ik)

T | (mik, cik)
T
)

∝ π
(
(m∗ik, c

∗
ik)

T
)
· f
(
(mik, cik)

T | (m∗ik, c∗ik)T
)

∝ exp
{
− 1

2
(m∗ik, c

∗
ik)Σ

−1
i (m∗ik, c

∗
ik)

T
}
×

exp
{
− 1

2

[
(mik, cik)− (m∗ik, c

∗
ik)
]
∆−1i

[
(mik, cik)− (m∗ik, c

∗
ik)
]T}

∼ N
(
(Σ−1i + ∆−1i )−1∆−1i (mik, cik)

T , (Σ−1i + ∆−1i )−1
)
,

which means that the best guess for the unknown (m∗ik, c
∗
ik)

T should be the posterior mean

νik = (Σ−1i + ∆−1i )−1∆−1i (mik, cik)
T

∝

 δ2ic + 1− ρ2i ρiδ
2
im

ρiδ
2
ic δ2im + 1− ρ2i

 mik

cik

 .

Since we are interested in improving the main matrix, we will only focus on

E(m∗ik | mik, cik) ∝ mik +
ρiδ

2
im

δ2ic + (1− ρ2i )
· cik.

MANCIE as an Approximation of Rigorous Statistical Inference. In practice, however, we

can only estimate (Σi+∆i) from the observed data mi and ci, and neither Σi or ∆i is estimable

on their own. Therefore, h(ρi) =
ρiδ

2
im

δ2ic+(1−ρ2i )
, and thus E(m∗ik | mik, cik), cannot be precisely

known. Fortuanately, the following facts hold for h(ρi):

(F1) h(ρi) ≈ 0 if ρi is very close to 0,

(F2) h(ρi) ≈
ρiδ

2
im

δ2ic + 1
if ρi is close to 0,

(F3) h(ρi) ≈
δ2im
δ2ic

if ρi is very close to 1,

which correspond to the three scenarios (a), (b) and (c) in the subsection of “Removing noise

in matrix” respectively under proper conditions.



Clearly, (F1) matches to scenarios (a). Let m̃i = mi√
δ2im+1

and c̃i = ci√
δ2ic+1

be the rescaled data

(i.e., “scale(mi)” and “scale(ci)” in the paper). The new vector m′ defined in scenarios (b) is:

m′i = m̃i + ρ̃i · c̃i =
mi√
δ2im + 1

+
ρi√

(δ2im + 1)(δ2ic + 1)
· ci√

δ2ic + 1
∝ mi +

ρi
δ2ic + 1

· ci,

which matches to (F2) when δ2im is close to 1. For scenarios (c), because cor(mi, ci) = Σi + ∆i,

the first principle component of cor(mi, ci) is (1,
ri+
√
r2i+4

2
), where ri =

δ2ic−δ2im
ρi

. Thus, the new

vector m′ defined in this scenario is

m′i ∝ mi +
ri +

√
r2i + 4

2
ci,

which degenerates to (mi + ci) when ri is close to 0 (this happens when δ2im ≈ δ2ic and the

difference δ2ic− δ2im is small compared to ρi). Considering that h(ρi) also degenerates to 1 when

δ2im ≈ δ2ic in (F3), we find that (F3) matches to scenarios (c) when δ2im and δ2ic are close to each

other. Summarizing all three cases, we conclude that MANCIE is a proper approximation of

rigorous statistical inference when the noise-signal ratio in both the main matrix and association

matrix are close to 1.


