

Supplementary Figure 1. dGCR rates for systematically generated strains tend to be higher than for traditionally generated strains. a. The GCR rates for strains with 45 different genotypes are plotted so that strains with the same mutations have the same position along the x-axis. For example, the wild-type strain (or leu2d control strain) has an x-position of '1'. The GCR rates for the mutant strains constructed in the RDKY6678 background using traditional gene knock out methods¹ are displayed as blue circles with error bars corresponding to the 95% confidence interval. The GCR rates for strains constructed by crossing the dGCR query strain RDKY7635 to the BY4741 mutant collection and isolating appropriate single mutants are displayed as red squares. The GCR rates for strains constructed by crossing a dGCR query strain derived from RDKY7635 containing a mutation of interest $yfg\Delta$ (Your Favorite Gene) to the BY4741 mutant collection and isolating haploid $leu2\Delta yfg\Delta$ double mutants are displayed as green triangles. The GCR rate for the traditionally constructed wild-type control strain is indicated by the dashed horizontal line, and the GCR rate for the systematically constructed wild-type control strain is indicated by the solid horizontal line. b. The fold difference between the GCR rates of the systematically constructed strains and the traditionally constructed strains are plotted. The average fold difference for the 23 single mutant strains (red squares) is 2.7, for the 25 leu2 Δ yfg Δ double mutant strains (green triangles) is 3.3, and is 3.0 for all 48 systematically generated strains (solid line). No change is indicated by the dashed line. The small but consistent increase may be because the traditionally generated strains have a *can1::hisG* deletion lacking homology to the yeast genome, whereas the systematically generated strains have a can1:: P_{IFU2}-NAT marker that bears a small ~100 bp of YCLWdelta5 sequence, which has homology to the many Ty element-related sequences in the genome.

Supplementary Figure 2. Determination of a cutoff score for the dGCR assay. a. The number of incorrectly categorized mutants are plotted as a function of trial patch cutoff scores; strains with GCR rates that are at least 3-fold higher than the control strain are considered to be the "gold-standard" for identifying strains with increased GCR rates. False positives, which have average patch scores above the trial cutoff but do not have increased GCR rates, are displayed with dashed lines. False negatives, which do not have average patch scores above the trial cutoff but do have increased GCR rates, are displayed with solid lines. Grey lines include only data for 101 single mutant strains generated by crossing the wild-type dGCR query strain to the BY4741 mutant collection. Black lines include these 101 strains as well as 43 double mutant strains generated by crossing a dGCR + query mutation strain containing a mutation of interest, $yfg\Delta$, to the BY4741 mutant collection and isolating a haploid *leu2* Δ $vfg\Delta$ double mutant. The total number of false-positive and false-negative errors can be minimized using a cutoff between 1 and 2. b. The weighted sum of the sensitivity and specificity (see Experimental Procedures) plotted as a function of trial cutoff scores reveals a peak around 1.4 for both the 101 single mutant strains (grey) or all 144 mutant strains (black). c. The ROC curve reveals that strain scores are a good surrogate for the quantitatively measured rate (compare to dashed random line). The greater area under the curve for the 101 single mutant strains (grey) relative to all 144 mutant strains (black) suggests that the single mutant strain scores are a slightly better predictor than the *leu2* Δ yfg Δ double mutant strain scores. **d.** The increase of the area under the ROC curves using different rate cutoffs as the "gold standard" for increased GCR rates shows, as expected, that the ability of the patch scores to identify strains with increased GCR rates improves for strains with larger increases in GCR rates.

Supplementary Figure 3. Comparison of GIS genes by strain score in the dGCR, sGCR, and tyGCR assays. Venn diagram illustrating the 147 genes suppressing GCRs in the three GCR assays demonstrates that most gene defects were observed in more than one assay. Genes displayed here correspond to only the genes identified by GCR strain scores. Genes that were identified by their GCR strain score but did not increase the GCR rate by at least 3-fold over wild-type in at least one assay, and hence were false positives, are indicated with asterisks (*).

Supplementary Figure 4. Comparison of GIS genes in systematically generated strains in the dGCR, sGCR, and tyGCR assays. Venn diagram illustrating the 126 genes suppressing GCRs in the three GCR assays demonstrates that most genes were observed in more than one assay. This diagram was modified from Supplementary Figure 3 by removing genes corresponding to mutations that did not increase the GCR rate (Supplemental Table 2) by at least 3-fold in at least one assay (i.e. false positives) and by including genes that did increase the GCR rate by at least 3-fold in one assay even if their GCR strain score was below the strain score cutoff score threshold (i.e. false negatives). The decrease of 20 genes relative to that reported in Supplemental Figure 3 reflects the fact that the GCR rates reported (Supplemental Table 2) were to a large extent determined for mutants with GCR strain scores in the range of 1.0-2.0 in order to better derive cutoff scores, but this strain score range is the most difficult to classify using patch tests and strain scores.

Supplementary Figure 5. Consistency of double mutant scores. a. GCR strain scores for the 801 pairs of double mutants generated in bait \times query and query \times bait crosses were placed into two-dimensional bins, and the number of pairs in each bin is indicated by the number presented. Most double mutant strains generated in bait \times query crosses had a very similar GCR strain score to those generated as in query \times bait crosses, so that most pairs fall in bins along the diagonal. b. The number of strain pairs with score differences less than a threshold difference is plotted against the threshold difference.

Supplementary Figure 6. Distribution of the double mutant strain scores relative to the strain score of the query single mutants. a. The GCR strain score change of a double mutant strain was determined relative to the higher of the two single mutant GCR strain scores. The score change can be positive (the GCR strain score of the $a\Delta b\Delta$ double mutant is greater than the higher single mutant GCR strain score of $a\Delta$) or negative (the GCR strain score of the $a\Delta c\Delta$ double mutant is lower than the higher single mutant GCR strain score of $a\Delta$). b. GCR strain score change for the entire collection of double mutants, sorted by score change. c. The histogram of all GCR strain score changes for the double mutants is centered around zero.

Supplementary Figure 7. Analysis of double mutant strain scores for strains generated in crosses with the *rsc30* Δ , *arp8* Δ , *rtf1* Δ , *rad9* Δ , *rad59* Δ , *lge1* Δ , *rad51* Δ , *dia2* Δ , *ctk2* Δ , and *rdh54* Δ query mutants. (Left panels) Plots of the cumulative fraction of mutants (y-axis) with GCR strain scores below the indicated GCR strain scores (x-axis). The data plotted for mutants crossed to strains containing the indicated query mutations are shown by the solid line and the data plotted for mutants crossed to the wild-type strain are shown by the dashed line. (**Right panels**) Histograms of the number of mutations in combination with the query mutations as a function of the score difference, which is the score of the double mutant strain ($a\Delta b\Delta$) minus the score of the higher of the two single mutant strains ($a\Delta$ or $b\Delta$).

Supplementary Figure 8. Analysis of double mutant strain scores for strains generated in crosses with the *swr1*Δ, *spt8*Δ, *rtt101*Δ, *exo1*Δ, *yta7*Δ, *mph1*Δ, *nup84*Δ, *srs2*Δ, *rtt107*Δ, and *slx8*Δ query mutants. Data are plotted as described in Supplementary Figure 7.

Supplementary Figure 9. Analysis of double mutant strain scores for strains generated in crosses with the *pol32 A*, *fun30 A*, *hos2 A*, *ctf18 A*, *rad53 Asml1 A*, *rrm3 A*, *mrc1-aq*, *slx4 A*, *rev3 A*, and *rev1 A* query mutants. Data are plotted as described in Supplementary Figure 7.

Supplementary Figure 10. Analysis of double mutant strain scores for strains generated in crosses with the $elg1\Delta$, $chk1\Delta$, $cdc73\Delta$, $dun1\Delta$, $ckb2\Delta$, $mrc1\Delta$, $sic1\Delta$, $sem1\Delta$, $mec1\Delta sml1\Delta$, and $rtt109\Delta$ query mutants. Data are plotted as described in Supplementary Figure 7.

Supplementary Figure 11. Analysis of double mutant strain scores for strains generated in crosses with the *rad17Δ*, *mms4Δ*, and *rad18Δ* query mutants. Data are plotted as described in Supplementary Figure 7.

Supplementary Figure 12. Selected genetic interactions between mutations that result in increases in GCRs detected by the dGCR assay. a. Genetic interactions between deletions in post-replication repair (PRR) genes are displayed using GCR strain scores; increases in GCR strain scores in double mutant strains are highlighted with red boxes, and suppressive interactions are highlighted with blue boxes. Defects in the Rev1-Rev3-Rev7 branch and defects in the Ubc13-Mms2 branch cause increases in GCRs, as previously observed in the dGCR assay². Deletion of *RAD18* or *RAD5* causes sufficiently high GCR strain scores that further increases in GCR strain scores in double mutants are difficult to identify; however, partial suppression (blue boxes) of the $rad18\Delta$ and $rad5\Delta$ strain scores by $srs2\Delta$ was detected, as observed previously using quantitative GCR rate tests². b. Defects in the Rev1-Rev3-Rev7 and Ubc13-Mms2 PRR branches interact genetically with mph1/ as detected using GCR strain scores and GCR rates (Supplementary Table 7), consistent with the previously observed synergistic interaction between $mph1\Delta$ and $rad5\Delta^2$. c. The model for these genetic interactions argues that PRR plays a role in suppressing GCRs in the dGCR assay by shifting the repair of some lesions from homologous recombination (HR), which can generate GCRs when non-allelic HR targets are involved. Increases in GCRs caused by $mph1\Delta$ are consistent with the role of Mph1 in preventing aberrant processing of HR intermediates³. d. Genetic interactions between defects in DNA damage and replication checkpoint genes are displayed as in panel a. Synergy between the deletion of RAD17 and mec1 Δ , ddc2 Δ , and tel1 Δ mutations suggests that the Rad17-Ddc1-Mec3 complex signals both the Mec1- and Tel1-dependent checkpoint pathways. Synergy of $mcl\Delta$ with $tell\Delta$ is consistent with the partial redundancy between MEC1 and TEL1, which encode protein kinases⁴; synergy of $mcl\Delta$ with defects in Rad17-Ddc1-Mec3 and Rad53 argues that in the absence of Mec1, the Tell checkpoint-signaling pathway also utilizes these components. The GCR strain scores for the $rad53\Delta$ mutations are complicated by the slow growth of $rad53\Delta$ single and double mutants, which likely leads to a lowered GCR strain score. The synergistic interactions of the checkpoint-deficient but replication-proficient mrc1-aq allele indicate that Mrc1-dependent signaling likely involves Mec1-Ddc2 but not Tel1 and that the Rad17-Ddc1-Mec3 complex functions in an alternative pathway. Synergy of mrc1-aq with $tofl\Delta$ and $csm3\Delta$ could suggest that Tof1-Csm3 might be involved in the signaling pathway, or that more replication damage occurs in $tofl\Delta$ and $csm3\Delta$ mutants as Tof1-Csm3 is important for proper localization of Mrc1 to fulfill its roles in DNA replication⁵. In contrast to the effects of mutations in MRC1, a deletion of RAD9 has few increased genetic interactions with other checkpoint is more important than the general DNA damage checkpoint in suppressing GCRs detected in the dGCR assay. Deletion of the genes encoding the downstream kinases Chk1 and Dun1 have very few interactions with other checkpoint genes, except for the interactions between $dunl\Delta$ and both $tofl\Delta$ and $csm3\Delta$ mutations. e. A model consistent with these observed interactions in the suppression of GCRs detected in the dGCR assay is shown.

Supplementary Figure 13. Distribution of GCR strain scores for the "high priority" and "low priority" sets of single mutations. Histograms of the number of mutant strains as a function of the average GCR strain score reveals that a greater number of mutations in the high-priority set (Supplementary Data 1) cause higher GCR strain scores in the sGCR assay (panel a), dGCR assay (panel d), and tyGCR assay (panel g) compared to the low priority set of mutations (Supplementary Data 1) in the sGCR assay (panel b), dGCR assay (panel e), and tyGCR assay (panel h). The GCR strain scores also were converted into monotonically increasing cumulative distribution functions for the sGCR assay (panel c), dGCR assay (panel f), and tyGCR assay (panel i). The deviation of these curves from a step function reflects both stochastic numbers of papillae in each patch as well as genetic influences on the GCR rate and growth rate of the cells. Notably, mutations in the high-priority genes, which were predicted to more likely cause increased GCR rates, show a stronger deviation from a step function for all three assays.

Supplementary Figure 14. Distribution of dGCR strain scores for the "high priority" and "low priority" sets of mutations when crossed to the *dia2\Delta*, *rrm3\Delta*, *exo1\Delta*, and *rtt107\Delta* mutant query strains. The dGCR strain scores are displayed using a cumulative distribution function of the fraction of double mutants with a lower strain score for the high- (red line) and the low- (blue line) priority sets of bait mutations (Supplementary Data 1), as compared to the single mutant distribution for all mutations (dashed black line). For each of these mutants, the high-priority set shows the greatest deviation from a step function, indicating a larger number of genetic interactions with bait mutations.

dGCR rate tyGCR rate sGCR rate category genotype Control strain $leu2\Delta$ 8.59×10⁻⁸ (1) 3.21×10^{-7} (1) 4.00×10^{-9} (1) Increased in all 2.45×10⁻⁶ (7.6) $vid22\Delta$ 1.97×10⁻⁶ (22.9) 2.80×10⁻⁸ (5.2) ydj1∆ 1.39×10⁻⁶ (16.2) 1.51×10⁻⁶ (4.7) 2.47×10⁻⁸ (6.2) $rtt109\Delta$ 1.21×10-6 (14.1) 7.57×10⁻⁶ (23.6) 5.01×10⁻⁸ (12.5) 6.74×10⁻⁸ (16.9) tsa 1Δ 1.16×10⁻⁶ (13.5) 6.61×10⁻⁶ (20.6) $slx5\Delta$ 9.24×10⁻⁷ (10.8) 5.69×10⁻⁶ (17.7) 1.56×10⁻⁷ (39.0) $ctf4\Delta$ 2.69×10⁻⁶ (8.4) 4.71×10⁻⁷ (5.7) 1.37×10⁻⁸ (3.4) nup84∆ 3.18×10⁻⁷ (3.7) 7.31×10⁻⁶ (22.8) 3.99×10⁻⁸ (10.0) Increased in dGCR+tyGCR 3.18×10⁻⁷ (3.7) 1.34×10⁻⁶ (4.2) 6.74×10⁻⁹ (1.7) $csm3\Delta$ $1.10 \times 10^{-9} (0.3)$ $srs2\Delta$ 5.10×10⁻⁷ (5.9) 1.97×10⁻⁶ (6.1) $hst4\Delta$ 5.31×10⁻⁷ (6.2) 9.51×10⁻⁷ (3.0) 4.98×10⁻⁹ (1.2) Increased in tyGCR+sGCR $dia2\Delta$ 2.15×10⁻⁷ (2.5) 5.81×10⁻⁶ (18.1) 3.11×10⁻⁸ (7.8) $sszl\Delta$ 2.06×10⁻⁷ (2.4) 5.00×10⁻⁶ (15.6) 1.90×10⁻⁷ (47.5) 1.26×10⁻⁸ (3.5) $clb5\Delta$ 1.79×10⁻⁷ (2.1) 2.45×10⁻⁶ (7.6) $rad51\Delta$ 9.26×10⁻⁸ (23.2) 2.27×10⁻⁷ (2.6) 1.60×10⁻⁶ (5.0) $skn7\Delta$ 1.52×10⁻⁷ (1.8) 1.23×10⁻⁶ (3.8) 2.50×10⁻⁸ (6.3) Increased in dGCR $nup133\Delta$ 1.21×10⁻⁶ (14.1) 5.56×10⁻¹⁰ (0.0) 2.05×10⁻⁹ (0.5) $\overline{2.13\times10^{-9}}(0.5)$ $msh2\Delta$ 5.76×10⁻⁷ (6.7) 8.78×10⁻⁷ (2.7) exol∆ 4.31×10⁻⁷ (5.0) 4.41×10⁻⁷ (1.4) 9.30×10⁻⁹ (2.3) Increased in tyGCR 1.67×10⁻⁷ (1.9) 2.42×10⁻⁹ (0.6) $prrl\Delta$ 1.36×10⁻⁶ (4.2) $pol32\Delta$ 2.12×10⁻⁷ (2.5) 1.08×10⁻⁶ (3.4) 4.92×10⁻⁹ (1.2) Increased in sGCR sae2∆ 1.39×10-7 (1.6) 6.66×10⁻⁷ (2.1) 5.17×10⁻⁸ (12.9) $met18\Delta$ 6.77×10⁻⁸ (0.8) 4.57×10⁻⁷ (1.4) 1.57×10⁻⁸ (3.9) No significant increase $rad9\Delta$ 3.34×10⁻⁸ (0.4) 7.17×10-9 (2.0) 5.25×10⁻⁷ (1.6) $poc4\Delta$ 8.73×10⁻⁸ (1.0) 1.22×10^{-7} (0.4) 3.35×10⁻⁹ (0.8) $pfd1\Delta$ 1.95×10⁻⁷ (2.3) 9.16×10⁻⁷ (2.9) 1.64×10⁻⁹ (0.4) $cln3\Delta$ 1.83×10⁻⁷ (2.1) 6.70×10⁻⁷ (2.1) 5.69×10-9 (1.4) $mrs4\Delta$ 1.60×10⁻⁷ (1.9) 4.35×10⁻⁷ (1.4) 2.27×10⁻⁹ (0.6) $esc1\Delta$ 1.28×10⁻⁷ (1.5) 4.19×10^{-7} (1.3) 4.24×10⁻⁹ (1.1) $rad10\Delta$ 9.93×10⁻⁸ (1.2) 4.95×10⁻⁷ (1.5) 2.00×10⁻⁹ (0.5) $slx1\Delta$ 8.24×10⁻⁸ (1.0) 2.75×10⁻⁷ (0.9) 1.81×10⁻⁹ (0.5)

 $chd1\Delta$

 $rad52\Delta$

7.80×10⁻⁸ (0.9)

2.00×10⁻⁸ (0.2)

 $6.40 \times 10^{-7} (2.0)$

8.31×10⁻⁸ (0.3)

3.90×10-9 (1.0)

7.00×10⁻⁹ (1.8)

Supplementary Table 1. Differing effects of some mutations in the three variant GCR assays.

Supplementary Table 2. Single mutant GCR rates in the systematically generated dGCR strains.

genotype	Strains fron	n wild-type query cross	<i>leu2</i> strains from mutant query cross		
	GCR strain	Can ^R 5FOA ^R rate	GCR	Can ^R 5FOA ^R rate	
	score	(fold increase)	strain	(fold increase)	
			score		
control (<i>leu2</i>)	0.94	8.59×10 ⁻⁸ (1)	-	-	
rmi l	4.2	3.62×10 ⁻⁶ (42.1)	-	-	
wss1	4.2	4.54×10 ⁻⁶ (52.8)	-	-	
mre11	4.0	2.88×10 ⁻⁶ (33.5)	-	-	
rad18	4.0	-	3.8	7.62×10 ⁻⁶ (88.7)	
rad50	4.0	1.97×10 ⁻⁶ (22.9)	-	-	
xrs2	4.0	1.82×10 ⁻⁶ (21.2)	-	-	
rpl34b	4.0	6.75×10 ⁻⁸ (0.8)	-	-	
tsa1	3.7	1.16×10 ⁻⁶ (13.5)	-	-	
vid22	3.6	1.97×10 ⁻⁶ (22.9)	-	-	
pby1	3.0	1.15×10 ⁻⁶ (13.4)	-	-	
slx5	3.0	9.24×10 ⁻⁷ (10.8)	-	-	
mms4	2.7	-	3.1	5.81×10 ⁻⁷ (6.8)	
ydj l	2.6	1.39×10 ⁻⁶ (16.2)	-	-	
hst3	2.5	4.80×10 ⁻⁷ (5.6)	-	-	
ddc1	2.3	3.58×10 ⁻⁷ (4.2)	-	-	
pds1	2.3	3.12×10 ⁻⁶ (36.3)	-	-	
srs2	2.3	-	2.1	5.10×10 ⁻⁷ (5.9)	
ylr124w	2.3	1.04×10 ⁻⁷ (1.2)	-	-	
msh2	2.2	5.76×10 ⁻⁷ (6.7)	-	-	
nup84	2.2	-	2.1	3.18×10 ⁻⁷ (3.7)	
rad24	2.2	5.36×10 ⁻⁷ (6.2)	-	-	
ctf4	2.0	4.71×10 ⁻⁷ (5.5)	-	-	
ddc2 sml1	2.0	2.39×10 ⁻⁷ (2.8)	-	-	
elg1	2.0	-	2.2	2.42×10 ⁻⁷ (2.8)	
exol	2.0	2.28×10 ⁻⁷ (2.7)	1.3	4.31×10 ⁻⁷ (5.0)	
nup133	2.0	1.21×10 ⁻⁶ (14.1)	-	-	
nup60	2.0	5.51×10 ⁻⁷ (6.4)	-	-	
cln3	1.8	1.83×10 ⁻⁷ (2.1)	-	-	
csm3	1.8	3.18×10 ⁻⁷ (3.7)	-	-	
prr1	1.8	1.67×10 ⁻⁷ (1.9)	-	-	
rad17	1.8	-	2.2	5.70×10 ⁻⁷ (6.6)	
sicl	1.8	-	2.4	8.99×10 ⁻⁷ (10.5)	
skn7	1.8	1.52×10 ⁻⁷ (1.8)	-	-	
cdc73	1.7	3.71×10 ⁻⁷ (4.3)	1.7	7.54×10 ⁻⁷ (8.8)	
chll	1.7	2.91×10 ⁻⁷ (3.4)	-	-	
dst1	1.7	1.16×10 ⁻⁷ (1.4)	-	-	
est2	1.7	6.79×10 ⁻⁷ (7.9)	-	-	
irc3	1.7	7.04×10 ⁻⁷ (8.2)	-	-	
mms1	1.7	2.18×10 ⁻⁷ (2.5)	-	-	
nam7	1.7	1.10×10 ⁻⁷ (1.3)	-	-	
pet123	1.7	1.45×10 ⁻⁷ (1.7)	-	-	
rad1	1.7	1.27×10 ⁻⁷ (1.5)	- 1	-	
rad14	1.7	7.56×10 ⁻⁸ (0.9)	- 1	-	
rad61	1.7	1.16×10 ⁻⁷ (1.4)	-	-	
rev1	1.7	1.44×10 ⁻⁷ (1.7)	1.0	4.19×10 ⁻⁷ (4.9)	
rev3	1.7	1.58×10 ⁻⁷ (1.8)	1.2	3.29×10 ⁻⁷ (3.8)	
rnh203	1.7	1.73×10 ⁻⁷ (2.0)	- 1	-	

rnr3	1.7	9.40×10 ⁻⁸ (1.1)	-	-
rtt105	1.7	1.76×10 ⁻⁷ (2.0)	-	-
ski3	1.7	1.29×10 ⁻⁷ (1.5)	-	-
spt3	1.7	2.33×10 ⁻⁷ (2.7)	-	-
spt8	1.7	-	1.4	7.30×10 ⁻⁷ (8.5)
srcl	1.7	9.09×10 ⁻⁸ (1.1)	-	-
yku80	1.7	3.29×10 ⁻⁷ (3.8)	-	-
ydl162c	1.7	1.41×10 ⁻⁷ (1.6)	-	-
apc9	1.5	4.87×10 ⁻⁸ (0.6)	-	-
ckb2	1.5	3.92×10 ⁻⁷ (4.6)	1.3	7.47×10 ⁻⁷ (8.7)
hos2	1.5	1.02×10 ⁻⁷ (1.2)	1.0	1.34×10 ⁻⁶ (15.6)
mph1	1.5	-	1.4	2.96×10 ⁻⁷ (3.5)
ntgl	1.5	5.24×10 ⁻⁸ (0.6)	-	-
pgdl	1.5	1.14×10 ⁻⁷ (1.3)	-	-
rtt107	1.5	-	1.7	4.95×10 ⁻⁷ (5.8)
sac3	1.5	9.01×10 ⁻⁸ (1.0)	- 1	-
slx8	1.5	-	2.7	5.01×10 ⁻⁶ (58.3)
snt1	1.5	2.08×10 ⁻⁷ (2.4)	-	-
ump1	1.5	2.89×10 ⁻⁷ (3.3)	-	_
mrc1	14	-	2.0	3 08×10 ⁻⁷ (3 6)
apn1	13	1.28×10^{-7} (1.5)	-	-
apn?	1.3	$7.70 \times 10^{-8} (0.9)$	<u> </u>	_
cac?	1.3	$1.07 \times 10^{-7} (1.3)$	<u> </u>	_
chkl	1.3	-	14	5 76×10 ⁻⁷ (6 7)
ctf18	1.3		1.7	$1.41 \times 10^{-7} (1.6)$
dunl	1.3		2.1	$1.41 \times 10^{-7} (1.0)$
lifl	1.3	$9.92 \times 10^{-8} (1.2)$	2.1	1.55×10 (1.5)
mad?	1.3	$\frac{9.92\times10^{-8}(1.2)}{0.00\times10^{-8}(1.2)}$		
muu2 mlh3	1.3	$7.07 \times 10^{-8} (0.8)$		
min5	1.3	$5.88 \times 10^{-7} (6.0)$		
rad10	1.3	$9.03 \times 10^{-8} (1.2)$	-	
ruu10	1.3	$3.95 \times 10^{-7} (2.2)$	-	_
rtt100	1.3	1.05×10 (2.2)	2.4	1 21×10-6 (1/ 1)
711109	1.3	$\frac{-1.20\times10^{-7}(1.6)}{1.20\times10^{-7}(1.6)}$	2.4	1.21×10 (14.1)
sam l	1.3	1.33^10 (1.0)	- 16	- 4 00×10-7 (5 7)
sem1	1.3	$\frac{-}{1.44 \times 10^{-7} (1.7)}$	1.0	4.90~10 (3.7)
snu2	1.5	$\frac{1.44 \times 10^{-7} (1.7)}{2.06 \times 10^{-7} (2.4)}$		-
<u>8521</u>	1.5	$2.00 \times 10^{-1} (2.4)$		-
<i>yci030w</i>	1.5	$\frac{9.83 \times 10^{\circ} (1.1)}{6.70 \times 10^{-8} (0.8)}$		-
уки/0	1.3	0.70×10 ⁻⁵ (0.8)	-	-
yta/	1.3	-	1.0	7.27×10 ⁻⁷ (9.4)
ClK2	1.2	-	1.8	5.26×10° (0.6)
dia2	1.2	-	1.2	$2.15 \times 10^{-7} (2.5)$
<i>Jun30</i>	1.2	-	1.0	4.40×10 ⁻³ (0.5)
mec1 sml1	1.2	-	1.9	5.5/×10 ⁻⁷ (6.5)
met18	1.2	6.77×10 ⁻⁸ (0.8)	-	-
rad59	1.2	-	1.0	8.00×10 ⁻ (0.9)
rdh54	1.2	-	1.0	9.17×10 ⁻ (1.1)
rnh201	1.2	2.86×10 ⁻⁷ (3.3)		-
tell	1.2	3.38×10 ⁻⁷ (3.9)	-	-
vma8	1.2	5.10×10 ⁻⁸ (0.6)		-
mrs4	1.1	$1.60 \times 10^{-7} (1.9)$		-
chd1	1.0	7.80×10 ⁻⁸ (0.9)	-	-
ckb1	1.0	2.14×10 ⁻⁷ (2.5)		-
clb5	1.0	1.79×10 ⁻⁷ (2.1)	-	-
dnl4	1.0	1.87×10 ⁻⁷ (2.2)	-	-

esc1	1.0	1.28×10 ⁻⁷ (1.5)	-	-
hst4	1.0	5.31×10 ⁻⁷ (6.2)	-	-
lgel	1.0	-	1.0	1.12×10 ⁻⁷ (1.3)
poc4	1.0	8.73×10 ⁻⁸ (1.0)	-	-
pol32	1.0	-	1.3	2.12×10 ⁻⁷ (2.5)
rad30	1.0	7.45×10 ⁻⁸ (0.9)	-	-
rad51	1.0	-	1.3	2.27×10 ⁻⁷ (2.6)
rad52	1.0	2.00×10 ⁻⁸ (0.23)	-	-
rrm3	1.0	-	1.1	1.02×10 ⁻⁷ (1.2)
rtt101	1.0	-	1.5	2.53×10 ⁻⁷ (3.0)
slx1	1.0	8.24×10 ⁻⁸ (1.0)	-	-
slx4	1.0	-	1.1	1.03×10 ⁻⁷ (1.2)
mrc1-aq	0.9	-	1.0	1.01×10 ⁻⁷ (1.2)
hur1	0.83	3.74×10 ⁻⁸ (0.4)	-	-
mec3	0.83	2.24×10 ⁻⁸ (0.3)	-	-
psy3	0.83	1.55×10 ⁻⁷ (1.8)	-	-
rad54	0.83	1.31×10 ⁻⁷ (1.5)	-	-
rtfl	0.83	-	0.9	3.12×10 ⁻⁷ (3.6)
set2	0.83	1.62×10 ⁻⁷ (1.9)	-	-
swrl	0.83	-	1.3	1.32×10 ⁻⁷ (1.7)
arp8	0.67	-	0.7	1.85×10 ⁻⁷ (2.2)
pfd1	0.67	1.95×10 ⁻⁷ (2.3)	-	-
lsm7	0.50	5.86×10 ⁻⁸ (0.7)	-	-
rad9	0.50	-	0.6	3.34×10 ⁻⁸ (0.4)
rad53 sml1	0.50	-	1.1	2.48×10 ⁻⁷ (2.9)
rsc30	0.50	-	0.3	2.45×10 ⁻⁷ (2.9)
dot1	0.33	7.10×10 ⁻⁸ (0.83)	-	-
eaf7	0.33	9.93×10 ⁻⁸ (1.2)	-	-
cdh1	0.17	1.75×10 ⁻⁹ (0.02)	-	-
dep1	0.17	4.19×10 ⁻⁸ (0.50)	-	-
rsc2	0.10	1.33×10 ⁻⁹ (0.02)	-	-
clb2	0.0	3.13×10 ⁻⁸ (0.4)	-	-
pop2	0.0	8.28×10 ⁻⁹ (0.10)	- İ	-
rpd3	0.0	3.24×10 ⁻⁸ (0.4)	- 1	-
ypt6	0.0	8.44×10 ⁻⁸ (1.0)	1 - 1	-

Mutation GCR Strain Score* Rate Reference (fold over wild-type) wild-type 1.0 1.97×10⁻⁸ (1) 13 4.2 1.27×10⁻⁵ (645) 13 rmi1∆ esc2∆ 4.0 1.07×10⁻⁵ (543) 13 4.0 13 mre11∆ 1.52×10⁻⁶ (77) rad18∆ 4.0 (3.8) 8.08×10⁻⁷ (41) 24 sgsl∆ 4.0 1.93×10⁻⁶ (98) 13 4.0 13 top3∆ 2.14×10⁻⁶ (107) 3.8 3.78×10⁻⁷ (19) 24 rad5∆ 24 tsal∆ 3.7 1.30×10⁻⁶ (66) rad27∆ 3.5 2.78×10⁻⁶ (141) 13 3.0 mus81∆ 13 2.51×10^{-7} (13) pifl∆ 3.0 3.61×10⁻⁷ (18) 24 13 slx5∆ 3.0 4.82×10⁻⁷ (24) rad6∆ 2.3 6.03×10⁻⁷ (31) 13 srs2∆ 2.3 (2.1) 1.28×10⁻⁷ (6.4) 13 msh2∆ 2.2 1.75×10⁻⁷ (8.9) 13 2.2 13 rad24∆ 1.97×10⁻⁷ (10) 2.0 13 exol∆ 8.44×10⁻⁸ (4.3) 3.85×10⁻⁸ (2.0) mlh1∆ 2.0 13 msh6∆ 1.8 2.10×10^{-7} (11) 13 rev3∆ 1.7 7.59×10⁻⁸ (3.9) 24 1.7 20 yku80∆ 2.73×10⁻⁸ (1.4) asf1∆ 1.5 2.89×10⁻⁷ (14.7) 13 24 mms2∆ 1.5 2.47×10⁻⁷ (12.5) mph1∆ 1.5 1.05×10⁻⁷ (5.3) 13 rtt107∆ 1.5 (1.7) 3.07×10-7 (15.6) 13 13 slx8∆ 1.5 9.65×10-7 (49.0) 1.5 13 tof1∆ 4.25×10⁻⁷ (21.6) 24 ubr1∆ 1.5 1.06×10⁻⁷ (5.4) 13 dun1∆ 1.3 (2.1) 1.61×10⁻⁷ (8.2) chk1∆ 1.3 (1.4) 13 1.96×10⁻⁷ (9.9) 1.80×10⁻⁷ (9.1) rad10∆ 1.3 13 rtt109∆ 1.3 (2.4) 1.84×10⁻⁷ (9.3) 13 sae2∆ 1.3 1.65×10⁻⁷ (8.4) 13 1.3 24 ubc13∆ 2.06×10⁻⁷ (10.5) yku70∆ 1.3 5.33×10⁻⁸ (2.7) 20 hrq1∆ 1.2 6.32×10⁻⁸ (3.2) 24 13 rad59∆ 1.2(1.0)6.94×10⁻⁸ (3.5) 2.87×10⁻⁸ (1.5) 13 tell∆ 1.2 est3∆ 1.1 1.85×10⁻⁸ (0.9) 20 bre1∆ 1.0 4.89×10⁻⁸ (2.4) 24 1.0 (1.3) 13 *ctf18∆* 2.22×10⁻⁷ (11.3) lig4∆ 1.0 2.87×10⁻⁸ (1.5) 20 24 lgel∆ 1.0 (1.0) 3.94×10⁻⁸ (2.0) msh3∆ 1.0 3.67×10-8 (1.9) 13 1.0 (1.3) 13 pol32∆ 3.15×10⁻⁸ (1.6) 24 rad30∆ 1.0 1.65×10⁻⁷ (8.4) 13 rad52∆ 1.0 1.09×10⁻⁸ (0.6) 13 rad51∆ 1.0 (1.3) 2.31×10⁻⁸ (1.2) 1.0 (1.1) 3.87×<u>10⁻⁸</u> (2.0) 24 rrm3∆ siz1∆ 1.0 6.35×10⁻⁸ (3.2) 24

Supplementary Table 3. dGCR rates of single mutations determined using traditionally generated strains.

slx1A	1.0	2.32×10 ⁻⁸ (1.2)	13
slx4∆	1.0 (1.1)	9.26×10 ⁻⁸ (4.7)	13
estl∆	0.9	1.96×10 ⁻⁸ (1.0)	20
mrc1-aq	0.9 (1.0)	1.23×10 ⁻⁷ (6.2)	13
hcs1∆	0.8	1.22×10 ⁻⁷ (6.2)	24
mgs1 <i>A</i>	0.8	2.45×10 ⁻⁸ (1.2)	24
nhp10∆	0.7	3.01×10 ⁻⁸ (1.5)	13
rad9∆	0.5 (0.6)	3.82×10 ⁻⁸ (1.9)	13
$taf14\Delta/anc1\Delta$	0.0	2.02×10 ⁻⁸ (1.0)	24
arp8⊿	- (0.7)	4.84×10 ⁻⁸ (2.5)	13

*Scores in parentheses correspond to GCR strain scores from an $yfg\Delta leu2\Delta$ double mutant cross, where $yfg\Delta$ ("your favorite gene") is the mutation listed in the first column.

GCR strain score Can^R 5FOA^R rate* genotype 3.21[2.58-3.45] ×10⁻⁷ (1) $leu2\Delta$ 2.6 7.57 [5.90-12.2] ×10⁻⁶ (23.6) $rtt109\Delta$ 4.0 3.0 nup84∆ 7.31 [5.32-12.2] ×10⁻⁶ (22.8) 4.0 6.61 [4.25-26.7] ×10⁻⁶ (20.6) tsa $l\Delta$ $dia2\Delta$ 4.3 5.81 [4.87-7.36] ×10⁻⁶ (18.1) 5.69 [3.21-8.40] ×10⁻⁶ (17.7) 3.7 $slx5\Delta$ $sszl\Delta$ 4.0 5.00 [4.46-7.63] ×10⁻⁶ (15.6) 2.69 [1.14-3.62] ×10⁻⁶ (8.4) $ctf4\Delta$ 4.0 $clb5\Delta$ 4.0 2.45 [1.84-3.27] ×10⁻⁶ (7.6) $vid22\Delta$ 3.3 2.45 [1.90-3.58] ×10⁻⁶ (7.6) 1.97 [1.58-2.33] ×10⁻⁶ (6.1) $srs2\Delta$ 4.0 $rad51\Delta$ 4.0 1.60 [1.20-1.75] ×10⁻⁶ (5.0) ydj1∆ 3.0 1.51 [0.97-2.65] ×10⁻⁶ (4.7) 4.0 $csm3\Delta$ 1.34 [0.95-1.52] ×10⁻⁶ (4.2) 1.7 1.36 [1.06-1.39] ×10⁻⁶ (4.2) $prr1\Delta$ 2.0 1.23 [1.01-1.84] ×10⁻⁶ (3.8) skn7 Δ $pol32\Delta$ 3.7 1.08 [0.64-1.90] ×10⁻⁶ (3.4) $hst4\Delta$ 4.0 9.51 [6.99-10.4] ×10⁻⁷ (3.0) $pfd1\Delta$ 1.3 9.16 [5.92-13.3] ×10⁻⁷ (2.9) 2.3 $msh2\Delta$ 8.78 [5.21-24.7] ×10⁻⁷ (2.7) 6.70 [4.90-8.79] ×10⁻⁷ (2.1) $cln3\Delta$ 3.0 3.0 6.66 [6.23-7.53] ×10⁻⁷ (2.1) sae2∆ $chd1\Delta$ 3.7 6.40 [5.46-7.33] ×10⁻⁷ (2.0) 3.0 5.25 [4.69-5.91] ×10⁻⁷ (1.6) $rad9\Delta$ 3.0 4.95 [4.55-5.12] ×10⁻⁷ (1.5) $rad10\Delta$ exol∆ 3.0 4.41 [3.74-5.69] ×10⁻⁷ (1.4) mrs4 Δ 3.3 4.35 [3.49-5.69] ×10⁻⁷ (1.4) $met18\Delta$ 3.7 4.57 [2.31-7.74] ×10⁻⁷ (1.4) $escl\Delta$ 3.3 4.19 [3.74-5.69] ×10⁻⁷ (1.3) $slx1\Delta$ 2.0 2.75 [2.55-3.81] ×10⁻⁷ (0.9) 1.22 [0.82-1.34] ×10⁻⁷ (0.4) $poc4\Delta$ 1.7 8.31 [5.62-20.3] ×10⁻⁸ (0.3) $rad52\Delta$ 1.7 $nup133\Delta$ 0.3 5.56 [0.00-19.7] ×10⁻¹⁰ (0.0)

Supplementary Table 4. Single mutant GCR rates determined for systematically generated tyGCR strains.

*Brackets are 95% confidence intervals and parentheses are fold increase over the $leu2\Delta$ control strain.

Supplementary Table 5. Single mutant GCR rates determined for systematically generated sGCR strains.

genotype	GCR strain score	Can ^R 5FOA ^R rate*
$leu2\Delta$	0.1	4.00 [2.43-7.48] ×10 ⁻⁹ (1)
$sszl\Delta$	1.0	1.90 [1.50-2.22] ×10 ⁻⁷ (47.5)
$slx5\Delta$	0.0	1.56 [0.35-10.5] ×10 ⁻⁷ (39.0)
$rad51\Delta$	1.0	9.26 [4.83-16.0] ×10 ⁻⁸ (23.2)
$tsal\Delta$	0.3	6.74 [3.46-8.65] ×10 ⁻⁸ (16.9)
sae2∆	1.3	5.17 [3.61-6.02] ×10 ⁻⁸ (12.9)
$rtt109\Delta$	0.3	5.01 [2.96-6.81] ×10 ⁻⁸ (12.5)
nup84∆	0.0	3.99 [2.93-4.90] ×10 ⁻⁸ (10.0)
$dia2\Delta$	0.0	3.11 [1.26-5.83] ×10 ⁻⁸ (7.8)
$skn7\Delta$	0.3	2.50 [1.66-3.51] ×10 ⁻⁸ (6.3)
ydj1∆	0.3	2.47 [1.84-3.62] ×10 ⁻⁸ (6.2)
$vid22\Delta$	0.0	2.80 [2.57-8.77] ×10 ⁻⁸ (5.2)
$met18\Delta$	0.3	1.57 [0.84-3.29] ×10 ⁻⁸ (3.9)
$clb5\Delta$	0.0	1.26 [0.84-4.51] ×10 ⁻⁸ (3.5)
$ctf4\Delta$	0.3	1.37 [0.33-2.15] ×10 ⁻⁸ (3.4)
exol∆	0.3	9.30 [6.30-20.5] ×10 ⁻⁹ (2.3)
$rad9\Delta$	1.0	7.17 [3.89-7.95] ×10 ⁻⁹ (2.0)
$rad52\Delta$	0.2	7.00 [2.91-3.07] ×10 ⁻⁹ (1.8)
$csm3\Delta$	0.3	6.74 [5.61-13.7] ×10 ⁻⁹ (1.7)
$cln3\Delta$	0.0	5.69 [3.53-17.8] ×10 ⁻⁹ (1.4)
$hst4\Delta$	0.0	4.98 [2.19-7.12] ×10 ⁻⁹ (1.2)
$pol32\Delta$	0.3	4.92 [2.08-10.4] ×10 ⁻⁹ (1.2)
$escl\Delta$	0.0	4.24 [2.14-6.52] ×10 ⁻⁹ (1.1)
$chd1\Delta$	0.3	3.90 [2.12-1.57] ×10 ⁻⁹ (1.0)
$poc4\Delta$	1.0	3.35 [1.88-9.84] ×10 ⁻⁹ (0.8)
$mrs4\Delta$	0.0	2.27 [0.62-3.69] ×10 ⁻⁹ (0.6)
$prrl\Delta$	0.0	2.42 [1.47-2.90] ×10 ⁻⁹ (0.6)
$msh2\Delta$	0.0	2.13 [1.62-3.30] ×10 ⁻⁹ (0.5)
$nup133\Delta$	0.0	2.05 [0.84-6.60] ×10 ⁻⁹ (0.5)
$rad10\Delta$	1.0	2.00 [0.60-4.77] ×10 ⁻⁹ (0.5)
slx1Δ	1.0	1.81 [1.62-4.16] ×10 ⁻⁹ (0.5)
$pfd1\Delta$	1.0	1.64 [0.00-4.48] ×10 ⁻⁹ (0.4)
srs2 Δ	0.0	$1.10 [0.74-3.67] \times 10^{-9} (0.3)$

*Brackets are 95% confidence intervals and parentheses are fold increase over the $leu2\Delta$ control strain.

Supplementary Table 6. Double mutant dGCR rates.

query mutation	bait mutation	double	query mutation	bait mutation	double mutant
(dGCR strain	(dGCR strain	mutant	dGCR rate	dGCR rate	dGCR rate
score)	score)	GCR			
		strain			
		score			
$mrcl\Delta(2.1)$	$elg1\Delta(2.2)$	5.0	3.08×10 ⁻⁷ (3.6)	2.42×10 ⁻⁷ (2.8)	2.49×10 ⁻⁶ (29)
$rsc30\Delta$ (0.3)	$lifl\Delta(1.3)$	5.0	$2.45 \times 10^{-7} (2.9)$	$9.92 \times 10^{-8} (1.2)$	1.58×10 ⁻⁵ (184)
$sicl\Delta(2.4)$	$hurl\Delta(0.8)$	5.0	8.99×10 ⁻⁷ (10)	$3.74 \times 10^{-8} (0.4)$	4.49×10 ⁻⁶ (52)
$swrl\Delta(1.3)$	$eaf7\Delta(0.3)$	5.0	$1.32 \times 10^{-7} (1.5)$	$9.93 \times 10^{-8} (1.2)$	4.47×10 ⁻⁶ (52)
$rsc30\Delta$ (0.3)	$lsm7\Delta(0.5)$	4.7	2.45×10 ⁻⁷ (2.9)	5.86×10 ⁻⁸ (0.7)	5.68×10 ⁻⁶ (66)
$rrm3\Delta(1.1)$	$nup133\Delta(2.0)$	4.3	$1.02 \times 10^{-7} (1.2)$	1.21×10 ⁻⁶ (14)	3.46×10 ⁻⁶ (40)
$dunl\Delta(2.1)$	$rnh201\Delta(1.2)$	4.0	1.59×10 ⁻⁷ (1.9)	2.86×10 ⁻⁷ (3.3)	4.38×10 ⁻⁷ (5.1)
$dunl\Delta(2.1)$	$rnh202\Delta(1.3)$	4.0	1.59×10 ⁻⁷ (1.9)	$1.85 \times 10^{-7} (2.2)$	4.42×10 ⁻⁷ (5.2)
$exol\Delta(1.3)$	$cdc73\Delta(1.7)$	4.0	4.31×10 ⁻⁷ (5.0)	3.71×10 ⁻⁷ (4.3)	4.12×10 ⁻⁶ (48)
$exol\Delta(1.3)$	$chkl\Delta(1.4)$	4.0	4.31×10 ⁻⁷ (5.0)	5.76×10 ⁻⁷ (6.7)	4.52×10 ⁻⁶ (53)
$exol\Delta(1.3)$	$ddc2\Delta \ sml1\Delta(2.0)$	4.0	4.31×10 ⁻⁷ (5.0)	2.39×10 ⁻⁷ (2.8)	9.02×10 ⁻⁶ (105)
$exol\Delta(1.3)$	$mecl\Delta smll\Delta(1.9)$	4.0	4.31×10 ⁻⁷ (5.0)	5.57×10 ⁻⁷ (6.5)	1.12×10 ⁻⁵ (130)
$mphl\Delta(1.5)$	$dun1\Delta(2.1)$	4.0	2.96×10 ⁻⁷ (3.5)	1.59×10 ⁻⁷ (1.9)	1.46×10 ⁻⁶ (17)
$mrc1\Delta(2.1)$	$dot l\Delta(0.3)$	4.0	3.08×10 ⁻⁷ (3.6)	7.10x10 ⁻⁸ (0.8)	2.49×10 ⁻⁶ (29)
$mrcl\Delta(2.1)$	$slx4\Delta(1.1)$	4.0	3.08×10 ⁻⁷ (3.6)	1.03×10 ⁻⁷ (1.2)	2.35×10 ⁻⁷ (2.7)
$mrcl\Delta(2.1)$	$swrl\Delta(1.3)$	4.0	3.08×10 ⁻⁷ (3.6)	1.32×10 ⁻⁷ (1.7)	3.96×10 ⁻⁶ (46)
$mrcl\Delta(2.1)$	$vps72\Delta(1.1)$	4.0	3.08×10 ⁻⁷ (3.6)	2.08×10 ⁻⁷ (2.4)	4.10×10 ⁻⁶ (48)
$pol32\Delta(1.3)$	$msh6\Delta(1.8)$	4.0	2.12×10 ⁻⁷ (2.5)	n.d.	3.94×10 ⁻⁶ (46)
srs24 (2.1)	$rnh201\Delta(1.2)$	4.0	5.10×10 ⁻⁷ (5.9)	2.86×10 ⁻⁷ (3.3)	1.79×10 ⁻⁶ (21)
srs24 (2.1)	$rnh202\Delta(1.3)$	4.0	5.10×10 ⁻⁷ (5.9)	1.85×10 ⁻⁷ (2.2)	2.28×10 ⁻⁶ (26)
$swrl\Delta(1.3)$	$mrc1\Delta(2.1)$	4.0	1.32×10 ⁻⁷ (1.5)	3.08×10 ⁻⁷ (3.6)	2.07×10 ⁻⁶ (24)
$dunl\Delta(2.1)$	$yku70\Delta(1.3)$	3.7	1.59×10 ⁻⁷ (1.9)	6.70×10 ⁻⁸ (0.8)	2.88×10 ⁻⁷ (3.4)
$lgel\Delta(1.0)$	$mrc1\Delta(2.1)$	3.7	1.12×10 ⁻⁷ (1.3)	3.08×10 ⁻⁷ (3.6)	1.34×10 ⁻⁶ (16)
$mphl\Delta(1.5)$	$elgl\Delta(2.2)$	3.7	2.96×10 ⁻⁷ (3.5)	2.42×10 ⁻⁷ (2.8)	1.35×10 ⁻⁶ (16)
$mrcl\Delta(2.1)$	$rad51\Delta(1.3)$	3.7	3.08×10 ⁻⁷ (3.6)	2.27×10 ⁻⁷ (2.6)	5.17×10 ⁻⁷ (6.0)
srs24 (2.1)	$rnh203\Delta(1.6)$	3.7	5.10×10 ⁻⁷ (5.9)	1.73×10 ⁻⁷ (2.0)	2.00×10 ⁻⁶ (23)
$rad17\Delta(2.2)$	$tell\Delta(1.2)$	3.3	5.70×10 ⁻⁷ (6.6)	3.38×10 ⁻⁷ (3.9)	9.96×10 ⁻⁷ (12)
$ckb2\Delta(1.3)$	$chkl\Delta(1.4)$	3.3	7.47×10 ⁻⁷ (8.7)	5.76×10 ⁻⁷ (6.7)	1.42×10 ⁻⁶ (16)
$ckb2\Delta(1.3)$	$mecl\Delta smll\Delta(1.9)$	3.3	7.47×10 ⁻⁷ (8.7)	5.57×10 ⁻⁷ (6.5)	9.09×10 ⁻⁷ (11)
$ckb2\Delta(1.3)$	$mec3\Delta$ (0.8)	3.3	7.47×10 ⁻⁷ (8.7)	2.24×10 ⁻⁸ (0.3)	1.92×10 ⁻⁶ (22)
$ckb2\Delta(1.3)$	$mrc1\Delta(2.1)$	3.3	7.47×10 ⁻⁷ (8.7)	3.08×10 ⁻⁷ (3.6)	2.37×10 ⁻⁶ (28)
$ckb2\Delta(1.3)$	$rad17\Delta(2.2)$	3.3	7.47×10 ⁻⁷ (8.7)	5.70×10 ⁻⁷ (6.6)	4.01×10 ⁻⁶ (47)
$ckb2\Delta(1.3)$	$rad24\Delta(2.1)$	3.3	7.47×10 ⁻⁷ (8.7)	5.36×10 ⁻⁷ (6.2)	2.54×10 ⁻⁶ (30)
$mphl\Delta(1.5)$	$cdc73\Delta(1.7)$	3.3	2.96×10 ⁻⁷ (3.5)	3.71×10 ⁻⁷ (4.3)	1.30×10 ⁻⁶ (15)
$rsc30\Delta$ (0.3)	$csm3\Delta(1.8)$	3.3	2.45×10 ⁻⁷ (2.9)	3.18×10 ⁻⁷ (3.3)	7.93×10 ⁻⁷ (9.2)
$ctf18\Delta(1.3)$	$ckbl\Delta(1.0)$	3.0	1.41×10 ⁻⁷ (1.6)	2.14×10 ⁻⁷ (2.5)	3.21×10 ⁻⁷ (3.7)
$exol\Delta(1.3)$	$ddc1\Delta(2.0)$	3.0	4.31×10 ⁻⁷ (5.0)	3.58×10 ⁻⁷ (4.2)	2.27×10 ⁻⁶ (26)
$exol\Delta(1.3)$	$dunl\Delta(2.1)$	3.0	4.31×10 ⁻⁷ (5.0)	1.59×10 ⁻⁷ (1.9)	3.05×10 ⁻⁶ (36)
$exol\Delta(1.3)$	$elg1\Delta(2.2)$	3.0	4.31×10 ⁻⁷ (5.0)	2.42×10 ⁻⁷ (2.8)	1.36×10 ⁻⁶ (15.8)
$exol\Delta(1.3)$	$hos 2\Delta(1.0)$	3.0	4.31×10 ⁻⁷ (5.0)	$1.02 \times 10^{-7} (1.2)$	3.13×10 ⁻⁷ (3.6)
$exol\Delta(1.3)$	$mec3\Delta(0.8)$	3.0	4.31×10 ⁻⁷ (5.0)	2.24×10 ⁻⁸ (0.3)	9.92×10 ⁻⁷ (12)
$exol\Delta(1.3)$	$mrcl\Delta(2.1)$	3.0	4.31×10 ⁻⁷ (5.0)	3.08×10 ⁻⁷ (3.6)	1.69×10 ⁻⁶ (20)
$mec1\Delta sml1\Delta$	$ckb2\Delta(1.3)$	3.0	7.47×10 ⁻⁷ (8.7)	7.47×10 ⁻⁷ (8.7)	1.44×10 ⁻⁷ (1.7)
(1.9)	Ì		``´´	, ,	, ,
$mec1\Delta sml1\Delta$	$rnh202\Delta(1.3)$	3.0	7.47×10 ⁻⁷ (8.7)	1.85×10 ⁻⁷ (2.2)	6.93×10 ⁻⁷ (8.1)
(1.9)	<u> </u>			, , ,	, ,
$mecl\Delta smll\Delta$	$spt8\Delta(1.4)$	3.0	7.47×10 ⁻⁷ (8.7)	7.30×10 ⁻⁷ (8.5)	8.39×10 ⁻⁷ (9.8)
(1.9)					
$pol32\Delta(1.3)$	$msh2\Delta$ (2.2)	3.0	2.12×10 ⁻⁷ (2.5)	5.76×10 ⁻⁷ (6.7)	2.84×10 ⁻⁶ (33)

44-14 (4.4)					
$rad17\Delta(2.2)$	$rnh202\Delta(1.3)$	3.0	5.70×10 ⁻⁷ (6.6)	$1.85 \times 10^{-7} (2.2)$	7.49×10 ⁻⁷ (8.7)
$rad17\Delta(2.2)$	$spt8\Delta(1.4)$	3.0	5.70×10 ⁻⁷ (6.6)	7.30×10 ⁻⁷ (8.5)	6.45×10 ⁻⁷ (7.5)
$rad17\Delta(2.2)$	$yku70\Delta(1.3)$	3.0	5.70×10 ⁻⁷ (6.6)	6.70×10 ⁻⁸ (0.8)	1.75×10 ⁻⁶ (20)
$revl\Delta(1.0)$	$mphl\Delta(1.5)$	3.0	4.19×10 ⁻⁷ (4.9)	2.96×10 ⁻⁷ (3.5)	8.11×10 ⁻⁶ (94)
$rev3\Delta(1.2)$	$mphl\Delta(1.5)$	3.0	3.29×10 ⁻⁷ (3.8)	2.96×10 ⁻⁷ (3.5)	7.00×10 ⁻⁶ (81.5)
$rtt107\Delta(1.7)$	$cdh1\Delta(0.2)$	3.0	4.95×10 ⁻⁷ (5.8)	7.80×10 ⁻⁸ (0.9)	4.22×10 ⁻⁷ (4.9)
$swrl\Delta(1.3)$	$slx8\Delta(2.7)$	3.0	1.32×10 ⁻⁷ (1.5)	7.30×10 ⁻⁶ (58)	1.18×10 ⁻⁶ (14)
$ckb2\Delta(1.3)$	$csm3\Delta(1.8)$	2.7	7.47×10 ⁻⁷ (8.7)	3.18×10 ⁻⁷ (3.3)	2.09×10 ⁻⁶ (24)
$exol\Delta(1.3)$	$tell\Delta(1.2)$	2.7	4.31×10 ⁻⁷ (5.0)	3.38×10 ⁻⁷ (3.9)	6.13×10 ⁻⁷ (7.1)
$rev3\Delta(1.2)$	$psy3\Delta(0.8)$	2.3	3.29×10 ⁻⁷ (3.8)	1.55×10 ⁻⁷ (1.8)	1.67×10 ⁻⁶ (19.4)
$rev3\Delta(1.2)$	$shul\Delta(1.1)$	2.3	3.29×10 ⁻⁷ (3.8)	3.98×10 ⁻⁷ (4.6)	2.01×10 ⁻⁶ (23.4)
$lgel\Delta(1.0)$	$exol\Delta(1.3)$	2.0	1.12×10 ⁻⁷ (1.3)	4.31×10 ⁻⁷ (5.0)	1.44×10 ⁻⁷ (1.7)
$mecl\Delta smll\Delta$	$yku70\Delta(1.3)$	2.0	7.47×10 ⁻⁷ (8.7)	6.70×10 ⁻⁸ (0.8)	3.52×10 ⁻⁷ (4.1)
(1.9)					
$mrc1\Delta(2.1)$	$tell\Delta(1.2)$	2.0	3.08×10 ⁻⁷ (3.6)	3.38×10 ⁻⁷ (3.9)	2.87×10 ⁻⁷ (3.3)
$revl\Delta(1.0)$	$csm2\Delta(0.7)$	2.0	4.19×10 ⁻⁷ (4.9)	8.29×10 ⁻⁷ (9.7)	1.65×10 ⁻⁶ (19)
$revl\Delta(1.0)$	$psy3\Delta(0.8)$	2.0	4.19×10 ⁻⁷ (4.9)	1.55×10 ⁻⁷ (1.8)	1.50×10 ⁻⁶ (17)
$revl\Delta(1.0)$	$shul\Delta(1.1)$	2.0	4.19×10 ⁻⁷ (4.9)	3.98×10 ⁻⁷ (4.6)	2.26×10 ⁻⁶ (26)
$rev3\Delta(1.2)$	$csm2\Delta(0.7)$	2.0	3.29×10 ⁻⁷ (3.8)	8.29×10 ⁻⁷ (9.7)	1.59×10 ⁻⁶ (18.5)
$ckb2\Delta(1.3)$	mrc1-aq (1.0)	1.7	7.47×10 ⁻⁷ (8.7)	1.01×10 ⁻⁷ (1.2)	3.21×10 ⁻⁷ (4.0)
$exol\Delta(1.3)$	mrc1-aq (1.0)	1.7	4.31×10 ⁻⁷ (5.0)	1.01×10 ⁻⁷ (1.2)	7.12×10 ⁻⁷ (8.3)
$exol\Delta(1.3)$	$rad9\Delta(0.7)$	1.7	4.31×10 ⁻⁷ (5.0)	3.34×10 ⁻⁸ (3.9)	5.91×10 ⁻⁷ (6.9)
$rev1\Delta(1.0)$	$shu2\Delta(1.3)$	1.7	4.19×10 ⁻⁷ (4.9)	2.68×10 ⁻⁷ (3.1)	1.35×10 ⁻⁶ (16)
$rev3\Delta(1.2)$	$shu2\Delta(1.3)$	1.7	3.29×10 ⁻⁷ (3.8)	2.68×10 ⁻⁷ (3.1)	1.89×10 ⁻⁶ (22.0)
$ckb2\Delta(1.3)$	$rad9\Delta(0.7)$	1.3	7.47×10 ⁻⁷ (8.7)	3.34×10 ⁻⁸ (3.9)	4.53×10 ⁻⁷ (5.6)
$exol\Delta(1.3)$	$rad51\Delta(1.3)$	1.3	4.31×10 ⁻⁷ (5.0)	2.27×10 ⁻⁷ (2.6)	1.65×10 ⁻⁷ (1.9)
$exol\Delta(1.3)$	$rad53\Delta sml1\Delta(1.1)$	1.3	4.31×10 ⁻⁷ (5.0)	2.48×10 ⁻⁷ (2.9)	2.56×10 ⁻⁷ (3.0)
$exol\Delta(1.3)$	$pol32\Delta(1.3)$	0.7	4.31×10 ⁻⁷ (5.0)	2.12×10 ⁻⁷ (2.5)	3.50×10 ⁻⁶ (41)
$lgel\Delta(1.0)$	$mrell\Delta(4.0)$	0.7	1.12×10 ⁻⁷ (1.3)	2.88×10 ⁻⁶ (34)	9.42×10 ⁻⁸ (1.1)
$exol\Delta(1.3)$	$rad54\Delta(0.8)$	0.3	4.31×10 ⁻⁷ (5.0)	1.31×10 ⁻⁷ (1.5)	6.60×10 ⁻⁸ (0.8)

	wild-type	wild-type		ckb2∆		exol∆	
	Rate*	GCR	Rate*	GCR	Rate*	GCR	
		strain		strain		strain	
		score		score		score	
$leu2\Delta$	8.59×10 ⁻⁸ (1)	0.95	7.47×10 ⁻⁷ (8.7)	1.3	4.31×10 ⁻⁷ (5.0)	1.3	
$chkl\Delta$	5.76×10 ⁻⁷ (6.7)	1.4	1.42×10 ⁻⁶ (16.5)	3.3	2.14×10 ⁻⁶ (24.9)	4.0	
$csm3\Delta$	3.18×10 ⁻⁷ (3.7)	1.8	2.09×10 ⁻⁶ (24.3)	2.7	n.d.	3.0	
$ddc1\Delta$	3.58×10 ⁻⁷ (4.2)	2.0	n.d.	3.3	2.27×10 ⁻⁶ (26.4)	3.0	
$ddc2\Delta \ sml1\Delta$	2.39×10 ⁻⁷ (2.8)	2.0	n.d.	3.3	9.02×10 ⁻⁶ (105)	4.0	
$dun1\Delta$	1.59×10 ⁻⁷ (1.9)	2.1	n.d.	1.7	3.05×10 ⁻⁶ (35.6)	3.0	
$elgl\Delta$	2.42×10 ⁻⁷ (2.8)	2.2	n.d.	2.0	1.36×10 ⁻⁶ (15.8)	3.0	
$mecl\Delta smll\Delta$	5.57×10 ⁻⁷ (6.5)	1.9	9.09×10 ⁻⁷ (10.6)	3.3	1.06×10 ⁻⁵ (123)	4.0	
$mec3\Delta$	2.24×10 ⁻⁸ (0.3)	0.8	1.92×10 ⁻⁶ (22.4)	3.3	9.92×10 ⁻⁷ (11.5)	3.0	
$mrc1\Delta$	3.08×10 ⁻⁷ (3.6)	2.1	2.37×10 ⁻⁶ (27.6)	3.3	1.69×10 ⁻⁶ (19.7)	3.0	
mrc1-aq	1.01×10 ⁻⁷ (1.2)	1.0	3.21×10 ⁻⁷ (4.0)	1.7	7.12×10 ⁻⁷ (8.3)	1.7	
$rad9\Delta$	3.34×10 ⁻⁸ (3.9)	0.7	4.53×10 ⁻⁷ (5.6)	1.3	5.91×10 ⁻⁷ (6.9)	1.7	
$rad17\Delta$	5.70×10 ⁻⁷ (6.6)	2.2	4.01×10 ⁻⁶ (46.7)	3.3	n.d.	3.0	
$rad24\Delta$	5.36×10 ⁻⁷ (6.2)	2.1	2.54×10 ⁻⁶ (29.6)	3.3	n.d.	3.0	
$rad53\Delta \ sml1\Delta$	2.48×10 ⁻⁷ (2.9)	1.1	n.d.	1.3	2.56×10 ⁻⁷ (3.0)	1.3	
$tell\Delta$	3.38×10 ⁻⁷ (3.9)	1.2	n.d.	2.0	6.13×10 ⁻⁷ (7.1)	2.7	
$tofl\Delta$		1.5		2.7		3.0	
<i>ckb1</i> ∆	2.14×10 ⁻⁷ (2.5)	1.0	n.d.	2.0	n.d.	2.0	
$ckb2\Delta$	7.47×10 ⁻⁷ (8.7)	1.3	-	-	n.d.	2.7	
$exol\Delta$	4.31×10 ⁻⁷ (5.0)	1.3	n.d.	2.3	-	-	

Supplementary Table 7. Interactions of $ckb2\Delta$ and $exo1\Delta$ mutations with checkpoint defects.

*Rate of Can^R 5FOA^R colonies, fold increase over the $leu2\Delta$ control strain in parentheses. n.d. = not determined.

Supplementary Table 8. Summary of occurrence of mutations, reduced copy number and expression and predicted silencing of human GIS genes in ovarian and colorectal cancer.

Summary of Mutation Occurrence in GIS Genes - All Missense				
	Ovariar	Cancer	Colorectal Cancer	
	nonsense, deletion, inser- tion, frameshift, splice site	nonsense, deletion, inser- tion, frameshift, splice site + missense	nonsense, deletion, inser- tion, frameshift, splice site	nonsense, deletion, inser- tion, frameshift, splice site + missense
# of samples with data	476	476	537	537
# of mutations	149	732	649	2700
# of samples with mutations	129	323	157	350
Range: mutation/ mutated sample	1 - 3	1 - 8	1 - 36	1 - 190
Range: mutation/ gene	1 - 55	1 - 195	1 - 32	1 - 87
Average # of mutations/mutated sample	1.2	2.3	4.1	7.7
# of genes with mutations	44	170	185	260

Summary of Mutation Occurrence in GIS Genes - Predicted Deleterious Missense				
	Ovarian	Cancer	Colorectal Cancer	
	nonsense, deletion, inser- tion, frameshift, splice site	nonsense, deletion, inser- tion, frameshift, splice site + missense (Ndamage = 5, 6)	nonsense, deletion, inser- tion, frameshift, splice site	nonsense, deletion, inser- tion, frameshift, splice site + missense (Ndamage = 5, 6)
# of samples with data	476	476	537	537
# of mutations	149	221	649	1146
# of samples with mutations	129	176	157	221
Range: mutation/ mutated sample	1 - 3	1 -3	1 - 36	1 - 78
Range: mutation/ gene	1 - 55	1 - 57	1 - 32	1 - 47
Average # of mutations/mutated sample	1.2	1.3	4.1	5.2
# of genes with mutations	44	85	185	224

Summary of Reduced Copy Number/Expression of GIS Genes				
	Ovarian Cancer	Colorectal Cancer		
	Reduced copy number (GISTIC	Reduced copy number (GISTIC		
	-1, -2) and reduced expression	-1, -2) and reduced expression		
	(Zexp <= -2) [GISTIC -2 only]	(Zexp <= -2) [GISTIC -2 only]		
# of samples with	527	456		
data				
# of alterations	3003 [200]	608 [20]		
# of affected sam-	508 [83]	246 [17]		
ples				
Range: altered	1 - 19 [1 - 9]	1 - 8 [1 - 2]		
genes/affected				
sample				
Range: alterations	3 - 198 [1 - 16]	1 - 69 [1 - 5]		
per gene				
Average # of	5.9 [2.4]	2.5 [1.2]		
altered genes/af-				
fected sample				
# of altered genes	45 [41]	20 [10]		

Summary of Silenced GIS Genes					
	Ovarian Cancer	Colorectal Cancer			
	Increased methylation (MetGL1 >= 0.5) and reduced expression (Zexp <= -1)	Increased methylation (MetGL1 >= 0.5) and reduced expression (Zexp <= -1)			
# of samples with data	537	463			
# of cases of si- lenced genes	63	58			
# of affected sam- ples	62	47			
Range: silenced genes/affected sample	1 - 2	1 - 3			
Range: alterations per gene	6 - 49	2 - 27			
Average # of silenced genes/ affected sample	1	1.2			
# of genes show- ing silencing	3	4			

Summary of Mutation Occurrence + Reduced Copy Number/Expression + Silencing in GIS Genes					
	Ovarian Cancer			Colorectal Cancer	
	nonsense, deletion, inser- tion, frameshift, splice site (samples with	nonsense, deletion, inser- tion, frameshift, splice site + missense Ndamage = 5, 6 (samples with complete data)	nonsense, deletion, inser- tion, frameshift, splice site (samples with	nonsense, deletion, inser- tion, frameshift, splice site + missense Ndamage = 5, 6 (samples with complete data)	
	complete data)		complete data)		
# of samples with data	561 (452)	561 (452)	568 (426)	568 (426)	
# of samples with mutations only	9	11	103	133	
# of samples with reduced copy num- ber and expression only	337	308	191	164	
# of samples with silenced genes only	2	1	9	5	
# of samples with mutations and re- duced copy num- ber and expression	111	140	34	61	
# of samples with mutations and silenced genes	0	1	17	21	
# of samples with reduced copy num- ber and expression and silenced genes	52	46	18	15	
# of samples with all three classes of alterations	8	14	3	6	
# of samples with an alteration	519	521	375	405	
Range: alterations/ affected sample	1 - 20	1 - 20	1 - 36	1 - 78	
Range: alterations/	1 - 198	1 - 199	1 - 70	1 - 72	
Average # of al- terations/affected sample	6.3	6.4	3.5	4.5	

Supplementary Table 9. S. cerevisiae strains used in this study.

Name	Genotype				
RDKY7635	MATα hom3-10 ura3Δ0 leu2Δ0 trp1Δ63 his3Δ200 lyp1::TRP1 cyh2-Q38K iYFR016C:: P_{M-} _{F41} -LEU2 can1:: P_{LEU2} -NAT yel072w::CAN1/URA3				
RDKY7712	RDKY7635 <i>arp8::HIS3</i>				
RDKY8042	RDKY8042 <i>ckb2::HIS3</i>				
RDKY7714	RDKY7635 ctf18::HIS3				
RDKY7779	RDKY7635 ctk2::HIS3				
RDKY7715	RDKY7635 dia2::HIS3				
RDKY7784	RDKY7635 dun1::HIS3				
RDKY7717	RDKY7635 elg1::HIS3				
RDKY7638	RDKY7635 exo1::HIS3				
RDKY7644	RDKY7635 fun30::HIS3				
RDKY8034	RDKY7635 hos2::HIS3				
RDKY7642	RDKY7635 lge1::HIS3				
RDKY8045	RDKY7635 mec1::HIS3 sml1::hph				
RDKY7780	RDKY7635 mms4::HIS3				
RDKY7744	RDKY7635 mph1::HIS3				
RDKY7636	RDKY7635 mrc1::HIS3				
RDKY8044	RDKY7635 mrc1-aq.HIS3				
RDKY7649	RDKY7635 nup84::HIS3				
RDKY7725	RDKY7635 pol32::HIS3				
RDKY7719	RDKY7635 rad9::HIS3				
RDKY8049	RDKY7635 rad17::HIS3				
RDKY7726	RDKY7635 rad18::HIS3				
RDKY7736	RDKY7635 rad51::HIS3				
RDKY7967	RDKY7635 rad52::HIS3				
RDKY8047	RDKY7635 rad53::HIS3 sml1::hph				
RDKY7738	RDKY7635 rad59::HIS3				
RDKY7781	RDKY7635 rdh54::HIS3				
RDKY7980	RDKY7635 rev1::HIS3				
RDKY7983	RDKY7635 rev3::HIS3				
RDKY7650	RDKY7635 rrm3::HIS3				
RDKY7646	RDKY7635 <i>rsc30::HIS3</i>				
RDKY7988	RDKY7635 rtf1::HIS3				
RDKY7721	RDKY7635 rtt101::HIS3				
RDKY7640	RDKY7635 rtt107::HIS3				
RDKY7723	RDKY7635 rtt109::HIS3				
RDKY8038	RDKY7635 sem1::HIS3				
RDKY7782	RDKY7635 sic1::HIS3				
RDKY7652	RDKY7635 slx4::HIS3				
RDKY7783	RDKY7635 slx8::HIS3				
RDKY7654	RDKY7635 srs2::HIS3				
RDKY8036	RDKY7635 spt8::HIS3				
RDKY7785	RDKY7635 swr1::HIS3				
RDKY8040	RDKY7635 yta7::HIS3				
RDKY7964	MATα hom3-10 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 his3 Δ 200 lyp1::TRP1 cyh2-Q38K iYFR016C::P _{M-}				
	$_{FAI}$ -LEU2 can1:: P_{LEU2} -NAT yel068c::CAN1/URA3				

RDKY7967	RDKY7964 rad52::HIS3
RDKY7046	MATα hom3-10 ura3Δ0 leu2Δ0 trp1Δ63 his3Δ200 lyp1::TRP1 cyh2-Q38K iYFR016C:: P_{M}
	_{FAI} -LEU2 iYEL062W::Ty912-hphNT1 hxt13::URA3
BY404	MAT \mathbf{a} ade2::hisG his3 Δ 200 leu2 Δ 0 trp1 Δ 63 ura3 Δ 0
RDKY3686	MAT α hom3-10 lys2-10A his3 Δ 200 leu2 Δ 1 trp1 Δ 63 ura3-52
RDKY7594	MAT α lys2-10A hom3-10 his3 Δ 200 leu2 Δ 0 trp1 Δ 63 ura3 Δ 0
RDKY7595	MAT a lys2-10A hom3-10 his3 Δ 200 leu2 Δ 0 trp1 Δ 63 ura3 Δ 0
RDKY7596	MAT a lys2-10A hom3-10 his3Δ200 leu2Δ0 trp1Δ63 ura3Δ0 iYFR016C::URA3
RDKY7597	MATa lys2-10A hom3-10 his3 Δ 200 leu2 Δ 0 trp1 Δ 63 ura3 Δ 0 iYFR016C::P _{MEAI} -LEU2
RDKY7598	MATa lys2-10A hom3-10 his3 Δ 200 leu2 Δ 0 trp1 Δ 63 ura3 Δ 0 iYFR016C::P _{MEAI} -LEU2
RDKY7599	MATa lys2-10A hom3-10 his3 Δ 200 leu2 Δ 0 trp1 Δ 63 ura3 Δ 0 iYFR016C::P _{MEA1} -LEU2 hx-
	[1] 5:: URA3
RDKY6970	MATa hom3-10 his3 Δ 200 leu2 Δ 0 trp1 Δ 63 ura3 Δ 0 iYFR016C::P _{MEAI} -LEU2 hxt13::URA3
RDKY6971	MATa hom3-10 his3 Δ 200 leu2 Δ 0 trp1 Δ 63 ura3 Δ 0 iYFR016C::P _{MEAI} -LEU2 lyp1::TRP1 hxt13::URA3
RDKY6975	MATα hom3-10 his3Δ200 leu2Δ0 trp1Δ63 ura3Δ0 iYFR016C::P _{MFAI} -LEU2 lyp1::TRP1 cyh2-Q38K hxt13::URA3
RDKY7625	MATα hom3-10 his3Δ200 leu2Δ0 trp1Δ63 ura3Δ0 lyp1::TRP1 iYFR016C::P _{MFA1} -LEU2 cyh2- Q38K
RDKY7629	MATα hom3-10 his3Δ200 leu2Δ0 trp1Δ63 ura3Δ0 lyp1::TRP1 iYFR016C::P _{MFA1} -LEU2 cyh2- Q38K can1::P _{LEU2} -NAT
RDKY6593	MAT a lys2-10A hom3-10 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 his3 Δ 200 iYEL062W::Ty912-hphNT1 yel069c::URA3

Supplementary Table 10. Strains constructed to replace or supplement those in the BY4741 deletion collection.

Rationale	Gene	Marker	Note	
replace	YBR194W	aim4::G418	PCR-mediated gene disruption in BY4741	
replace	YJL115W	asf1::G418	From BY4741xBY4742 asf1::G418 cross	
replace	YGR188C	bub1::G418	From BY4741xBY4742 <i>bub1::G418</i> cross	
replace	YAL021C	ccr4::G418	From BY4741xBY4742 ccr4::G418 cross	
replace	YCR002C	cdc10::G418	PCR-mediated gene disruption in BY4741	
replace	YGL019W	ckb1::G418	PCR-mediated gene disruption in BY4741	
replace	YMR078C	ctf18::G418	From BY4741xBY4742 <i>ctf18::G418</i> cross	
replace	YKL139W	ctk1::G418	From BY4741xBY4742 <i>ctk1::G418</i> cross	
replace	YML112W	ctk3::G418	From BY4741xBY4742 <i>ctk3::G418</i> cross	
replace	YOL145C	ctr9::G418	From BY4741xBY4742 ctr9::G418 cross	
replace	YCL016C	dcc1::G418	From BY4741xBY4742 <i>dcc1::G418</i> cross	
replace	YFL001W	deg1::G418	PCR-mediated gene disruption in BY4741	
replace	YOR080W	dia2::G418	From BY4741xBY4742 <i>dia2::G418</i> cross	
replace	YDR359C	eaf1::G418	From BY4741xBY4742 <i>eaf1::G418</i> cross	
replace	YEL018W	eaf5::G418	PCR-mediated gene disruption in BY4741	
replace	YJR082C	eaf6::G418	From BY4741xBY4742 <i>eaf6::G418</i> cross	
replace	YOR033C	exo1::G418	From BY4741xBY4742 <i>exo1::G418</i> cross	
replace	YOL051W	gal11:G418	PCR-mediated gene disruption in BY4741	
replace	YJR090C	grr1::G418	PCR-mediated gene disruption in BY4741	
replace	YOL095C	hmi1::G418	From BY4741xBY4742 hmi1::G418 cross	
replace	YGL168W	hur1::G418	From BY4741xBY4742 <i>hur1::G418</i> cross	
replace	YLR384C	iki3::G418	PCR-mediated gene disruption in BY4741	
replace	YDR332W	irc3::G418	PCR-mediated gene disruption in BY4741	
replace	YDL115C	iwr1::G418	PCR-mediated gene disruption in BY4741	
replace	YJL124C	lsm1::G418	From BY4741xBY4742 <i>lsm1::G418</i> cross	
replace	YJL030W	mad2::G418	From BY4741xBY4742 mad2::G418 cross	
replace	YPR051W	mak3::G418	From BY4741xBY4742 mak3::G418 cross	
replace	YCR020C-A	mak31::G418	PCR-mediated gene disruption in BY4741	
replace	YOL076W	mdm20::G418	From BY4741xBY4742 mdm20:::G418 cross	
replace	YPR070W	med1::G418	PCR-mediated gene disruption in BY4741	
replace	YDL040C	nat1::G418	PCR-mediated gene disruption in BY4741	
replace	YAL015C	ntg1::G418	From BY4741xBY4742 ntg1::G418 cross	
replace	YAR002W	nup60::G418	From BY4741xBY4742 nup60::G418 cross	
replace	YDR113C	pds1::G418	PCR-mediated gene disruption in BY4741	
replace	YML061C	pif1::G418	From BY4741xBY4742 <i>pif1::G418</i> cross	
replace	YNR052C	pop2::G418	From BY4741xBY4742 pop2::G418 cross	
replace	YPL022W	rad1::G418	From BY4742xBY4741 <i>rad1::G418</i> backcross; original BY4741 <i>rad1::G418</i> strain had HU- sensi- tivity that did not cosegregate with the <i>rad1::G418</i> marker	
replace	YLR176C	<i>rfx1::G418</i>	From BY4741xBY4742 <i>rfx1::G418</i> cross	

replace	YNL139C	rlr1::G418	From BY4741xBY4742 <i>rlr1::G418</i> cross
replace	YIL066C	rnr3::G418	From BY4741xBY4742 rnr3::G418 cross
replace	YNL330C	rpd3::G418	From BY4741xBY4742 <i>rpd3::G418</i> cross
replace	YHR200W	rpn10::G418	From BY4741xBY4742 <i>rpn10::G418</i> cross
replace	YHR056C	rsc30::G418	PCR-mediated gene disruption in BY4741
replace	YJL047C	rtt101::G418	From BY4741xBY4742 <i>rtt101::G418</i> cross
replace	YER104W	rtt105::G418	PCR-mediated gene disruption in BY4741
replace	YLL002W	rtt109::G418	From BY4741xBY4742 <i>rtt109::G418</i> cross
replace	YGL127C	soh1::G418	From BY4741xBY4742 soh1::G418 cross
replace	YJL127C	spt10::G418	From BY4741xBY4742 spt10::G418 cross
replace	YBR081C	spt7::G418	PCR-mediated gene disruption in BY4741
replace	YHR041C	srb2::G418	PCR-mediated gene disruption in BY4741
replace	YBR111W-A	sus1::G418	PCR-mediated gene disruption in BY4741
replace	YALO11W	swc3::G418	From BY4741xBY4742 <i>swc3::G418</i> cross
replace	YPL129W	taf14::G418	From BY4741xBY4742 <i>taf14::G418</i> cross
replace	YDR079C-A	tfb5::G418	PCR-mediated gene disruption in BY4741
replace	YOL072W	thp1::G418	From BY4741xBY4742 <i>thp1::G418</i> cross
replace	YEL012W	ubc8::G418	From BY4741xBY4742 <i>ubc8::G418</i> cross
replace	YFR010W	ubp6::G418	PCR-mediated gene disruption in BY4741
replace	YHR003C	yhr003c::G418	From BY4741xBY4742 yhr003c::G418 cross
replace	YHR090C	yng2::G418	PCR-mediated gene disruption in BY4741
replace	YLR262C	ypt6::G418	PCR-mediated gene disruption in BY4741
supplement	YCL018W	leu2::G418	PCR-mediated gene disruption in BY4741
supplement	YDR499W	ddc2::G418 sml1::hph	PCR-mediated gene disruption in BY4741
supplement	YBR136W	mec1::G418 sml1::hph	PCR-mediated gene disruption in BY4741
supplement	YPL153C	rad53::G418 sml1::hph	PCR-mediated gene disruption in BY4741
supplement	YPL153C	rad53-21.G418	PCR-mediated gene disruption in BY4741
supplement	YCL061C	mrc1-aq.G418	PCR-mediated gene replacement in BY4741

Supplementary References

- 1 Putnam, C. D., Hayes, T. K. & Kolodner, R. D. Specific pathways prevent duplication-mediated genome rearrangements. *Nature* **460**, 984-989, doi:10.1038/nature08217 (2009).
- 2 Putnam, C. D., Hayes, T. K. & Kolodner, R. D. Post-replication repair suppresses duplication-mediated genome instability. *PLoS Genetics* **6**, e1000933, doi:10.1371/journal.pgen.1000933 (2010).
- 3 Mazon, G. & Symington, L. S. Mph1 and Mus81-Mms4 prevent aberrant processing of mitotic recombination intermediates. *Molecular Cell* **52**, 63-74, doi:10.1016/j.molcel.2013.09.007 (2013).
- 4 Myung, K., Datta, A. & Kolodner, R. D. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in *Saccharomyces cerevisiae*. *Cell* **104**, 397-408 (2001).
- 5 Bando, M. *et al.* Csm3, Tof1, and Mrc1 form a heterotrimeric mediator complex that associates with DNA replication forks. *The Journal of Biological Chemistry* **284**, 34355-34365, doi:10.1074/jbc. M109.065730 (2009).