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Supplementary Figure 1. Comparison of experimental results with numerical calculations. (a)

Sketch of TE-illumination geometry. (b-d) Isofrequency dispersion contours for TE-polarization

at wavelengths 1310 nm, 1450 nm, and 1530 nm, respectively. (e) Sketch of TM-illumination

geometry. (f-h) Isofrequency dispersion contours for TM-polarization at wavelengths 1310 nm,

1450 nm, and 1530 nm, respectively. Dots mark the experimental data, and lines correspond to

numerical results. Grey circles correspond to an isofrequency contour of light in vacuum.
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Supplementary Figure 2. Schematic of sample heating and collection of thermal radiation
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Supplementary Figure 3. Raw data for thermal radiation (a) spectra, (b) real space raw image of

thermal emission from 50X50 µm fishnet sample and surrouded unpatterned multilayer structure

(full spectrum), (c) back focal plane raw image of thermal emission from a fishnet sample (full

spectrum)
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Supplementary Figure 4. Schematic of the polarization ellipse with the Stokes coefficients of

ellipticity angle χ and polarization-inclination angle ψ. Ea and Eb are the main polarization

axes (solid blue lines) of the polarization ellipse.
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Supplementary Figure 5. Set of Stokes coefficients: (a) intensity, (b) polarization degree, (c)

polarization inclination, (d) ellipticity.
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Supplementary Figure 6. (a-c) Directionality of thermal emissivity at 400oC at wavelengths

1310 nm, 1450 nm, and 1530 nm, respectively. (d-f) Directionality of absorption at room tem-

perature for the same three wavelengths 1310 nm, 1450 nm, and 1530 nm, respectively.
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SUPPLEMENTARY NOTES

Supplementary Note 1

Magnetic hyperbolic dispersion. Light is an electromagnetic wave, i.e. harmonic

oscillations of electric and magnetic fields periodic in time and in space. Periodicity of light

wave in time is defined by its frequency ω. And its periodicity in space is defined by the

wave-vector, or k-vector. Time and space periodicity of light are connected together with

the dispersion relation. Importantly, the dispersion is largely defined by properties of a given

optical medium. We will first consider a special case of local media. This assumes that the

electric displacement vector D and the magnetic field H at a given point in space can be

written in terms of averaged electric fields E and average induction field B. For the local

media the electromagnetic properties are defined by the tensors of electric permittivity ε

and magnetic permeability µ

ε̂ =


εx 0 0

0 εy 0

0 0 εz

 ; µ̂ =


µx 0 0

0 µy 0

0 0 µz

 . (1)

With this definition of the tensors we leave out of consideration media exhibiting gyrotropy

or magnetoelectric coupling.

For a given frequency ω all the k-vectors belong to a certain three-dimensional surface,

called isofrequency surface. And the shape of the isofrequency surface depends on the

material parameters ε̂ and µ̂. To analyze the possible shapes of these surfaces we write

explicitly a set of two equations for two principal linear polarizations: TE and TM. Without

lack of generality we assume that for TE-polarization electric component of wave is pointing

in x -direction, and for TM-polarization magnetic component is pointing in y-direction. The

resulting dispersion relations take form:

TE:
k2y
εxµz

+
k2z
εxµy

=
ω2

c2
; TM:

k2x
εzµy

+
k2z
εxµy

=
ω2

c2
. (2)

These equations describe the two types of isofrequency contours: either elliptic or hy-

perbolic depending on the relative signs of the components of ε̂ and µ̂ tensors. Essentially,

in the media with hyperbolic dispersion, the tensors ε̂ or µ̂ have diagonal components of
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opposite signs. If the tensor of electric permittivity ε̂ has both positive and negative com-

ponents, this results in hyperbolic dispersion for the TM -polarization, or electric hyperbolic

dispersion. Similarly, components with opposite signs in magnetic permeability µ tensor

result in hyperbolic dispersion for the TE-polarization, or magnetic hyperbolic dispersion.

Supplementary Note 2

Determination of k-vector from complex transmission and reflection coeffi-

cients. The normal component of the vector kz can be found as [1–5]:

kz = ±1

h
cos−1

(
1 − r2 + t2

2t

)
+

2πm

h
, (3)

where t and r are complex transmittance and reflectance, h is the thickness of the material

slab and m is an integer number. Complex transmission and reflection coefficients carry

the information about both the amplitude and the phase of light. The two tangential

components kx and ky remain continuous at the interface between the media according to

the boundary conditions.

Supplementary Note 3

Phase retrieval technique. We experimentally detect an interference pattern of the

sample wave and reference wave coming at an angle with respect to each other. We perform

a Fourier-transform of the image of the interference pattern and in Fourier-image we filter-

out all the spatial frequencies except the frequencies corresponding to a single maximum of

the first order. After the filtering, we perform the inverse Fourier-transform, which gives

us a two-dimensional distribution (image) of a complex field, where the phase of the field

represents a phase difference between the sample and reference beams. We normalize our

transmission measurements (both amplitude and phase) to the transmission through an

empty space, and normalize the reflection measurements to the reflection from a golden

mirror.
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Supplementary Note 4

Spatial dispersion. In some cases approximation of local medium is not sufficient to

describe the optical properties of media and corresponding dispersion. In this case the theory

of spatial dispersion needs to be employed [6, 7]. Within this theory components of electric

permittivity tensor of the medium are considered to be a function of a k-vector ε = ε(k).

This can be expanded into Taylor series by k. Here we will consider centra-symmetric media.

In such media even terms of Taylor expansion vanish. Thus, the expression for ε in the case

of spatial dispersion takes form:

ε(k) = εloc + Σij
∂2ε

∂ki∂kj
kikj + . . . . (4)

The tensor Σij
∂2ε

∂ki∂kj
is also called quadrupole susceptibility tensor. We further take the

quadrupole susceptibility into consideration and neglect higher-order terms. The quadrupole

tensor may have up to six independent components in non-symmetric structures, while

symmetries reduce this number [8, 9].

We further focus on spatial dispersion of multilayer fishnet metamaterials. We assume

our electric field to be in the x − z plane, thus we consider εx and εz components of the

electric permittivity tensor.

Our dispersion relation for TM-polarization take form:

TM:
ω2

c2
=

k2x
εz(k)

+
k2z

εx(k)
=

k2x
εlocz + ∂2εz

∂k2x
k2x + ∂2εz

∂k2z
k2z

+
k2z

εlocx + ∂2εx
∂k2x

k2x + ∂2εx
∂k2z

k2z
. (5)

Here we take into account that quadrupole susceptibility cross-components ∂2εi
∂kx∂kz

=

∂2εi
∂kz∂kx

= 0 due to the C2 point symmetry of the structure. The dispersion isofrequency

contours are correspondingly the fourth-order curves.

For the case of TE-polarization the only non-zero component of quadrupole susceptibility

is ∂2εx
∂k2z

, and the other components vanish due to symmetry.

Importantly, this component can be expressed via local magnetic permeability ω2

c2
∂2εx
∂k2z

=

1 − 1
µy

[9, 10]. Thus local and non-local descriptions are equivalent for the case of TE-

polarization in fishnets. The corresponding dispersion relation in the non-local description

takes form:
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TE:
k2y
εlocx

+
k2z

εlocx

(
1

1−ω2

c2
∂2εx
∂k2z

) =
ω2

c2
; (6)

And the dispersion isofrequency contours are the second-order curves (such as ellipses or

hyperbolas).

To sum up, the isofrequency dispersion of fishnet metamaterials for TE-polarization can

be described by two independent parameters : either (εlocx , µlocy ), or (εlocx , ∂2εx
∂k2z

). For TM-

polarization the total number of parameters is six. However we note, that two of them are

same as for TE-polarization. Therefore, the dispersion for TM-polarization can be described

by extra four independent parameters : (εlocz , ∂2εx
∂k2x

, ∂2εz
∂k2x

, ∂2εz
∂k2z

).

Supplementary Note 5

Numerical simulations of complex dispersion. In addition, we perform numerical

calculations of the dispersion of the metamaterial using CST Microwave Studio commer-

cial software. In the calculations we use realistic material parameters of gold, magnesium

fluoride and silicon nitride [11–14]. Theoretically calculated and experimentally measured

isofrequency contours are in a good agreement with each other.

Supplementary Note 6

Thermal emission experiments. The fishnet sample was heated up to 400oC with

custom-built ceramic heating element. Schematic of the heater is shown below. The thermal

emission is collected with a 0.7NA and 10mm WD objective lens. Design of the sample holder

and the heater was optimized to ensure that thermal emission from the heater and holder

is not captured by the objective lens, i.e. only emission from the fishnet is detected. In

order to minimize thermal stress during heating/cooling, the temperature of the sample

was changed slowly (on the order of hours). For this a custom temperature controller was

developed based on Arduino microcontroller.

Thermal emission spectra were measured with Princeton Instruments spectrometer and

Andor camera with Peltier-cooled detector (-60oC operation temperature). To calculate the

emissivity of the fishnets, the emission spectra of the sample were normalized to emission

8



spectra of Si at the same temperature. Real space images and back-focal plane images of

thermal radiation of fishnets were taken by an IR camera (Xenics, Peltier-cooled, -50oC

operation temperature). For making thermal images at specific wavelengths Thorlabs band-

pass filter were used with 10 nm FWHM. To resolve polarization states of the emission a

quarter-wave plate and a polarizer were inserted into the optical path. The polarization

states of both the spectra and the directionality diagrams were retrieved by measuring the

full Stokes vectors of the emission. In figure 3 we provide examples of measured thermal

spectra and images.

The Stokes coefficeints provide a complete description of the polarization state of light in

terms of its total intensity Itot, (fractional) degree of polarization ρ, polarization inclination

angle ψ, and the ellipticity angle χ. The ellipticity tan(χ) is defined as the ratio of the two

axes of the polarization ellipse (see Fig. 4), and the polarization inclination is described by

the angle between the main polarization axis and the x-axis of the laboratory coordinate

system.

Experimentally, we find the Stokes parameters by measuring the total intensity I(θ, φ)

where θ is the angle between the direction of the linear polarizer’s axis and the y-axis of our

laboratory coordinate system. φ is the extra phase delay between the two orthogonal linear

components of the electric field of the incident wave, that is introduced by the quarter-wave

plate. The measured Stokes parameters in the back-focal plane are then given by

S0 = I(0o, 0) + I(90o, 0) = Itot (7)

S1 = I(0o, 0) − I(90o, 0) = ρItot cos 2ψ cos 2χ (8)

S2 = I(45o, 0) − I(135o, 0) = ρItot sin 2ψ cos 2χ (9)

S3 = I(45o,
π

2
) − I(135o,

π

2
) = ρItot sin 2χ (10)

In figure 5 we examplary show a set of Stokes coefficients for the thermal radiation of the

fishnet sample at 1530 nm wavelength..

In addition, we compare the far-field thermal emission directionality with the direction-

ality of absorption of the sample [see Figs. 6] calculated as 1 − T − R, where T and R

are transmission and reflection directionalities. The second law of thermodynamics requires

absorption and thermal emission to have the same pattern. We observe that, while the reso-

lution of directionality diagrams for thermal emission is lower due to increased material loss
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with the increase of the temperature as well as experimental limitations, the diagrams share

the same patterns. The fact that in the magnetic hyperbolic regime the thermal emission is

directional implies that the emission is spatially coherent.

Supplementary Note 7

Numerical calculations of thermal emission. We provide full-wave numerical sim-

ulations of the thermal emission directionality and spectra. We rely on the fact that ab-

sorption equals emission, and therefore we find emission by calculating absorption. In our

calculations we take into account change of resistivity of gold with temperature by approx.

2.6 times [15]. Our numerical simulations show remarkable agreement with experiment for

polarized and directional fraction of the emission, however the simulations show smaller

portion of unpolarized non-directional emission (thermal background). In experiment we

attribute higher thermal background to fabrication imperfections such as implantation of

ions into the material during the focused ion beam milling and slight deviations of the ge-

ometrical parameters. We take this fact into account by introducing a flat non-structured

thermal background of constant emissivity 0.3 to the calculated spectra and directionalities.

Theoretical spectrum shows the emission averaged over directions within a 45 degree cone.

This resembles experimental condition of emission collection with 0.7 NA objective lens.
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