

Supplementary Figure 1. Application of high pressure (2000 bar, 18 hours) to aggregated npA β , pS8A β and S8DA β reduced their ThT fluorescence intensity to ~ 80% of the initial levels before pressure application. The drop in ThT intensity is less prominent than the pressure-induced decrease in the NMR-invisible A β aggregates (second axis, represented by solid circles).

Supplementary Figure 2. Mutation of serine 8 to asparate mimics the higher propensity of S8phosphorylated A β for fibrillar and oligomeric aggregation. (a) Thioflavin T (ThT) fluorescence intensity of specified A β variants after 48 hours of aggregation. Both S8DA β and pS8A β demonstrate higher propensity to form ThT-reactive aggregates than npA β , in accord with timedependent ThT data previously reported in ¹. ThT values are reported after subtraction of the control intensity, and error bars represent the standard deviation of triplicate experiments. (b) Electron micrograph of S8DA β fibrillar aggregates. (c) Excess scattering intensity of the supernatant of aggregated A β solutions following centrifugation (16,000 g, 20 minutes) of the 48hours aggregated A β samples. The larger values of the scattering intensity of S8DA β and pS8A β samples indicate their higher tendency than npA β to form soluble assemblies.

Supplementary Figure 3. Size distribution of npA β and pS8A β fibrils, obtained from measurement of more than 300 fibrils per peptide variant. Phosphorylation of A β at serine 8 only slightly changed the diameter of A β fibrils.

Supplementary Figure 4. The ratio of the backbone RMSF of pS8A β to npA β fibrils is mapped onto the three-dimensional structure of A β 40 fibrils (average structure of MD trajectory). Regions shown in red (see color scale) are less mobile in A β 40 fibrils phosphorylated at serine 8. The side chains of pS8 and S26 are displayed by spheres.

Supplementary Figure 5. MD average structure of $npA\beta$ (a), $pS8A\beta$ (b) and $S8DA\beta$ (c) fibrils. Residues R5, H6, D7, S8, D8, Y10 and S26 are color-coded on the basis of their side chain charge. The side chains of pS8 (b) are displayed by red spheres.

Supplementary Figure 6. Phosphorylation of A β at serine 8 enhances the stability of A β oligomers. npA β and pS8A β (50 μ M in 20 mM sodium phosphate buffer, pH 7.40, containing 50 mM NaCl) were incubated at 37 °C with gentle stirring. Aliquots of samples were collected at different time intervals, the whole aliquots were subjected to denaturing SDS-PAGE and A β was detected by Western-blotting. The high-molecular weight oligomers of pS8A β showed remarkable resistance against SDS-induced dissociation.

Supplementary Figure 7. Temporal evolution of ThT fluorescence intensity during aggregation of A β samples used for denaturing SDS-PAGE experiments (shown in **Fig. 6** and **Supplementary Fig. 6**).

	npAβ	S8DAβ	pS8Aβ	Αβ42
mono-exponential				
fit				
I_{∞}	0.62±0.00*	0.55 ± 0.00	0.43±0.00	0.33 ± 0.00
-A	0.35±0.01	0.37±0.01	0.21±0.00	0.20 ± 0.00
$R (10^{-4} \text{ s}^{-1})$	0.79±0.04	0.74 ± 0.03	0.73±0.04	0.30 ± 0.02
SSE**	0.002993	0.0027	0.001137	0.0006878
Adjusted R-square	0.9879	0.9906	0.9883	0.9945
bi-				
exponential fit				
$-I_{\infty}$	0.66±0.01	0.59 ± 0.01	0.45 ± 0.00	0.37 ± 0.00
$-A_1$	0.21±0.01	0.23 ± 0.01	0.16±0.01	0.21±0.00
$R_1(10^{-4} \text{ s}^{-1})$	0.33±0.04	0.32 ± 0.05	0.44 ± 0.04	0.18 ± 0.01
$-A_2$	0.24±0.01	0.24 ± 0.02	0.12±0.01	0.05 ± 0.00
$R_2(10^{-4} \text{ s}^{-1})$	2.21±0.19	1.91 ± 0.20	2.99±0.50	2.13±0.18
SSE**	0.0002066	0.0002642	0.0002099	0.0000337
Adjusted R-square	0.9991	0.9990	0.9977	0.9997
F-statistic***	202.3	138.3	68.5	378.5
P-value	< 0.0001	< 0.0001	< 0.0001	< 0.0001

Supplementary Table 1. Fitting parameters obtained from the analysis of $A\beta$ monomer release from aggregates at high hydrostatic pressure (2000 bar).

*. Errors in the fitting parameters were derived from covariance matrices. **.SSE: Sum of Squares due to error. ***. *F-statistic*, computed between mono- and bi-exponential fits.

	npAβ	S8DA _β	pS8Aβ	Αβ42
Model 1*				
$k_{\rm off} (10^{-4} {\rm s}^{-1})$	0.49±0.02**	0.41 ± 0.02	0.32 ± 0.01	$0.10{\pm}0.00$
$k_{\text{on,app}} (10^{-4} \text{ s}^{-1})$	0.30±0.02	0.33 ± 0.02	0.42 ± 0.02	0.20 ± 0.01
SSE**	0.002993	0.002700	0.001137	0.000688
Adjusted R-square	0.9879	0.9906	0.9883	0.9945
Model 2*				
$k_1(10^{-4} \text{ s}^{-1})$	0.30 ± 0.05	0.29 ± 0.06	0.36±0.10	0.15 ± 0.01
$k_2 (10^{-4} \text{ s}^{-1})$	0.42 ± 0.07	0.45 ± 0.07	0.86 ± 0.14	0.02 ± 0.01
$k_{\rm off} (10^{-4} {\rm s}^{-1})$	1.37 ± 0.08	1.06 ± 0.07	0.72 ± 0.09	0.72 ± 0.06
$k_{\rm on,app} (10^{-4} {\rm s}^{-1})$	0.29±0.03	0.28 ± 0.04	0.25 ± 0.06	1.05 ± 0.09
SSE***	0.000210	0.000266	0.000242	0.000037
Adjusted R-square	0.9991	0.9990	0.9973	0.9997
F-statistic****	128.16	88.42	36.96	221.84
P-value	< 0.0001	< 0.0001	< 0.0001	< 0.0001

Supplementary Table 2. Fitting parameters obtained from the analysis of pressure-induced A β monomer release data (2000 bar) according to two physical models.

*. Please see Fig. 3 for description of models 1 and 2.

**. Errors in the fitting parameters were derived from covariance matrices.

***.*SSE*: Sum of Squares due to error.

****. *F-statistic*, computed between Models 1 and 2.

Supplementary Methods

Thioflavin T (ThT) dye binding assays. 50 μ M solutions of npA β and pS8A β in 20 mM sodium phosphate buffer (pH 7.4, containing 50 mM NaCl) were incubated at 37 °C with gentle stirring. The ThT binding assay was performed by mixing 10 μ L aliquots with 400 μ L of 20 μ M ThT solutions followed by fluorescence measurements using a Cary Eclipse spectrophotometer (Varian, Australia). ThT fluorescence emission intensities were measured at 482 nm following excitation at 446 nm. All measurements were performed in triplicates.

Supplementary Reference

1. Kumar S, *et al.* Extracellular phosphorylation of the amyloid beta-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer's disease. *EMBO J.* **30**, 2255-2265 (2011).