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Supplementary Figure 1 | A schema illustrating the concept of “ASD-ness”. It is proposed here 
that, at the individual level, the output of the ASD classifier with a good generalization across sites 
might provide a quantitative measure of “ASD-ness” along one of biological dimensions in 
psychiatric disorders. Applying such a measure to other disorders (such as schizophrenia, attention 
deficit hyperactivity disorder, major depressive disorder, etc.) may lead to a new possibility of 
quantifying spectral relationships among them, thereby bridging the categorical and biological 
dimension views of psychiatric disorders. 
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Supplementary Figure 2 | Schematic diagram of the procedure for selecting FCs as ASD 
biomarker and assessing their predictive power. The left and right panels represent, respectively, 
the flowchart and illustration of the procedure. Black, blue, red, and green colors are conceptually 
associated with, respectively, training, testing, methods and features. (1) In each iteration of the inner 
loop feature selection (FS), 8/9 of the outer loop training set is used to train L1-SCCA with different 
hyper-parameters. Functional connectivity features (FCs) that are associated with the canonical 
variables connected only with the label “Diagnosis” are retained. (2) In the outer loop FS, 1/9 of the 
samples is retained as testing pool for leave-one-out cross-validation (LOOCV), and the union of the 
FCs selected throughout the inner loop is derived. (3) One sample is taken from the testing pool of 
the outer loop, and used as test set of LOOCV. The remaining samples are used to train SLR on the 
union of the FCs retained during the inner loop. This procedure is repeated for every sample in the 
testing pool of the outer loop. In this way, the test set of LOOCV is always independent from the 
dataset used to select features. (4) The union of the FCs selected across the outer loop is used to train 
the final SLR on the whole Japanese dataset, and validated using an external cohort dataset (e.g. the 
US ABIDE dataset). In conclusion, nested feature selection is used to remove nuisance FCs, LOOCV 
is used to quantify generalizability on the Japanese dataset, and the external validation is used to 
quantify generalizability on the independent dataset. 
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Supplementary Figure 3 | Contribution of each FC to the classification into ASD and TD. The 
cumulative absolute weights are shown for all of the 9,730 FCs. A greater magnitude of the 
cumulative absolute weight represents a larger degree of contribution by that FC to the classifiers. 
The 16 FCs identified by the final Japanese ASD/TD classifier constituted a very important subset of 
the 42 FCs that were selected at least once throughout the LOOCV (the 16 FCs are shown in red and 
the remaining 26 FCs are shown in gray). Thus, we confirmed the robustness and stability of the 
identified 16 FCs across 181 cross validation sets. 
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Supplementary Figure 4 | Permutation test. Panels (a) and (b) show the histograms of the 
permutation test (1,000 repetitions) for the JP LOOCV and the out-of-sample US accuracies, 
respectively. In panel (b), the binomial distribution is shown as a green curve. The vertical red lines 
indicate the accuracy of the ASD classifier trained and tested without permutation. Both LOOCV 
and out-of-sample accuracies (i.e. US) were significant at P = 0.001, as demonstrated by the two 
panels. We observe that for the out-of-sample case [i.e. panel (b)] the binomial distribution is 
consistent with the permuted distribution. As suggested by Noirhomme et al. (2014)1, the decreased 
independence among samples in LOOCV widens the permuted distribution relative to the binomial 
one; however, “with an independent validation set, the binomial test is perfectly valid1”. 
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Supplementary Figure 5 | Numbers of TD (N=107) and ASD (N=74) individuals among all 
whose weighted linear summation (WLS) of the selected 16 FCs was within a specific WLS 
interval of width 5 for the three sites in Japan. The TD and ASD distributions of WLS are shown 
per site of data acquisition (A–C). The number of individuals is shown in the ordinate for a specific 
WLS interval of width 5. Those WLSs greater and less than zero are classified as ASD and TD, 
respectively. The inset shows symbols for the three imaging sites A, B and C and types of 
individuals (TD and ASD). Site A, University of Tokyo; site B, Showa University Karasuyama 
Hospital; site C, Advanced Telecommunications Research Institute International. The results indicate 
that the accuracy of the classification was equally high among the three sites (see also 
Supplementary Table 2). 
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Supplementary Figure 6 | Plot of the mean interregional correlation values for the 16 FCs 
selected in the classifier for ASD individuals (ordinate) as a function of the corresponding 
correlation values for TD individuals (abscissa). The ASD and TD populations would possess 
equal mean correlation values for a FC on the diagonal dashed line. The 9 FCs below this line are 
FCs exhibiting under-connectivity (rASD < rTD), whereas the 7 FCs above the line are FCs exhibiting 
over-connectivity (rASD > rTD). An individual FC is represented by a circle, with the radius of the 
circle scaled by the contribution index of the corresponding connection as defined by the difference 
in the mean correlation values multiplied by the weight assigned in SLR (inset). The vertical and 
horizontal lines for each connection show the 95% confidence intervals of correlations for the ASD 
and TD groups, respectively. See Table 1 for the property of each FC. 
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Supplementary Figure 7 | Extracted relationship between demographic information and 
functional connectivity using L1-SCCA (next page). This figure represents one of the iterations of 
L1-SCCA in the nested feature selection, where a canonical variable is connected only to “Diagnosis.” 
As an example, here we show the smallest lambda combination (i.e. λ1 = 0.4, λ2 = 0.2) that yields at 
least one canonical correlation for each demographic information, in the first fold of the outer loop. 
The canonical variables are represented by white-open circles, encoded with different colors. The 
white-open circles in the left column indicate the canonical variable v1

Tx1, derived from 
demographic information and imaging conditions; white-open circles in the right column indicate the 
canonical variable v2

Tx2, which is derived from the functional connectivity (FC). The numbers on the 
dotted lines connecting canonical variables represent the correlation coefficients between v1

Tx1 and 
v2

Tx2. The connections between the demographic labels and canonical variables v1
Tx1 are represented 

with black lines. If there is only one link towards a canonical variable, the color of the canonical 
variable is also used for the link (e.g. the link connecting “Diagnosis” and the 1st canonical variable 
is red). On the right of the figure, FCs are visualized and encoded with the color of the respective 
canonical variable. If canonical variables have overlapping FCs, those are colored in gray. However, 
if the overlap involves the 1st canonical variable (i.e. red) a red square with a black edge is used. In 
this example we focus on the overlapping between the 1st and the 6th canonical variables, 
representing “Diagnosis,” and “Gender” and “Open/Closed Eye Condition”, respectively. FCs that 
are common to these two canonical variables are represented with a black square and connected with 
a colored line to the respective canonical variable. The FCs identified by the SLR classifier on the 
whole Japanese dataset are represented with a white edge, filled with black if an overlap with the 6th 
canonical variable exists, and with red otherwise. The amount of FCs associated with the 1st 
canonical variable was 745 and the one associated with the 6th canonical variable was 659 with an 
overlap of 141 FCs. Moreover, the amount of FCs selected by SLR that overlapped with the 6th 
canonical variable was only 1. The lambda combination where a canonical variable has only one link 
to “Diagnosis" was on average 17.6±5.0% of the total amount of combinations. Moreover, we 
observe that lambda combinations larger than (λ1 = 0.4, λ2 = 0.4), never comply with this constraint. 
On average, the number of FCs associated with a “Diagnosis” canonical variable was 925±798. 
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Supplementary Figure 8 | Simulation results using synthetic data (next page). This figure 
visualizes the results obtained from the analysis described in Supplementary Note 4. For the sake of 
readability, we discuss the synthetic dataset with the same terminology used for the real dataset. For 
example, “diagnostic label” means “synthetic diagnostic label”. (a) Classification performance. 
Histograms depict the accuracy distribution, while the vertical dashed lines represent the mean 
accuracy of the two methods. Our proposed method, which uses L1-SCCA for the feature selection, 
shows better classification performance (two-sample t-test, P = 1.06×10–52) than that of the standard 
elastic-net approach. (b) Amount of nuisance-related features (i.e. nuisance features) used to predict 
diagnostic label. The figure shows how frequently a given amount of nuisance features was selected 
by using the two different classification methods. The nuisance features were less frequently selected 
by using our proposed method than by using elastic-net. These results indicate effectiveness of L1-
SCCA for eliminating nuisance features. (c) Instance of the L1-SCCA procedure. Each subpanel 
represents the transformation matrices obtained by L1-SCCA in a given nested fold. Here we 
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visualize the < 𝜆!, 𝜆! > combination where the diagnostic canonical constraint was last met (for 
more details see Supplementary Note 4). The red color is used when an entity (i.e. line or dot) is 
related to the diagnostic label (D). The nuisance variables are represented by the blue dots labeled as 
N1, N2, N3, N4, and together with the diagnostic label (D) they form the demographic information. 
The elements of connectivity input are represented by the nodes labeled from 1 to 10. The canonical 
variables are represented by the cyan dots between the demographic information and the features. 
Filled green dots represent the nuisance features. White-open green circles depict the features with 
zero contribution to any demographic information. The color intensity of the lines is proportional to 
the connection strength (i.e. absolute value of the weight). We observe that the diagnostic canonical 
constraint of having one canonical variable assigned exclusively to the diagnostic label is met. 
Moreover, the canonical variables assigned to the nuisance variables always have the strongest 
connection with the nuisance features (i.e. 7–10). Fold 8 shows a missing connection between one of 
the clean features (i.e. 5) and the canonical variable assigned to the diagnostic label. However, the 
missing feature in Fold 8 is selected by other folds, highlighting the usefulness of the nested 
subsampling procedure. 
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Supplementary Table 1 | Demographic information of the participants used to construct the rs-
fcMRI-based classifier of the ASD and TD populations (mean ± SD). All demographic 
distributions between ASD and TD populations in the Japanese and USA data are matched (P > 
0.05). 
 

 Site A Site B Site C 
ASD TD ASD TD TD 

Male/Female 23/12 20/18 35/4 30/6 23/10 
Age (yr) 31.9 ± 8.8 35.4 ± 7.4 31.0 ± 8.2 30.9 ± 6.9 24.2 ± 5.3 
Handedness 91.9 ± 13.2 92.8 ± 15.3 87.9 ± 27.7 95.1 ± 18.3 right-handed 
IQ 107.1 ± 13.2 106.6 ± 8.1 110.2 ± 8.5 109.2 ± 8.4 NR 
NR, not recorded. 
 
  



- 12 - 

Supplementary Table 2 | Summary of the classification performance evaluated at each of three 
imaging sites (A–C) in Japan. 
 

 Site A Site B Site C Total 
Subjects (ASD/TD) 35/38 39/36 0/33 74/107 
Accuracy (%) 85 85 85 85 
Sensitivity (%) 77 82 – 80 
Specificity (%) 92 89 85 89 
Diagnostic odds ratio (DOR) 39.4 36.5 – 31.1 

 
Note that in site C, individuals with ASD were not recruited, thus sensitivity and DOR cannot be 
evaluated. 
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Supplementary Table 3 | Prediction of the measured domains of the two diagnostic instruments, 
Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview-Revised 
(ADI-R). In each domain, the score of each individual was predicted by computing a linear weighted 
summation of a subset within the 16 FCs included in the classifier. The Pearson correlation 
coefficients (r) between the measured and predicted scores are shown. The statistical significance (P) 
is indicated both as uncorrected and as Bonferroni-corrected for multiple comparisons among the 8 
domains. 
 

Instrument Domain Content r P 
Uncorrected Corrected 

ADOS A Communication 0.442 0.001 0.008 
(N = 58) B Reciprocal social interaction 0.159 0.234 (1) 

 C Imagination and creativity 0.146 0.274 (1) 
 D Stereotyped behaviors and restricted 

interests 
0.062 0.644 (1) 

ADI-R A Reciprocal social interaction 0.453 0.018 0.144 
(N = 27) B Abnormalities in communication 0.389 0.045 0.360 

 C Restricted, repetitive, and stereotyped 
patterns of behavior 

0.053 0.793 (1) 

 D Abnormality of development evident at 
or before 36 months 

–0.013 0.948 (1) 
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Supplementary Table 4 | Classification performances for the Japanese discovery cohort and 
the USA independent validation cohort when only a subset of the Japanese three sites was used 
for training the ASD classifier. 
 

Dataset 
Accuracy (%) 

Site 1 Site 2 Site 1+Site 2 Site 1+Site 3 Site 2+Site 3 Mean ± SD 

JP LOOCV 75.3 48.0 83.8 68.9 67.6 68.7 ± 13.2 

US Generalization 53.4 52.3 65.7 63.6 73.9 61.8 ± 9.0 
  



- 15 - 

Supplementary Table 5 | Summary of imaging protocols for resting-state fMRI at the imaging 
sites listed in Supplementary Table 1. 
 
Parameter Site    

A (TD) A (ASD) B C 
MRI scanner Philips Achieva Philips Achieva GE Signa Siemens MagnetomTrio 
Magnetic field strength (T) 3.0 3.0 1.5 3.0 
Field of view (mm) 224 220 220 192 
Matrix 64 × 64 80 × 80 64 × 64 64 × 64 
Number of slices 45 34 27 33 
Number of volumes 200 200 204 150 
In-plane resolution (mm) 3.5 × 3.5 2.75 × 2.75 3.4375 × 3.4375 3.0 × 3.0 
Slice thickness (mm) 3.5 5.0 5.0 3.5 
Slice gap (mm) 0.0 0.0 1.0 0.0 
TR (ms) 2,500 2,500 2,000 2,000 
TE (ms) 30 30 30 30 
Total scan time (mm:ss) 8:20 8:20 6:48 5:00 
Flip angle (deg) 75 75 90 80 
Slice acquisition order Ascending Ascending Ascending (interleaved) Ascending (interleaved) 
Instructions to participants and 
other imaging conditions 

‘Please relax during the 
scan. Do not think of 
anything in particular, do 
not sleep, but keep looking 
at the crosshair mark 
presented’. The lights in 
the scan room were 
dimmed. 

‘Please relax during the 
scan. Do not sleep’. 
Instructions regarding the 
eyes were either ‘you may 
close your eyes if you 
want’ (N=23) or ‘please 
close eyes during the scan’ 
(N=12). The scan was 
conducted in a dark room. 

‘During the scan, please 
close your eyes, do not 
think of anything in 
particular, and stay still. 
Please do not sleep’. The 
lights in the scan room 
were dimmed. 

‘Please relax during the 
scan. Do not sleep and 
keep looking at the 
fixation point presented (a 
tiny double circle). Do not 
think of anything in 
particular’. The lights in 
the scan room were 
dimmed.  
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Supplementary Table 6 | Detailed characteristics of the head motion of the ASD and the TD 
populations in the Japanese and the USA data. 
 

 
  Japanese (training data) US ABIDE (test data) 
  ASD TD P ASD TD P 
Translationa x 0.013 ± 0.006 0.015 ± 0.012 0.861 0.022 ± 0.013 0.019 ± 0.009 0.370 
 y 0.043 ± 0.036 0.038 ± 0.030 0.980 0.056 ± 0.034 0.044 ± 0.022 0.128 
 z 0.040 ± 0.030 0.047 ± 0.033 0.216 0.069 ± 0.050 0.061 ± 0.035 0.773 
Rotationa,b x 0.027 ± 0.013 0.033 ± 0.022 0.260 0.046 ± 0.039 0.036 ± 0.019 0.825 
 y 0.012 ± 0.006 0.015 ± 0.014 0.470 0.018 ± 0.013 0.014 ± 0.006 0.299 
 z 0.011 ± 0.005 0.010 ± 0.005 0.201 0.017 ± 0.010 0.013 ± 0.005 0.192 

(amean relative displacement in units of mm; bhead radius is assumed to be 50 mm.) 
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Supplementary Table 7 | Demographic information of the participants selected from the USA 
ABIDE Project (mean ± SD). 
 
Site ID ASD TD 

Age (yr) Sex (M/F) FIQ Age (yr) Sex (M/F) FIQ 
CAL 23.9 ± 6.2 5/2 103.0 ± 10.6 26.5 ± 8.3 4/2 114.7 ± 10.8 
CMA 21.5 ± 0.7 2/0 117.5 ± 13.4 22.3 ± 2.3 3/0 106.7 ± 4.9 
NYU 19.6 1/0 94.0 19.1 1/0 107.0 
OLN 19.0 ± 1.4 2/0 109.0 ± 12.7 20.5 ± 0.7 2/0 116.5 ± 20.5 
PIT 23.2 ± 4.4 6/0 118.2 ± 16.5 22.6 ± 3.3 6/0 113.5 ± 11.4 
TTY 20.8 ± 2.6 8/0 114.5 ± 11.2 21.2 ± 2.6 8/0 115.1 ± 10.2 
USM 26.9 ± 8.3 18/0 108.1 ± 14.0 25.8 ± 4.9 18/0 113.2 ± 14.3 
TOTAL 24.0 ± 6.6 42/2 110.0 ± 13.6 24.0 ± 5.0 42/2 113.3 ± 12.0 
 
CAL, California Institute of Technology; CMA, Carnegie Mellon University; NYU, New York 
University; OLD, Olin, Institute of Living at Hartford Hospital; PIT, University of Pittsburgh School 
of Medicine; TTY, Trinity Centre for Health Sciences; USM, University of Utah School of Medicine. 
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Supplementary Table 8 | Imaging protocols for resting-state fMRI used at the imaging sites 
listed in Supplementary Table 7. 
 

Parameter Site 
CAL CMA NYU OLN PIT TTY USM 

MRI scanner Siemens 
Magnetom Trio 

Siemens 
Magnetom Verio 

Siemens 
Magnetom Allegra 

Siemens 
Magnetom Allegra 

Siemens 
Magnetom Allegra Philips Achieva  Siemens 

Magnetom Trio 
Magnetic field strength (T) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 
Field of view (mm) 224 192 240 220 200 240 220 
Matrix 64 × 64 64 × 64 80 × 80 64 × 64 64 × 64 80 × 80 64 × 64 
Number of slices 34 28 33 29 29 38 40 
Number of volumes 150 240 180 210 200 150 240 
In-plane resolution (mm) 3.5 × 3.5 3.0 × 3.0 3.0 × 3.0 3.4375×3.4375 3.125 × 3.125 3.0 × 3.0 3.4375×3.4375 
Slice thickness (mm) 3.5 3.0 4.0 4.0 4.0 3.5 3.0 
Slice gap (mm) 0.0 1.5 0.0 1.0 0.0 0.35 0.3 
TR (ms) 2000 2000 2000 1500 1500 2000 2000 
TE (ms) 30 30 15 27 25 28 28 
Total scan time (mm:ss) 5:04 8:06 6:00 5:15 5:06 5:06 8:06 
Flip angle (deg) 75 73 90 60 70 90 90 
Slice acquisition order Ascending 

(interleaved) 
Ascending 
(interleaved) 

Ascending 
(interleaved) 

Ascending 
(interleaved) 

Ascending 
(interleaved) Ascending Ascending 

(interleaved) 
Eyes during scan Closed Closed Open Open Closed Closed Open 
 
CAL, California Institute of Technology; CMA, Carnegie Mellon University; OLD, Olin, Institute of 
Living at Hartford Hospital; PIT, University of Pittsburgh School of Medicine; TTY, Trinity Centre 
for Health Sciences; USM, University of Utah School of Medicine. 
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Supplementary Table 9 | Summary of imaging protocols for resting-state fMRI in extra 
datasets of (a) ASD, (b) schizophrenia, (c) major depressive disorder, and (d) attention deficit 
hyperactivity disorder. 
 
(a) ASD 
Parameter Site B* 
MRI scanner Siemens 
Magnetic field strength (T) 3.0 
Field of view (mm) 212 
Matrix 64 × 64 
Number of slices 40 
Number of volumes 240 
In-plane resolution (mm) 3.3 × 3.3 
Slice thickness (mm) 3.2 
Slice gap (mm) 0.8 
TR (ms) 2,500 
TE (ms) 30 
Total scan time (mm:ss) 10:00 
Flip angle (deg) 80 
Slice acquisition order Ascending 
Instructions to participants and 
other imaging conditions 

‘Please relax. Do not think of 
anything in particular, do not 
sleep, but keep looking at the 
crosshair mark presented’. The 
lights in the scan room were 
dimmed. 

(*Showa University Karasuyama Hospital, Japan) 
 
 
(b) Schizophrenia 

Parameter 
MR Scanner*  
#1 #2 

MRI scanner Siemens Trio Siemens TimTrio 
Magnetic field strength (T) 3.0 3.0 
Field of view (mm) 256 212 
Matrix 64 × 48 64 × 64 
Number of slices 30 40 
Number of volumes 180 240 
In-plane resolution (mm) 4.0 × 4.0 3.3125 × 3.3125 
Slice thickness (mm) 4.0 3.2 
Slice gap (mm) 0 0.8 
TR (ms) 2,000 2,500 
TE (ms) 30 30 
Total scan time (mm:ss) 6:00 10:00 
Flip angle (deg) 90 90 
Slice acquisition order Ascending Ascending 

(Interleaved) 
Instructions to participants and 
other imaging conditions 

Please relax. Fixate on 
the central crosshair 
mark and do not think 
of anything in the 
resting. The lights in the 
scan room were 
dimmed. 

Same as Scanner #1. 

(*Kyoto University Hospital, Japan) 
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Supplementary Table 9 (continued) 
  
(c) Major depressive disorder 

Parameter 
Site*    

#1 #2 #3 #4 
Participants (MDD/HC) 57 / 66 8 / 47 23 / 29 17 / 3 
MRI scanner GE Signa HDxt GE Signa HDxt Siemens Magnetom Siemens Verio 
Magnetic field (T) 3.0 3.0 3.0 3.0 
Field of view (mm) 256 256 192 212 
Matrix 64 × 64 64 × 64 64 × 64 64 × 64 
Number of slices 32 32 38 40 
Number of volumes 150 150 112 244 
In-plane resolution (mm) 4.0 × 4.0 4.0 × 4.0 3.0 × 3.0 3.3125 × 3.3125 
Slice thickness (mm) 4.0 4.0 3.0 3.2 
Slice gap (mm) 0 0 0 0.8 
TR (ms) 2,000 2,000 2,700 2,500 
TE (ms) 27 27 31 30 
Total scan time (mm:ss) 5:00 5:00 5:03 10:10 
Flip angle (deg) 90 90 90 80 
Slice acquisition order Ascending 

(Interleaved) 
Ascending 
(Interleaved) 

Ascending 
(Interleaved) 

Ascending 

Instructions to 
participants and other 
imaging conditions 

Please relax. Do not 
think of anything in 
particular, do not 
sleep, but keep 
looking at the 
crosshair mark 
presented. The lights 
in the scan room 
were dimmed. 

Same as Site 1 Same as Site 1 Same as Site 1 

(*Site #1, the Hiroshima University Hospital, Japan; #2, the Hiroshima City General Rehabilitation Center, Japan; #3, the Kajikawa 
hospital, Japan; #4, the Hiroshima University KANSEI Innovation Center, Japan) 
 
 
(d) Attention deficit hyperactivity disorder 
Parameter NeuroImage (ADHD-200)* 

MRI scanner Siemens Magnetom 
Magnetic field strength (T) 3.0 
Field of view (mm) 224 
Matrix 64 × 64 
Number of slices 37 
Number of volumes 261 
In-plane resolution (mm) 3.5 × 3.5 
Slice thickness (mm) 3.0 
Slice gap (mm) 0.5 
TR (ms) 1,960 
TE (ms) 40 
Total scan time (mm:ss) 8:32 
Flip angle (deg) 80 
Slice acquisition order Ascending 

(Interleaved) 
Instructions to participants and 
other imaging conditions 

Participants were asked to 
think of nothing in 
particular while keeping 
their eyes closed. No visual 
stimulus was presented 
during the scan. 

(*see http://fcon_1000.projects.nitrc.org/indi/adhd200/) 
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Supplementary Notes 

Supplementary Note 1 

Importance of the final 16 FCs throughout all FCs selected in the LOOCV. 

The 16 FCs incorporated in our final classifier were selected by SLR using the whole Japanese 

dataset, starting from a subset of FCs that was previously reduced by nested feature selection. One 

might wonder whether the 16 FCs that were finally identified were also frequently selected, with a 

large weight, throughout the LOOCV procedure. This is an important question regarding the stability 

and robustness of the finally identified 16 FCs. To answer this question, we define the cumulative 

absolute weight for the k-th FC (k = 1, 2, ..., 9730) in the form 

  
ck = wi

k

i=1

N

∑ ,  

where N=181 is the number of LOOCV folds (i.e. the number of subjects), and  wi
k  is the weight 

associated with the k-th FC during the i-th LOOCV fold.  

    The greater magnitude of  ck  indicates a more significant contribution by the k-th FC to the 

classification into ASD and TD, throughout the LOOCV. Supplementary Fig. 3 shows the magnitude 

distribution of the 42 nonzero instances of  ck . Sorting by their magnitudes, we found that the 

identified 16 FCs represent an important subset of the 42 FCs that were selected at least once during 

the LOOCV. Consequently, we conclude that the finally identified 16 FCs were stable and robust 

with respect to 181 LOOCV subsets of individuals and can be regarded as trustworthy. 

 

Supplementary Note 2 

Application of the ASD classifier to the extended ABIDE dataset including individuals with 

diverse profiles. 

The goal of the present study was to establish a generalizable rs-fcMRI-based classifier by evaluating 

its performance using independent populations with well-defined profiles. An additional interest 

arises as to how the classifier works on individuals with other varying confounding factors such as 

presence of medication and comorbidity. To address this, we performed a supplementary analysis by 

applying the ASD classifier to the “extended” ABIDE dataset that incorporated individuals with 

diverse profiles. This dataset was formed by relaxing the selection criteria we adopted in our main 

analysis (see “Generalization to USA data” in Methods). Specifically, removing the conditions for 

the FIQ, comorbidity, and medication status, we additionally identified 19 individuals with ASD and 

demographically matched 19 TDs in the ABIDE data pool. We appended these individuals to the 

main dataset to form the extended ABIDE dataset that consisted in a total of 63 individuals with 

ASDs and 63 TDs. Repeating the same analysis for this extended dataset, we found: AUC = 0.74, 
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accuracy = 71%, sensitivity = 75%, specificity = 68%, and DOR = 6.4. Importantly, there was no 

statistically significant difference in the classifier’s sensitivity between the original ASD population 

(N = 44, 75%) and the appended ASD population (N = 19, 74%) (chi-square test, P = 0.91). To that 

extent, this supplementary analysis indicates, therefore, that the influence of such confounding 

factors as FIQ, comorbidity, and medication status on the classification performance appeared to be 

minimal. 

 

Supplementary Note 3 

Comparison with the elastic net. 

Our ASD/TD classifier attained accuracies of 85% for the Japanese dataset and 75% for the USA 

dataset. For purposes of comparison, we also applied to our data sets a state-of-the-art regularized 

(logistic) regression method called elastic net2, which was utilized in a previous study3. 

    Logistic regression was regularized by the elastic net, implemented by the lassoglm function in 

MATLAB. The inner loop of a 9×9 nested cross-validation was used to select the hyperparameters of 

the elastic net. Specifically, the α parameter was varied between 0.1, 0.5, 0.7, 0.9, 0.95, 0.99 and 1, 

in order to have more values close to 1 (i.e., toward Lasso). For the λ parameter (i.e. larger λ cause 

more sparsity), the largest value of λ that gives a non-null model was automatically found by 

lassoglm. The smallest λ was set to 10-2 of the largest λ. Subsequently, a sequence of 25 λ's between 

the smallest and the largest was used as the elastic net λ parameter. In the LOOCV, the medians of 

the α and λ parameters that yielded the highest AUC across the internal fold were used as elastic net 

hyperparameters. For the external validation utilizing the USA data set, the medians of the α and λ 

parameters summarized in the external fold (i.e. the median of the median) were used. The results of 

the LOOCV were AUC = 0.89 and Accuracy = 80%. The generalization to the external USA dataset 

was AUC = 0.73 and Accuracy = 61% with 173 finally selected FCs. The performance for the 

Japanese discovery cohort was comparable to our classifier but the accuracy for the USA 

independent validation cohort was 14% worse than our classifier, thereby showing much less 

generalization capability. These results clearly show the usefulness of our feature extraction and 

classification approach in preventing interferential effects by NVs because the elastic net algorithm 

did not explicitly avoid features related to NVs. 

 

Supplementary Note 4 

Effectiveness of L1-SCCA in avoiding nuisance variables. 

    Eliminating the unwanted effects of nuisance variables on FCs is indispensable for a study using 

multi-center imaging data. This is because, in the absence of a “gold standard” method for rs-fcMRI 
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data acquisition, different sites adopt different scanning protocols and imaging instruments, which 

may exert significant effects on the measurement of FCs. In addition, the training of a reliable 

classifier requires a dataset with a large number of subjects at each site, which makes it difficult to 

equate all the demographic variables including diagnostic label, age, sex, etc., among multiple sites. 

Under such conditions, the diagnostic label and other nuisance variables may be correlated. 

Therefore, in order to achieve high generalization ability across multiple sites, it is essential to 

explicitly eliminate the unwanted effects of nuisance variables. 

    To illustrate this issue, we conducted a simplified simulation using synthetic data and visualized 

how L1-SCCA performed. For the sake of readability, we discuss the synthetic dataset with the same 

terminology used for the real dataset. For example, “diagnostic label” means “synthetic diagnostic 

label”. Moreover, to keep consistency with the methods section, we define the matrix containing 

demographic variables as 1X  and the matrix containing the connectivity input as   X2 . 

    We consider a 10-dimensional connectivity input to depict how L1-SCCA performs with 100 

samples (i.e. 100 10
2

×∈X R ). Each sample was independently generated from an identical Gaussian 

distribution with zero mean and unit covariance. Then, we divide the 100 samples into 70 training 

data samples and 30 test data samples. Here, we assume that two elements of the 10-dimensional 

input are related to diagnostic label, and other four elements are related to the nuisance variables. We 

used a weight vector of the form:  

  
w= w1,0,0,0,w5,0,w7 ,w8,w9,w10

⎡⎣ ⎤⎦
T

 

to synthesize the diagnostic label as 2sign( )=y X w . In the weight vector w , 1w  and 5w  correspond 

to the contribution of the two elements truly related to the diagnostic label (i.e. clean), and 7,8,9,10w  

correspond to the contribution of the four nuisance-related features (i.e. nuisance). When defining 

the elements of w , we refer to the percentage of contribution with respect to the sum of the weights 

  
wii=1

10
∑ . We prepared two different weight vectors for the training and test data respectively. For the 

weight vector used to generate the training set ( trw ), 1,5,7,8,9,10w  were sampled from a standard 

uniform distribution. Considering that the margin d  between clean and nuisance weights is defined 

as 

1,5 7...10
minw max wi ii i

d
= =

= − , 

we adopted the sampled weight vector if the margin d  is larger than 10% and smaller than 20%. The 

lower bound constraint is necessary to keep the problem of training feasible, while the upper bound 

is required for keeping it non-trivial. On the other hand, the weights used to generate the test data 
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were tew  , where 1,5w 50%=  and 7,8,9,10w 0= . Since trw  is designed to include elements related to 

the four nuisance variables, the corresponding diagnostic labels result in partially depending on these 

nuisance variables. For example, ASD occurs more frequently for males than females. In other words, 

the synthetic training set includes artifactual interference. On the other hand, since tew  does not 

include nuisance elements, in the test dataset the diagnostic labels do not depend on the nuisance 

variables. Therefore, we can consider the test data as a clean dataset. With the synthesized data, we 

can evaluate how classification algorithms robustly predict the diagnostic label.  

For the L1-SCCA algorithm, we consider a 5-dimensional demographic target that includes 

diagnostic label and the four nuisance variables 
  
X1= y,  x1

2 ,x1
3,x1

4 ,x1
5⎡

⎣
⎤
⎦ . Supposing that also nuisance 

variables are generated with a vector of the form w , the first nuisance variable is continuous and it is 

obtained by the following equation   x1
2 = X2w , where 7w 100%=  and 7w 0i≠ = . The second 

nuisance variable is discrete and it was generated as   x1
3 = sign(X2w) , where w 100%k =  and 

w 0i k≠ =  with 8k = . The same was done for 4
1x and 5

1x  with 9k = and 10k = , respectively. These 

four variables could correspond to age (continuous variable), sex (binary variable) and two site labels 

(binary variables). The simulation consisted of 1,000 repetitions. At each repetition, we applied the 

proposed method and elastic net to newly resampled 2X  and trw . 

    As a result, we found that the classification performance of our proposed method which uses L1-

SCCA for the feature selection was better (two-sample t-test P = 1.06×10–52) than that of the 

standard elastic-net approach (see Supplementary Fig. 8A). We also compared how frequently the 

nuisance-related features were selected by the two algorithms for predicting diagnostic labels (see 

Supplementary Fig. 8B). We then found that the nuisance-related features were less frequently 

selected by using our proposed method than by using elastic-net. This result showed the 

effectiveness of the L1-SCCA in avoiding the influence of nuisance variables. 

    To concretely show how L1-SCCA performed, we visualized the transformation matrix from 

demographic to canonical variables, and from connectivity inputs to canonical variables as a graph, 

for every nested fold in one repetition of the simulation (see Supplementary Fig. 8C). At each nested 

fold, we considered the 1 2,λ λ  combination where the diagnostic canonical constraint was last met 

(i.e. last iteration across 1 2,λ λ ). The diagnostic canonical constraint, used in the feature selection 

procedure, determines that at least one canonical variable is assigned only to the diagnostic label (for 

details see the subsection of Methods entitled “L1-regularized sparse canonical correlation analysis 

used in inner loop feature selection”).  

    We observe from Supplementary Fig. 8C that the diagnostic canonical constraint was met. 
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Moreover, we found that the canonical variables assigned to the nuisance variables always have the 

strongest connection with the nuisance-related features. We also verified the usefulness of the nested 

subsampling procedure, where the union of the features selected across nested folds is considered, in 

order to obtain a stable and clean set of features. Specifically, Fold 8 in Supplementary Fig. 8C 

shows a missing connection between one of the clean features and the canonical variable assigned to 

the diagnostic label. In this way, if features were selected only based on Fold 8, the algorithm would 

have missed one feature, leading to a bad prediction. However, the union of features across folds is 

able to overcome the issue. 

 

Supplementary Note 5 

Generalization performance of the ASD classifier from the USA dataset to the Japanese 

dataset. 

We trained the classifier using the USA dataset and then tested on the Japanese dataset. The results 

showed poorer classification performance (US LOOCV: 48%, Generalization to JP: 62%), and all 

the selected FCs were different from the 16 FCs that were extracted in our study (see also the Results 

section “Characteristics of the 16 identified FCs incorporated in the classifier”). This result is 

somewhat consistent with the classification performances described in Supplementary Table 4. 

Indeed, the total number of samples and the number of samples per site seem to play a crucial role in 

deriving a biomarker with high accuracy. With this in mind, we observe that the US ABIDE dataset 

has a total number of samples which is half of the Japanese dataset. Moreover, the number of 

samples per site is limited and highly variable in the ABIDE dataset compared to the Japanese 

dataset, on average: 12.6 ± 11.6 (USA dataset) vs. 60.3 ± 23.7 (Japanese dataset). 

 

Supplementary Note 6 

Relationship between demographic information and functional connectivity. 

In this section, we exemplify how the L1-SCCA procedure works in order to reduce the effect of 

nuisance variables, such as subject properties (e.g., age, sex), site properties, and scanning protocols 

(e.g., eyes open/close). This procedure allowed us to utilize data with a great variety of demographic 

distributions and imaging conditions from multiple imaging sites, for the construction of a classifier 

with good generalization capability across “foreign” sites. We begin by considering a simple and 

extreme artificial example to illustrate how L1-SCCA can fulfill this role. Suppose that site X 

recruited almost exclusively ASD participants and only one TD participant and utilizes a closed-eye 

paradigm, and site Y recruited almost exclusively TD participants, only one ASD participant and 

utilizes an open-eye paradigm. In this case, it should be quite easy for any machine-learning 



- 26 - 

algorithm to classify ASD and TD based on the FCs associated with the eyes open/close condition, 

rather than the ASD/TD label. This is of course an undesirable situation and leads to very poor 

generalization across new imaging sites. However, when we use L1-SCCA, at least one canonical 

variable is assigned to the eyes open/close condition (i.e. nuisance-related canonical variable), and at 

least another canonical variable is assigned to the ASD/TD label. By introducing the L1-

regularization canonical variables compete for the FCs. This reduces the number of FCs common 

across canonical variables. More specifically, the FCs assigned to the nuisance-related canonical 

variables are penalized, and the classifier uses only FCs directly associated with the ASD/TD-related 

canonical variables. Thus, artifactual effects by canonical variables other than the ASD/TD label are 

reduced in classification. The same argument applies to any other unevenly distributed attribute, 

including psychotic drugs and sex. In practice, an FC can be related to different demographic 

attributes simultaneously (Supplementary Fig. 7). However, as depicted in Supplementary Fig. 8C, 

the canonical variables assigned to the nuisance variables always have the strongest association with 

the nuisance-related FCs. Considering all these factors, we can safely assume that the L1-SCCA 

procedure can effectively suppressed cross talk from nuisance variables. 

 
Supplementary Note 7 

Details about data standardization. 

For L1-SCCA, the standardization was conducted using only 8 out of 9 folds, and the testing pool for 

LOOCV was never used. Moreover, evaluating the classification performance of SLR, 

standardization is performed with a leave-one-subject-out (LOSO) approach. Concretely, the data 

standardization of the training set was done independently from the one of the test data. The test data 

is then standardized using the mean and standard deviation (SD) derived from the independent 

dataset. In the LOSO standardization, all-but-one USA subjects were concatenated to the Japanese 

dataset in order to find mean and SD. These parameters were subsequently used to standardize both 

the Japanese dataset (i.e. training set) and the remaining USA subject (i.e. test set, never used for 

standardization). It should be noted that even though a part of the USA dataset was used for 

standardizing the Japanese dataset, the actual learning was done using only the Japanese samples. 

The LOSO approach is useful because it removes the bias caused by the different scanning 

conditions between Japanese and USA dataset, leading to a better balance between Specificity and 

Sensitivity. Given that for each USA sample a slightly different mean and SD were used for 

standardization, the actual number of selected FCs is 15.96 ± 0.23 (99.6% overlap). In order to report 

information other than classification performance (e.g. the weights of the classifier, number of FCs), 

the whole USA dataset was concatenated to the Japanese dataset for standardization and the classifier 

was retrained, using only the Japanese dataset. This procedure led to the finally reported 16 FCs. 
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