Supporting Information

Structure Property Relationships of Carboxylic Acid Isosteres

Pierrik Lassalas,^a Bryant Gay,^a Caroline Lasfargeas,^a Michael J. James,^b Van Tran,^a Krishna G. Vijayendran,^a Kurt R. Brunden,^b Marisa C. Kozlowski,^a Craig J. Thomas,^c Amos B. Smith III,^a Donna M. Huryn^{a,*} and Carlo Ballatore^{a,b,*}

^aDepartment of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th St., Philadelphia, PA 19104-6323; ^bCenter for Neurodegenerative Diseases Research, Institute on Aging, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323; ^cNational Center for Advancing Translational Sciences National Institutes of Health, Bethesda, MD 20850, USA

S2. Table S1 – Comparison of plasma protein binding (fu) of 1, 25–27 with the corresponding, but more lipophilic congeners that are brominated in the *para* position. **S3–5.** Experimental details on solubility, PAMPA assay, and pKa analysis.

S6. Experimental details on $log D_{7.4}$ determinations.

S7-S8. Experimental details on the UV-Vis titrations.

S9-S90. NMR spectra of synthesized test compounds and intermediates **42**, **43**, **47**, **48**, **50–53**

S91-S257. X-ray reports for compounds 1–3, 5, 6, 8, 10–20, 22, 26, 28, 32, 35, 36.

Compound Structure	<i>logD</i> _{7.4}	Fu, AVG	SD	%CV	Control
ОН	- 0.29	9.5%	0.004	5	0.98
Br	0.01 [†]	BLD	NA	NA	1.09
O OH	- 0.70	8.0%	0.3	4	1.03
Br OH	-0.42^{\dagger}	0.4%	0.09	22	1.02
O HO	- 0.60	14%	0.6	4	1.01
Br HO	-0.19^{\dagger}	4.6%	0.1	3	1.01
O OH	- 0.33	11.1%	0.1	1	0.97
Br	0.11 [†]	0.06%	0.04	6	1.01

Table S1. Comparison of plasma protein binding (fu) of 1, 25–27 with the corresponding, but more lipophilic congeners that are brominated in the *para* position.

[†] Literature value (Ballatore C., *et al.*, *J. Med. Chem.* **2011**, *54*, 6969); BLD = below limit of detection. NA = not applicable

Experimental Details on Solubility, PAMPA Assay and pKa Analysis: these

determinations were carried out by Analiza Inc. (Cleveland, OH).

Solubility and PAMPA Assay Media Preparation: 1X Phosphate Buffered Saline, pH 7.4: 10X PBS (Fisher Bioreagent part number BP399-500) 50 mL were added to approximately 450 mL HPLC grade H_2O . The volume of the solution was then adjusted to 500 mL for a total dilution factor of 1:10 and a final PBS concentration of 1X. The pH of the final solution was measured and found to be 7.4.

PAMPA Assay Setup: The 10 mM DMSO solutions were diluted 50 fold with 1X-PBS, pH 7.4, for a dose concentration of 200 μ M in a volume of 300 μ L in the Donor compartment of the BD Gentest Pre-coated PAMPA plate. After preparation of the Donor plate, any precipitation was noted. The Acceptor compartment was filled with 200 μ L of 1X-PBS, pH 7.4. After careful assembly of the PAMPA plate, it was left to incubate for 5 h in the dark at ambient temperature (22.3–25.4 °C). A sister plate was created using the same 10 mM DMSO solutions by diluting 50-fold with 1X-PBS, pH 7.4 directly in a Millipore solubility filter plate to measure the initial concentration of the sample in buffer (C₀). After the 5 h incubation was complete, the PAMPA plate was disassembled and the C₀ plate was vacuum filtered. The Acceptor, Donor and C₀ wells for compounds dosed at 200 μ M were diluted 20-fold with a 50:50 mixture of mobile phase components (0.1% Formic Acid in H₂O: 0.1% Formic Acid in CH₃CN or 0.1% NH₄OH in H₂O: Neat CH₃CN). The dilutions were transferred from the Donor, Acceptor and C₀ plates to 96-well plates for analysis by LC-MS QTOF.

Preparation of Calibrators for HPLC-MS Analysis: 5 μ L of the previously prepared 10 mM DMSO stock solution was diluted with 245 μ L of a 50:50 mixture of mobile phase components (0.1% Formic Acid in H₂O: 0.1% Formic Acid in CH₃CN or 0.1% NH₄OH in H₂O:Neat CH₃CN) directly in a polypropylene 96 well. Each sample was then serially diluted with of 50:50 mobile phase components (0.1% Formic Acid in H₂O: 0.1% Formic Acid in H₂O: 0.1% Formic Acid in CH₃CN or 0.1% NH₄OH in H₂O: Neat CH₃CN) to concentrations spanning the assay range. To mimic assay conditions with regards to % DMSO, the calibrators were further diluted 20-fold with 50:50 mobile phase components. A standard calibration curve was prepared for each compound from these dilutions.

Analysis by HPLC-MS: An Agilent 1100 HPLC (binary HPLC pump, column compartment, and diode array detector) coupled with a CTC HTC-PAL autosampler was used to inject filtrate ($2.5 \,\mu$ L or $7.5 \,\mu$ L) onto the column (AQUASIL C18, $5 \,\mu$ M 50×2.1 mm) and eluted using an appropriate gradient program. TOF-MS data was acquired using an Agilent 6538 Ultra High Accuracy TOF MS in extended dynamic range (m/z 100–3200) using appropriate MS conditions. Following data acquisition, exact mass extraction and peak integration were performed using MassHunter Software (Agilent Technologies). The prepared Acceptor, Donor and C₀ plates were quantified with respect to the previously prepared calibration curve.

PAMPA Analysis and Calculation of Effective Permeability (P_e) : The concentration values from the Donor and Acceptor compartment were used in the calculation of the

effective permeability (P_e) of the compound. A mass balance equation was used to calculate the amount of compound retained in the membrane (%R). A high %R indicates either that the compound was bound to the PAMPA membrane, or that the compound was precipitating in the donor compartment. The equations for permeability and membrane retention are shown below. C₀ was determined experimentally, instead of assuming the full solubility of the compound.

$$P_e = \frac{-\ln(1 - C_A(t)/C_{eq})}{A \times \left(\frac{1}{V_D} + \frac{1}{V_A}\right) \times t}$$
$$R = 1 - \left(\frac{C_D(t) \times V_D + C_A(t) \times V_A}{C_0 \times V_D}\right)$$
$$C_{eq} = \frac{C_D(t) \times V_D + C_A(t) \times V_A}{V_D + V_A}$$

 $C_A(t) = \text{compound concentration in acceptor well at time t (mM)}$ $C_D(t) = \text{compound concentration in donor well at time t (mM)}$ $C_0 = \text{initial compound concentration in donor well (mM)}$ $V_D = \text{donor well volume} = 0.3 \text{ mL}$ $V_A = \text{acceptor well volume} = 0.2 \text{ mL}$ $A = \text{filter area} = 0.3 \text{ cm}^2$ t = incubation time = 5 h = 18000 s R = membrane retention $C_{eq} = \text{compound concentration at equilibrium}$

pKa Analysis:

Sample Preparation: The test compounds were first assayed with the aqueous method. For this method, the 10 mM DMSO stock solutions were diluted 100 fold with 10 mM NaOH for a final compound concentration of 100 µm and 1% DMSO. The compounds were then transferred into 24 consecutive wells of a 96 well PCR plate for analysis with the aqueous method. Ten compounds gave high quality data in the aqueous method. The remaining compounds were subsequently assayed with the co-solvent method. In this method, the dry powder stocks were dissolved in a media consisting of 60% methanol, 2 mM NaOH and 0.1% DMSO. The final compound concentration in this media was 2 mM. The compounds were transferred into 24 consecutive wells of a 96 well plate for analysis using the co-solvent method. Twenty-one compounds yielded adequate data under the co-solvent method to extrapolate a pKa value.

Analysis: All data was obtained using a pKa PRO Analyzer (AATI, Ames, IA). For the aqueous method, an electrophoretic separation was performed in parallel across 24 different pH values, providing a direct measure of overall compound charge *vs.* pH. The compounds were detected by UV at 228 nm. The average pH spacing between buffer points was 0.4 pH units covering a typical pH range of 1.7–11.2. The co-solvent method was suitable for analysis of compounds possessing low aqueous solubility (typically a

predicted intrinsic solubility of < 10 μ g/ml). The average pH spacing between buffer points was 0.4 pH units covering a pH range of 1.7–11.2. The compounds were detected by UV at 214 nm. Four consecutive CE runs were performed for each compound starting with 60% co-solvent buffers and decreasing to 30% co-solvent buffers. Norfloxacin was used as a daily performance-indicating standard.

Calculation of Results: The total number of pKa values was predicted by relating mobility and compound molecular weight using pKa Estimator® software (AATI, Ames, IA).

Kinetic Solubility Analysis:

Kinetic Solubility from DMSO Stocks: Dilutions (50-fold) of each compound were prepared in assay media by combining 6 μ L aliquots of DMSO stocks with 294 μ L of assay media directly in a Millipore solubility filter plate with 0.45 μ M polycarbonate filter membrane. The samples were prepared in duplicate. Assuming 10 mM stock concentration, the maximum theoretical compound concentration was 200 μ M and the final DMSO concentration was 2.0%. The filter plate was sealed. Following 24 h incubation at ambient temperature, (22.3–25.4°C) the samples were vacuum filtered. Filtrates for HPLC-MS were diluted 50 fold with 50:50 mobile phase components (0.1% Formic Acid in H₂O: 0.1% Formic Acid in CH₃CN or 0.1% NH₄OH in H₂O: Neat CH₃CN) and the resulting plate was sealed with a pierceable heat seal for analysis.

Preparation of Calibrators for HPLC-MS Analysis: $5 \,\mu\text{L}$ of the previously prepared 10 mM DMSO stock solution was diluted with 245 μ L of a 50:50 mixture of mobile phase components (0.1% Formic Acid in H₂O: 0.1% Formic Acid in CH₃CN or 0.1% NH₄OH in H₂O:Neat CH₃CN) directly in a polypropylene 96 well. Each sample was then serially diluted with of 50:50 mobile phase components (0.1% Formic Acid in H₂O: 0.1% Formic Acid in H₂O: 0.1% Formic Acid in CH₃CN or 0.1% NH₄OH in H₂O: Neat CH₃CN) to concentrations spanning the assay range. To mimic assay conditions with regards to % DMSO, the calibrators were further diluted 20-fold with 50:50 mobile phase components. A standard calibration curve was prepared for each compound from these dilutions.

Analysis by HPLC-MS: An Agilent 1100 HPLC (binary HPLC pump, column compartment, and diode array detector) coupled with a CTC HTC-PAL autosampler was used to inject filtrate ($2.5 \,\mu$ L or $7.5 \,\mu$ L) onto the column (AQUASIL C₁₈, $5 \,\mu$ M 50×2.1 mm) and eluted using an appropriate gradient program. TOF-MS data was acquired using an Agilent 6538 Ultra High Accuracy TOF MS in extended dynamic range (m/z 100–3200) using appropriate MS conditions. Following data acquisition, exact mass extraction and peak integration were performed using MassHunter Software (Agilent Technologies). The prepared Acceptor, Donor and C₀ plates were quantified with respect to the previously prepared calibration curve.

Determination of logD_{7.4}

The logD_{7.4} values were determined by WuXi Apptec employing a miniaturized 1-octanol/buffer shake flask assay followed by LC/MS/MS analysis. Test compounds (10 mM in DMSO; 2 μ L/well) and QC samples (10 mM in DMSO; 2 μ L/well) were transferred in duplicate from storage tubes to the 96-well polypropylene cluster tubes. Next, pH 7.4 buffer-saturated 1-octanol (149 μ L/well) and 1-octanol saturated buffer (149 μ L/well) were added to each well. Each of the tubes was vigorously mixed for 3 minutes and then shaken for 1 hour at a speed of 880 rpm at room temperature. The mixtures were then centrifuged at 2500 rpm for 2 minutes. Dilution of the buffer layer sample by a factor of 20 fold and the 1-octanol layer sample by a factor of 200 with IS solution was made prior to analysis. Sample analysis was performed using a triple quadrupole mass spectrometer. Peak areas were corrected by dilution factors and incorporating internal standard, and the ratio of the corrected peak areas were used to calculate the results (logD_{7.4} value). QC samples were used to monitor the assay performance. The logD_{7.4} value for each compound was calculated using the following equation:

$$\text{Log } D_{\text{oct/buffer}} = \log \left(\frac{[200 - \text{fold dilution of compound}]_{\text{octanol}} \times 200}{[20 - \text{fold compound}]_{\text{buffer}} \times 20} \right)$$

UV-Vis Titration Procedure

General information: CH_2Cl_2 was distilled from CaH_2 under an inert atmosphere. UV-spectra were recorded on a JASCO V-530 Spectrophotometer with 0.1 nm resolution.

A 4.44 mM stock solution of pyrazinone sensor in CH_2Cl_2 was made by charging a volumetric flask with 10 mg of pyrazinone sensor and diluting with CH_2Cl_2 to a total volume of 10 mL. For each titration, 25 µL of stock solution was diluted to a volume of 2 mL to give a 2.22×10^{-5} M solution for the titration. A 500 µL quartz cuvette was loaded with 500 µL of this titration solution and the liquid level was marked.

For the carboxylic acid (1), a volumetric flask was charged with 35 mg of 1 and CH_2Cl_2 was added to give a total volume of 2 mL, resulting in a 0.12 M solution (approx. 210 equiv per 20 μ L, relative to sensor titration solution).

For the tetrazole (16), a volumetric flask was charged with 47 mg of 16 and CH_2Cl_2 was added to give a total volume of 2 mL, resulting in a 0.13 M solution. For a final solution of 0.034 M (approx. 61 equiv per 20 μ L, relative to sensor titration solution), 500 μ L of the 0.13 M solution was diluted to 2 mL in a separate volumetric flask.

For each titration, aliquots of 20 to 50 μ L of hydrogen bond donor (HBD) solution (1 or 16) were added, and for each addition the total solution volume within the cuvette was maintained at 500 μ L by evaporation with a stream of dry argon. Before the first aliquot addition and after each addition, a UV-Vis spectrum was obtained from 550 nm to 450 nm and the wavelength of maximum absorbance (λ_{max}) recorded. Aliquots were added until no further decrease in λ_{max} was observed.

A plot of λ_{max} versus equivalents of HBD (1 or 16) relative to pyrazinone sensor gave a titration curve. The average of the initial λ_{max} (with no HBD present) and the final λ_{max} gave λ_{max} at the point of equilibrium. The number of equivalents of HBD at this equilibrium point was obtained via linear interpolation between the two nearest points on the titration curve. The following formula was used to provide an equilibrium constant (Keq) where x_{eq} is the number of equivalents of HBD at the equilibrium point relative to sensor, and [sensor]_{total} is 2.22 × 10⁻⁵ M.

$$K_{eq} = \frac{1}{(x_{eq} - 0.5) \times [sensor]_{total}}$$

The K_{eq} formula derivation is provided below.

$$K_{eq} = \frac{[sensor \bullet HBD]_{eq}}{[HBD]_{eq}[sensor]_{eq}} = \frac{1}{[HBD]_{eq}}$$
$$K_{eq} = \frac{1}{[HBD]_{total} - [sensor \bullet HBD]_{eq}}$$
$$K_{eq} = \frac{1}{[HBD]_{total} - 0.5[sensor]_{total}}$$
$$K_{eq} = \frac{1}{(x_{eq} - 0.5) * [sensor]_{total}}$$

Titration data for 1 and 16 are provided below.

HBD	λ_{max} (eq) (nm)	Equivalents HBD (eq)	Keq
1	491.65	602	75
16	489.55	87	521

Carboxylic acid (1)

Amount HBD soln added (µL)	Equivalents HBD	λ _{max} (nm)
0	0	498
20	210	495.4
40	420	493.3
60	630	491.4
80	840	490.1
100	1050	489.3
120	1260	488.4
150	1575	487.3
180	1890	486.8
210	2205	486.1
250	2624	485.9
300	3149	485.3
350	3674	485.4

Tetrazole (16)

Amount HBD soln added (µL)	Equivalents HBD	λ_{max} (nm)
0	0	498.3
20	61	491.8
40	122	486.6
60	182	484.2
80	243	483.1
100	304	482.4
130	395	481.7
160	486	481
190	577	480.8
230	699	480.8
270	820	480.1

4.889

compound 5

Ó

compound 7

-34000 -32000

-30000

-28000

-26000

-24000

-22000

-20000

-18000

-16000

-14000

-12000

-10000

-8000

---29.03

ppm 180 160 140 120 100 80 60 40 20

Ó

Ó

-8.898

compound 17

	206.510	ZH			127.609		77.414 77.160 76.906	65.342			
	compo	ound 24									
				li I							
1	1					1					
na and da anni an anna ann	a hall a shipe (), a sa da dhaali (), aada a ka d ngi tarahay ka daraay na Taraan ka yaday	la predimila de color dona como da qua plicto qua proposi o prova do priprio	here a level a la facte, parte d'here a blevener genere el la regeneración en populario entre genere el la regeneración entre populario entre	elle entre follow, d.e., de _{ent} e, tilsente, fo ^{lle} en nice py folge gis eneret antigete entre de A	են հերկունները հերթերուցին ույս ավալինը հետուցիցիլու։ Դ	n the manufacture of the second s I will be a second s	hina ang kina dia mang na sina dia kang dia kang na sina dia kang na sina dia kang na sina dia kang na sina dia Kang na tana sa kana sa kang na sina dia kang	alan Aperatikan di palan kenderatikan palamatikan Angangai para pengan di kenderatikan penangai	an na an a	von ljeka, kodu dru (verskeder anarover versjevej metrika <u>S50</u>	n haya A nikariya
ppm	200	180	160	140	120	100	80	60	40	20	0

5.676

ppm	180	160	140	120	100	80	60	40	20	0
	here had been a here a here here here here here here	al <mark>ealean a suite ann an an ann an ann ann ann ann ann a</mark>	allin ^u ati _n ara ana ana ana ana ana ana ana ana ana	lan lan arang a	ny <mark>layon yang sana sana kana kana kana kana kana kana</mark>		the history of a sub-	en ^{er} (se ^{rle} t) komelopsonit.	840 10 10 10 10 10 10 10 10 10 10 10 10 10	hudun dar terdika.
worked Hiller	alina (plan, dan darpan, berlanta	n Mana a dhalan an a	alaphilippentary	angla kabulanna antha	th tage the offer part to be an a part	local had now distance had	Al parallely a datable subm			had a start
		l								
						h				
(compound 2	29								
	OH	—153.0								
		2 0	75	N 20 002 0		мОю		2-1		

_____2.500

compound 31

-8.883 -8.871 -8.859

5.161

ppm

5.202

3.960

3.873

-41.458

compound 34

die sestiesentieren station	skalana kara sa kata kananana in salah									
		and one for the second second from a second from a second s	And the first of the second seco	Andread and a second	an bomonto ano del marte del marte			and a construction for our space call.	<u>S70</u>	
ppm	180	160	140	120	100	 80	60	40	20	0

-158.200

60.501

compound 36

4.362

ppm

-63.352

compound 42

-2.911 -2.895 -2.467 -2.464

니 2

4

<u>S85</u>

ź

ó

5.178

3.949

Compound 1359, C₉H₁₀O₂, crystallizes in the monoclinic space group P2₁/n (systematic absences 0k0: k=odd and h0l: h+l=odd) with a=5.3719(5)Å, b=9.8005(8)Å, c=29.865(3)Å, β =93.409(5)°, V=1569.5(3)Å³, Z=8, and d_{calc}=1.271 g/cm³. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 3554 frames were collected with a crystal to detector distance of 45 mm, rotation widths of 0.5° and exposures of 15 seconds:

scan type	20		1		frames
sean type	20	ω	φ	χ	Irames
φ	-28.00	327.36	13.34	30.75	739
ω	-28.00	317.01	106.88	-35.57	241
(1)	17.00	282.37	242.48	28.88	72
(I)	4.50	354.01	161.38	-46.47	191
φ	17.00	262.43	153.67	52.47	207
Ψ Φ	22.00	289.31	56.37	57.63	681
Ψ Φ	-18.00	99.81	333.01	-58.65	725
Ψ W	19.50	127.01	144.39	-96.67	106
ω	27.00	340.80	145.93	89.24	106
φ	-13.00	127.37	309.89	-92.80	486

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 27950 reflections were measured over the ranges 2.19 $\leq \theta \leq 25.42^{\circ}$, $-6 \leq h \leq 6$, $-11 \leq k \leq 11$, $-35 \leq l \leq 35$ yielding 2894 unique reflections (Rint = 0.0392). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.6692, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). The asymmetric unit consists of two

crystallographically independent molecules. Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting scheme used was $w=1/[\sigma^2(F_0^2) + (0.0421P)^2 + 0.5360P]$ where P = $(F_0^2 + 2F_c^2)/3$. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0362 and wR2=0.0840 for 2388 observed reflections for which F > 4 σ (F) and R1=0.0485 and wR2=0.0899 and GOF =1.021 for all 2894 unique, non-zero reflections and 202 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.000 and the two most prominent peaks in the final difference Fourier were +0.170 and -0.197 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 1. is an ORTEP^{vii} representation of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of the title compound with 50% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1359

Empirical formula	$C_9H_{10}O_2$
Formula weight	150.17
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P21/n
Cell constants:	
а	5.3719(5) Å
b	9.8005(8) Å
с	29.865(3) Å
β	93.409(5)°
Volume	1569.5(3) Å ³
Z	8
Density (calculated)	1.271 Mg/m ³
Absorption coefficient	0.089 mm ⁻¹
F(000)	640
Crystal size	0.42 x 0.12 x 0.03 mm ³
Theta range for data collection	2.19 to 25.42°
Index ranges	-6 ≤ h ≤ 6, -11 ≤ k ≤ 11, -35 ≤ l ≤ 35
Reflections collected	27950
Independent reflections	2894 [R(int) = 0.0392]
Completeness to theta = 25.42°	99.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.6692
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2894 / 0 / 202
Goodness-of-fit on F ²	1.021
Final R indices [I>2sigma(I)]	R1 = 0.0362, wR2 = 0.0840
R indices (all data)	R1 = 0.0485, wR2 = 0.0899
Largest diff. peak and hole	0.170 and -0.197 e.Å ⁻³

Table 2. Refined Positional Parameters for Compound 1359

Atom	Х	у	Z	U _{eq} , A ^z
C1	0.1353(2)	0.11084(13)	0.54973(4)	0.0195(3)
C2	0.1832(3)	-0.02439(14)	0.56159(5)	0.0243(3)
C3	0.0446(3)	-0.09004(14)	0.59254(4)	0.0249(3)
C4	-0.1455(3)	-0.02247(14)	0.61232(5)	0.0241(3)
C5	-0.1941(3)	0.11174(14)	0.60119(5)	0.0268(3)
C6	-0.0537(3)	0.17766(14)	0.57020(5)	0.0244(3)
C7	0.2893(3)	0.17705(14)	0.51510(5)	0.0232(3)
C8	0.1999(3)	0.31682(13)	0.49922(4)	0.0219(3)
C9	0.3543(3)	0.37850(13)	0.46460(4)	0.0209(3)
01	0.28454(19)	0.50382(10)	0.45353(3)	0.0280(3)
02	0.52771(19)	0.32158(10)	0.44791(3)	0.0288(3)
C1'	0.8639(3)	0.76711(14)	0.26931(5)	0.0245(3)
C2'	0.8143(3)	0.70407(15)	0.22799(5)	0.0289(3)
C3'	0.9531(3)	0.73432(15)	0.19185(5)	0.0301(3)
C4'	1.1441(3)	0.82826(16)	0.19608(5)	0.0305(4)
C5'	1.1934(3)	0.89318(16)	0.23672(5)	0.0314(4)
C6'	1.0542(3)	0.86245(15)	0.27287(5)	0.0281(3)
C7'	0.7237(3)	0.72722(15)	0.30959(5)	0.0292(3)
C8'	0.8342(3)	0.59731(14)	0.33096(5)	0.0247(3)
C9'	0.7017(3)	0.54585(13)	0.37008(5)	0.0222(3)
01'	0.80900(18)	0.43700(9)	0.38861(3)	0.0259(2)
O2'	0.51387(19)	0.59721(10)	0.38365(3)	0.0279(2)
$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2]$	+U ₂₂ (bb*) ² +U ₃₃ (cc*) ² +	2U12aa*bb*cos y+2U	3aa*cc*cos β+2U23bb	o*cc*cosα]

Table 3. Positional Parameters for Hydrogens in Compound 1359

Atom	Х	у	Z	U _{iso} , Ă ²
H2	0.3106	-0.0712	0.5485	0.032
H3	0.0796	-0.1804	0.6001	0.033
H4	-0.2400	-0.0670	0.6329	0.032
H5	-0.3213	0.1583	0.6145	0.036
H6	-0.0876	0.2684	0.5631	0.032
H7a	0.2914	0.1171	0.4893	0.031
H7b	0.4596	0.1854	0.5275	0.031
H8a	0.0291	0.3091	0.4870	0.029
H8b	0.2004	0.3777	0.5248	0.029
H1	0.3624	0.5299	0.4323	0.042
H2'	0.6858	0.6406	0.2247	0.038
H3'	0.9175	0.6911	0.1645	0.040
H4'	1.2389	0.8478	0.1718	0.041
H5'	1.3204	0.9576	0.2398	0.042
H6'	1.0890	0.9066	0.3001	0.037
H7'1	0.5495	0.7122	0.3005	0.039
H7'2	0.7330	0.8007	0.3314	0.039
H8'1	0.8326	0.5263	0.3083	0.033
H8'2	1.0069	0.6147	0.3406	0.033
H1'	0.7218	0.4068	0.4079	0.039

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0190(7)	0.0210(7)	0.0184(6)	0.0015(5)	-0.0003(5)	0.0007(5)
C2	0.0251(8)	0.0219(7)	0.0263(7)	0.0010(6)	0.0052(6)	0.0069(6)
C3	0.0319(8)	0.0176(6)	0.0254(7)	0.0035(5)	0.0013(6)	0.0032(6)
C4	0.0273(8)	0.0242(7)	0.0210(7)	0.0033(6)	0.0040(6)	-0.0027(6)
C5	0.0271(8)	0.0261(7)	0.0279(7)	0.0035(6)	0.0086(6)	0.0066(6)
C6	0.0264(8)	0.0192(7)	0.0278(7)	0.0052(6)	0.0044(6)	0.0058(6)
C7	0.0208(7)	0.0234(7)	0.0258(7)	0.0040(6)	0.0046(6)	0.0043(6)
C8	0.0225(7)	0.0203(7)	0.0232(7)	0.0010(5)	0.0047(6)	0.0017(5)
C9	0.0235(7)	0.0179(6)	0.0210(7)	-0.0004(5)	0.0003(6)	0.0019(6)
01	0.0324(6)	0.0217(5)	0.0312(6)	0.0084(4)	0.0131(4)	0.0080(4)
O2	0.0320(6)	0.0222(5)	0.0336(6)	0.0063(4)	0.0146(5)	0.0079(4)
C1'	0.0231(8)	0.0228(7)	0.0282(7)	0.0063(6)	0.0060(6)	0.0087(6)
C2'	0.0257(8)	0.0257(7)	0.0352(8)	0.0028(6)	0.0019(6)	0.0006(6)
C3'	0.0330(9)	0.0329(8)	0.0245(7)	-0.0005(6)	0.0022(6)	0.0068(7)
C4'	0.0285(8)	0.0386(9)	0.0251(8)	0.0083(6)	0.0081(6)	0.0055(7)
C5'	0.0271(8)	0.0363(8)	0.0309(8)	0.0061(7)	0.0039(6)	-0.0045(7)
C6'	0.0313(8)	0.0288(8)	0.0241(7)	0.0014(6)	0.0014(6)	0.0025(6)
C7'	0.0275(8)	0.0275(7)	0.0339(8)	0.0098(6)	0.0122(6)	0.0078(6)
C8'	0.0240(8)	0.0230(7)	0.0278(7)	0.0038(6)	0.0079(6)	0.0045(6)
C9'	0.0256(8)	0.0175(6)	0.0235(7)	-0.0003(5)	0.0013(6)	0.0010(6)
01'	0.0273(6)	0.0232(5)	0.0280(5)	0.0079(4)	0.0082(4)	0.0063(4)
O2'	0.0309(6)	0.0230(5)	0.0313(5)	0.0064(4)	0.0129(<u>4</u>)	0.0083(4)
The form of	the anisotropic	displacement p	arameter is:			
exp[-2π²(a* ²	U ₁₁ h ² +b* ² U ₂₂ k ² +	-c* ² U ₃₃ l ² +2b*c*L	J ₂₃ kl+2a*c*U ₁₃ h	I+2a*b*U ₁₂ hk)]		

Table 4. Refined Thermal Parameters (U's) for Compound 1359

Table 5. Bond Distances in Compound 1359, Å

C1-C6 C2-C3 C5-C6 C9-O2 C1'-C2' C3'-C4'	1.3812(19) 1.380(2) 1.388(2) 1.2175(16) 1.392(2) 1.379(2) 1.5292(18)	C1-C2 C3-C4 C7-C8 C9-O1 C1'-C7' C4'-C5' C9' C0'	1.3919(19) 1.379(2) 1.5182(18) 1.3204(16) 1.508(2) 1.382(2)	C1-C7 C4-C5 C8-C9 C1'-C6' C2'-C3' C5'-C6'	1.5090(19) 1.3778(19) 1.4917(19) 1.385(2) 1.380(2) 1.382(2) 1.9121(17)
C7'-C8' C9'-O1'	1.5283(18) 1.3187(16)	C8'-C9'	1.4918(19)	C9'-O2'	1.2181(17)

Table 6. Bond Angles in Compound 1359, °

C6-C1-C2	117.93(13)	C6-C1-C7	123.16(12)	C2-C1-C7	118.90(12)	
C3-C2-C1	121.02(13)	C4-C3-C2	120.38(13)	C5-C4-C3	119.32(13)	
C4-C5-C6	120.17(14)	C1-C6-C5	121.17(13)	C1-C7-C8	115.20(11)	
C9-C8-C7	113.79(11)	O2-C9-O1	122.44(12)	O2-C9-C8	124.66(12)	
O1-C9-C8	112.90(12)	C6'-C1'-C2'	117.97(13)	C6'-C1'-C7'	121.00(13)	
C2'-C1'-C7'	120.94(14)	C3'-C2'-C1'	120.98(14)	C4'-C3'-C2'	120.35(14)	
C3'-C4'-C5'	119.39(14)	C4'-C5'-C6'	120.07(14)	C5'-C6'-C1'	121.22(14)	
C1'-C7'-C8'	110.42(12)	C9'-C8'-C7'	114.64(12)	O2'-C9'-O1'	123.01(13)	
O2'-C9'-C8'	124.34(12)	O1'-C9'-C8'	112.65(12)			

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} R1 &= \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ wR2 &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ GOF &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ where \ n &= the \ number \ of \ reflections \ and \ p = the \ number \ of \ parameters \ refined. \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

X-ray Structure Determination of Compound 1417 (i.e., compound 2; CCDC 1427573)

Compound 1417, C₉H₁₁NO₂, crystallizes in the monoclinic space group P2₁/c (systematic absences 0k0: k=odd and h0l: l=odd) with a=8.5765(7)Å, b=5.1612(4)Å, c=37.856(4)Å, β =90.365(4)°, V=1675.7(2)Å³, Z=8, and d_{calc}=1.310 g/cm³. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 1371 frames were collected with a crystal to detector distance of 60.8 mm, rotation widths of 0.5° and exposures of 60 seconds:

scan type	20	ω	φ	χ	frames
ω	-25.50	217.37	309.98	28.88	275
ω	-25.50	202.56	341.46	55.93	305
φ	-20.50	296.79	30.48	48.96	219
Ψ (i)	-0.50	27.39	20.96	-51.77	188
φ	-23.00	334.09	1.25	-33.72	265
Ψ W	2.00	319.34	206.86	88.14	119

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 10212 reflections were measured over the ranges 2.15 $\leq \theta \leq$ 25.38°, -10 \leq h \leq 10, -6 \leq k \leq 4, -37 \leq l \leq 45 yielding 3005 unique reflections (Rint = 0.0570). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.4563, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting scheme used was $w=1/[\sigma^2(F_0^2) + (0.0327P)^2 + 6.0713P]$ where P = $(F_0^2 + 2F_c^2)/3$. Non-hydrogen atoms

were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0952 and wR2=0.2091 for 2124 observed reflections for which $F > 4\sigma(F)$ and R1=0.1263 and wR2=0.2202 and GOF =1.188 for all 3005 unique, non-zero reflections and 220 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.000 and the two most prominent peaks in the final difference Fourier were +0.331 and -0.311 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 1. is an ORTEP^{vii} representation of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of the title compound with 50% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1417

Empirical formula	$C_9H_{11}NO_2$		
Formula weight	165.19		
Temperature	100(1) K		
Wavelength	0.71073 Å		
Crystal system	monoclinic		
Space group	P21/c		
Cell constants:			
a	8.5765(7) Å		
b	5.1612(4) Å		
C	37.856(4) Å		
β	90.365(4)°		
Volume	1675.7(2) Å ³		
Z	8		
Density (calculated)	1.310 Mg/m ³		
Absorption coefficient	0.093 mm ⁻¹		
F(000)	704		
Crystal size	0.20 x 0.15 x 0.02 mm ³		
Theta range for data collection	2.15 to 25.38°		
Index ranges	$-10 \leq h \leq 10, -6 \leq k \leq 4, -37 \leq l \leq 45$		
Reflections collected	10212		
Independent reflections	3005 [R(int) = 0.0570]		
Completeness to theta = 25.38°	97.6 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7452 and 0.4563		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3005 / 0 / 220		
Goodness-of-fit on F ²	1.188		
Final R indices [I>2sigma(I)]	R1 = 0.0952, wR2 = 0.2091		
R indices (all data)	R1 = 0.1263, wR2 = 0.2202		
Largest diff. peak and hole	0.331 and -0.311 e.Å ⁻³		

Table 2. Refined Positional Parameters for Compound 1417

Atom	Х	У	Z	U _{eq} , A ^z
01	0.8944(4)	0.9256(6)	0.23598(9)	0.0330(8)
O2	0.9621(4)	1.0867(7)	0.30297(9)	0.0418(9)
N1	0.8318(4)	0.8159(8)	0.26626(10)	0.0311(9)
C1	0.8674(5)	0.9027(10)	0.29736(13)	0.0324(12)
C2	0.7830(5)	0.7735(10)	0.32740(13)	0.0324(12)
C3	0.8904(5)	0.6900(12)	0.35740(13)	0.0411(13)
C4	0.8041(5)	0.5758(10)	0.38820(13)	0.0333(12)
C5	0.7035(6)	0.3669(11)	0.38329(15)	0.0458(14)
C6	0.6269(6)	0.2608(12)	0.41135(16)	0.0492(15)
C7	0.6437(5)	0.3537(11)	0.44444(15)	0.0431(14)
C8	0.7417(7)	0.5584(12)	0.44991(15)	0.0535(16)
C9	0.8208(6)	0.6683(12)	0.42153(15)	0.0488(15)
01'	0.6217(4)	0.3952(7)	0.25521(9)	0.0356(9)
O2'	0.5248(4)	0.6359(7)	0.19716(9)	0.0385(9)
N1'	0.6513(4)	0.2997(8)	0.22191(10)	0.0310(9)
C1'	0.6078(5)	0.4386(10)	0.19438(13)	0.0307(11)
C2'	0.6587(5)	0.3443(9)	0.15878(12)	0.0314(11)
C3'	0.7272(5)	0.5640(10)	0.13722(13)	0.0325(11)
C4'	0.7611(5)	0.5105(9)	0.09899(13)	0.0286(11)
C5'	0.6948(5)	0.3035(10)	0.08032(14)	0.0355(12)
C6'	0.7198(6)	0.2754(10)	0.04457(14)	0.0385(13)
C7'	0.8136(6)	0.4510(11)	0.02650(14)	0.0405(13)
C8'	0.8813(5)	0.6516(10)	0.04486(14)	0.0390(13)
C9'	0.8563(5)	0.6814(10)	0.08043(13)	0.0332(12)
$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2]$	+U ₂₂ (bb*) ² +U ₃₃ (cc*) ²	+2U ₁₂ aa*bb*cos γ+2U	13aa*cc*cos β+2U23bb	*cc*cosα]

Table 3. Positional Parameters for Hydrogens in Compound 1417

Atom	Х	У	Z	U _{iso} , A ²
H1	0.9406	0.8140	0.2247	0.044
H1a	0.7682	0.6879	0.2643	0.041
H2a	0.7283	0.6225	0.3184	0.043
H2b	0.7056	0.8924	0.3366	0.043
H3a	0.9637	0.5628	0.3486	0.055
H3b	0.9497	0.8389	0.3655	0.055
H5	0.6883	0.2991	0.3608	0.061
H6	0.5611	0.1202	0.4075	0.065
H7	0.5897	0.2798	0.4631	0.057
H8	0.7557	0.6247	0.4726	0.071
H9	0.8866	0.8086	0.4256	0.065
H1'	0.5699	0.2897	0.2663	0.047
H1a'	0.6971	0.1529	0.2192	0.041
H2a'	0.5699	0.2712	0.1463	0.042
H2b'	0.7361	0.2088	0.1617	0.042
H3a'	0.6558	0.7095	0.1383	0.043
H3b'	0.8236	0.6180	0.1485	0.043
H5'	0.6333	0.1836	0.0922	0.047
H6'	0.6737	0.1384	0.0324	0.051
H7'	0.8301	0.4326	0.0024	0.054
H8'	0.9448	0.7686	0.0331	0.052
H9'	0.9038	0.8181	0.0924	0.044

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	0.0260(17)	0.0298(19)	0.043(2)	0.0007(16)	0.0075(14)	0.0014(15)
02	0.0331(18)	0.042(2)	0.050(2)	0.0016(18)	-0.0014(15)	-0.0149(17)
N1	0.0216(18)	0.027(2)	0.044(3)	0.005(2)	0.0039(17)	0.0002(17)
C1	0.021(2)	0.034(3)	0.043(3)	0.004(2)	0.000(2)	0.006(2)
C2	0.021(2)	0.030(3)	0.046(3)	0.003(2)	0.001(2)	0.000(2)
C3	0.025(2)	0.051(3)	0.047(3)	0.006(3)	-0.001(2)	-0.002(2)
C4	0.020(2)	0.035(3)	0.046(3)	0.004(2)	0.000(2)	-0.002(2)
C5	0.050(3)	0.040(3)	0.048(3)	0.003(3)	-0.005(3)	-0.011(3)
C6	0.034(3)	0.051(4)	0.062(4)	0.016(3)	-0.010(3)	-0.019(3)
C7	0.028(3)	0.044(3)	0.058(4)	0.019(3)	0.007(2)	0.000(2)
C8	0.072(4)	0.045(4)	0.044(4)	0.001(3)	0.005(3)	-0.006(3)
C9	0.051(3)	0.043(3)	0.053(4)	0.004(3)	-0.003(3)	-0.017(3)
01'	0.0324(18)	0.035(2)	0.040(2)	0.0024(17)	0.0070(14)	-0.0090(15)
O2'	0.0318(18)	0.037(2)	0.047(2)	-0.0005(17)	0.0065(15)	0.0129(16)
N1'	0.030(2)	0.026(2)	0.037(2)	-0.0010(19)	0.0065(17)	-0.0007(17)
C1'	0.017(2)	0.032(3)	0.044(3)	-0.001(2)	0.0021(19)	-0.005(2)
C2'	0.021(2)	0.028(3)	0.045(3)	-0.002(2)	0.0028(19)	0.003(2)
C3'	0.023(2)	0.030(3)	0.045(3)	0.000(2)	0.002(2)	-0.001(2)
C4'	0.022(2)	0.020(2)	0.043(3)	0.000(2)	0.001(2)	0.0090(19)
C5'	0.033(3)	0.027(3)	0.047(3)	-0.001(2)	0.006(2)	0.000(2)
C6'	0.041(3)	0.028(3)	0.046(3)	-0.005(2)	0.000(2)	0.005(2)
C7'	0.033(3)	0.045(3)	0.043(3)	-0.002(3)	0.005(2)	0.013(3)
C8'	0.030(3)	0.035(3)	0.052(4)	0.004(3)	0.005(2)	0.007(2)
C9'	0.023(2)	0.030(3)	0.047(3)	0.001(2)	0.004(2)	0.002(2)
The form of	the anisotropic of	displacement pa	arameter is:			
exp[-2π ² (a* ² l	J ₁₁ h ² +b* ² U ₂₂ k ² +	c* ² U ₃₃ l ² +2b*c*U	l ₂₃ kl+2a*c*U ₁₃ l	nl+2a*b*U ₁₂ hk)]		
	••••••••			:= /:		

Table 4. Refined Thermal Parameters (U's) for Compound 1417

Table 5. Bond Distances in Compound 1417, Å

01-N1	1.389(5)	02-C1	1.266(6)	N1-C1	1.295(6)
C1-C2	1.508(7)	C2-C3	1.520(6)	C3-C4	1.505(7)
C4-C9	1.356(7)	C4-C5	1.393(7)	C5-C6	1.367(7)
C6-C7	1.348(8)	C7-C8	1.365(8)	C8-C9	1.395(8)
O1'-N1'	1.379(5)	O2'-C1'	1.248(6)	N1'-C1'	1.317(6)
C1'-C2'	1.500(7)	C2'-C3'	1.518(6)	C3'-C4'	1.503(6)
C4'-C9'	1.395(6)	C4'-C5'	1.399(7)	C5'-C6'	1.379(7)
C6'-C7'	1.394(7)	C7'-C8'	1.373(7)	C8'-C9'	1.373(7)

Table 6. Bond Angles in Compound 1417, °

C1-N1-O1	121.3(4)	O2-C1-N1	124.0(5)	O2-C1-C2	121.1(4)	
N1-C1-C2	114.9(4)	C1-C2-C3	113.4(4)	C4-C3-C2	113.0(4)	
C9-C4-C5	117.3(5)	C9-C4-C3	122.3(5)	C5-C4-C3	120.5(5)	
C6-C5-C4	120.4(5)	C7-C6-C5	122.0(5)	C6-C7-C8	118.6(5)	
C7-C8-C9	120.0(6)	C4-C9-C8	121.7(5)	C1'-N1'-O1'	118.4(4)	
O2'-C1'-N1'	122.5(5)	O2'-C1'-C2'	120.7(4)	N1'-C1'-C2'	116.9(4)	
C1'-C2'-C3'	110.9(̀4)́	C4'-C3'-C2'	117.3(4)	C9'-C4'-C5'	117.7(5)	
C9'-C4'-C3'	119.1(̀4)́	C5'-C4'-C3'	123.1(4)	C6'-C5'-C4'	120.7(5)	
C5'-C6'-C7'	120.4(5)	C8'-C7'-C6'	119.0(5)	C9'-C8'-C7'	120.8(5)	
C8'-C9'-C4'	121.2(5)				()	

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} R1 &= \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ wR2 &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ GOF &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ where \ n &= the \ number \ of \ reflections \ and \ p = the \ number \ of \ parameters \ refined. \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

X-ray Structure Determination of Compound 1423 (i.e., compound 3; CCDC 1427548)

Compound 1423, $C_{10}H_{13}NO_2$, crystallizes in the monoclinic space group P2₁/c (systematic absences 0k0: k=odd and h0l: l=odd) with a=8.6640(6)Å, b=8.3228(6)Å, c=13.1502(10)Å, β =92.374(3)°, V=947.43(12)Å³, Z=4, and d_{calc}=1.256 g/cm³ . X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 2440 frames were collected with a crystal to detector distance of 37.4 mm, rotation widths of 0.5° and exposures of 20 seconds:

scan type	20	ω	φ	χ	frames
φ	-23.00	315.83	12.48	28.88	739
φ	-23.00	334.21	38.95	73.66	739
φ	19.50	59.55	348.86	-26.26	722
φ	-23.00	316.70	133.56	98.89	240

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 16926 reflections were measured over the ranges $2.35 \le \theta \le 25.42^{\circ}$, $-10 \le h \le 10$, $-10 \le k \le 9$, $-15 \le l \le 15$ yielding 1748 unique reflections (Rint = 0.0166). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.7085, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting scheme used was $w=1/[\sigma^2(F_0^2) + (0.0343P)^2 + 0.45793P]$ where P = $(F_0^2 + 2F_c^2)/3$. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement

converged to R1=0.0320 and wR2=0.0792 for 1607 observed reflections for which F > $4\sigma(F)$ and R1=0.0349 and wR2=0.0822 and GOF =1.049 for all 1748 unique, non-zero reflections and 121 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.000 and the two most prominent peaks in the final difference Fourier were +0.238 and -0.276 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 1. is an ORTEP^{vii} representation of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of the title compound with 50% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1423

Empirical formula	C ₁₀ H ₁₃ NO ₂
Formula weight	179.21
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P21/c
Cell constants:	
a	8.6640(6) Å
b	8.3228(6) Å
с	13.1502(10) Å
β	92.374(3)°
Volume	947.43(12) Å ³
Z	4
Density (calculated)	1.256 Mg/m ³
Absorption coefficient	0.088 mm ⁻¹
F(000)	384
Crystal size	0.38 x 0.25 x 0.15 mm ³
Theta range for data collection	2.35 to 25.42°
Index ranges	-10 ≤ h ≤ 10, -10 ≤ k ≤ 9, -15 ≤ l ≤ 15
Reflections collected	16926
Independent reflections	1748 [R(int) = 0.0166]
Completeness to theta = 25.42°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.7085
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1748 / 0 / 121
Goodness-of-fit on F ²	1.049
Final R indices [I>2sigma(I)]	R1 = 0.0320, wR2 = 0.0792
R indices (all data)	R1 = 0.0349, wR2 = 0.0822
Largest diff. peak and hole	0.238 and -0.276 e.Å ⁻³

Atom			_					
Atom	X	У	Z	U _{eq} , A				
01	0.27233(9)	0.77609(9)	0.71540(6)	0.0187(2)				
O2	0.55728(9)	0.48436(10)	0.68217(6)	0.0207(2)				
N1	0.38336(10)	0.68293(11)	0.66821(7)	0.0156(2)				
C1	0.46558(12)	0.57620(13)	0.72364(8)	0.0168(2)				
C2	0.44614(14)	0.57778(15)	0.83621(9)	0.0241(3)				
C3	0.36688(12)	0.68271(13)	0.55799(8)	0.0169(2)				
C4	0.21068(13)	0.61616(14)	0.51912(9)	0.0194(3)				
C5	0.18041(12)	0.44719(14)	0.55400(9)	0.0182(3)				
C6	0.20457(13)	0.31584(15)	0.49118(9)	0.0227(3)				
C7	0.17401(14)	0.16097(15)	0.52416(11)	0.0282(3)				
C8	0.12057(14)	0.13446(15)	0.62032(11)	0.0292(3)				
C9	0.09717(14)	0.26390(16)	0.68380(10)	0.0263(3)				
C10	0.12619(13)	0.41886(14)	0.65076(9)	0.0212(3)				
U _{eq} = ¹ / ₃ [U ₁₁ (aa*) ²	$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}aa^*bb^*cos \gamma + 2U_{13}aa^*cc^*cos \beta + 2U_{23}bb^*cc^*cos\alpha]$							

Table 2. Refined Positional Parameters for Compound 1423

Table 3. Positional Parameters for Hydrogens in Compound 1423

Atom	Х	У	Z	U _{iso} , Á ²
H1	0.3153	0.8483	0.7482	0.025
H2a	0.4839	0.4786	0.8651	0.036
H2b	0.3387	0.5898	0.8497	0.036
H2c	0.5034	0.6659	0.8660	0.036
H3a	0.4488	0.6183	0.5307	0.023
H3b	0.3783	0.7917	0.5332	0.023
H4a	0.1294	0.6856	0.5422	0.026
H4b	0.2064	0.6184	0.4453	0.026
H6	0.2415	0.3319	0.4266	0.030
H7	0.1897	0.0743	0.4812	0.037
H8	0.1005	0.0305	0.6421	0.039
H9	0.0619	0.2470	0.7488	0.035
H10	0.1092	0.5052	0.6938	0.028

Table 4. Refined Thermal Parameters (U's) for Compound 1423

Atom	U_{11}	U_{22}	U ₃₃	U_{23}	U ₁₃	U ₁₂		
01	0.0172(4)	0.0162(4)	0.0228(4)	-0.0052(3)	0.0015(3)	0.0016(3)		
02	0.0226(4)	0.0188(4)	0.0209(4)	0.0017(3)	0.0021(3)	0.0059(3)		
N1	0.0152(4)	0.0143(5)	0.0172(5)	-0.0018(4)	0.0013(3)	0.0015(3)		
C1	0.0166(5)	0.0147(5)	0.0191(6)	0.0002(4)	0.0002(4)	-0.0026(4)		
C2	0.0289(6)	0.0247(6)	0.0187(6)	0.0030(5)	0.0017(5)	0.0057(5)		
C3	0.0184(5)	0.0156(5)	0.0168(5)	0.0016(4)	-0.0001(4)	-0.0012(4)		
C4	0.0190(5)	0.0198(6)	0.0189(5)	0.0013(4)	-0.0034(4)	-0.0003(5)		
C5	0.0117(5)	0.0196(6)	0.0230(6)	-0.0002(5)	-0.0039(4)	-0.0013(4)		
C6	0.0152(5)	0.0256(6)	0.0273(6)	-0.0043(5)	0.0002(5)	-0.0010(5)		
C7	0.0189(6)	0.0204(6)	0.0450(8)	-0.0091(6)	-0.0006(5)	0.0015(5)		
C8	0.0201(6)	0.0189(6)	0.0484(8)	0.0064(6)	-0.0032(5)	-0.0017(5)		
C9	0.0210(6)	0.0284(7)	0.0294(7)	0.0071(5)	-0.0011(5)	-0.0040(5)		
C10	0.0183(5)	0.0216(6)	0.0236(6)	-0.0016(5)	-0.0016(4)	-0.0015(5)		
The form of	The form of the anisotropic displacement parameter is:							
exp[-2π²(a* ² l	J ₁₁ h ² +b* ² U ₂₂ k ² +	-c* ² U ₃₃ l ² +2b*c*L	J ₂₃ kl+2a*c*U ₁₃ h	l+2a*b*U ₁₂ hk)]				

Table 5. Bond Distances in Compound 1423, Å

O1-N1	1.4004(11)	O2-C1	1.2446(14)	N1-C1	1.3359(15)
N1-C3	1.4506(14)	C1-C2	1.4968(15)	C3-C4	1.5305(15)
C4-C5	1.5056(16)	C5-C6	1.3912(17)	C5-C10	1.3946(16)
C6-C7	1.3890(18)	C7-C8	1.382(2)	C8-C9	1.3830(19)
C9-C10	1.3872(17)				

Table 6. Bond Angles in Compound 1423, °

C1-N1-O1	119.14(9)	C1-N1-C3	124.93(9)	O1-N1-C3	113.73(8)
O2-C1-N1	120.33(10)	O2-C1-C2	122.60(10)	N1-C1-C2	117.03(1Ó)
N1-C3-C4	112.53(9)	C5-C4-C3	113.52(9) [′]	C6-C5-C10	118.27(11)
C6-C5-C4	121.38(10)	C10-C5-C4	120.36(10)	C7-C6-C5	120.56(12)
C8-C7-C6	120.61(12)	C7-C8-C9	119.40(12)	C8-C9-C10	120.14(12)
C9-C10-C5	121.01(11)				()

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} R1 &= \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ wR2 &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ GOF &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ where \ n &= the \ number \ of \ reflections \ and \ p = the \ number \ of \ parameters \ refined. \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.
X-ray Structure Determination of Compound 1412 (i.e., compound 5; CCDC 1427579)

Compound 1412, $C_{10}H_{13}NO_2$, crystallizes in the monoclinic space group P2₁/c (systematic absences 0k0: k=odd and h0l: l=odd) with a=10.5867(7)Å, b=11.7808(9)Å, c=7.9426(6)Å, β =97.945(3)°, V=981.09(12)Å³, Z=4, and d_{calc}=1.213 g/cm³ . X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 1159 frames were collected with a crystal to detector distance of 37.4 mm, rotation widths of 0.5° and exposures of 5 seconds:

scan type	20	ω	φ	χ	frames
φ	19.50	59.55	348.71	-26.26	739
ω	-10.50	345.67	80.80	-60.33	122
ω	-23.00	333.49	158.99	-70.01	69
ω	17.00	321.08	318.36	83.36	117
ω	17.00	322.50	184.44	82.07	112

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 10215 reflections were measured over the ranges $1.94 \le \theta \le 25.42^\circ$, $-12 \le h \le 12$, $-14 \le k \le 14$, $-9 \le l \le 9$ yielding 1800 unique reflections (Rint = 0.0186). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.7116, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting scheme used was $w=1/[\sigma^2(F_0^2) + (0.0501P)^2 + 0.4237P]$ where P = $(F_0^2 + 2F_c^2)/3$. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement

converged to R1=0.0372 and wR2=0.0992 for 1613 observed reflections for which F > $4\sigma(F)$ and R1=0.0416 and wR2=0.1025 and GOF =1.052 for all 1800 unique, non-zero reflections and 120 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.000 and the two most prominent peaks in the final difference Fourier were +0.300 and -0.288 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 1. is an ORTEP^{vii} representation of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of the title compound with 50% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1412

Empirical formula	$C_{10}H_{13}NO_2$
Formula weight	179.21
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P21/c
Cell constants:	
a	10.5867(7) Å
b	11.7808(9) Å
c	7.9426(6) Å
β	97.945(3)°
Volume	981.09(12) Å ³
Z	4
Density (calculated)	1.213 Mg/m ³
Absorption coefficient	0.085 mm ⁻¹
F(000)	384
Crystal size	0.50 x 0.15 x 0.10 mm ³
Theta range for data collection	1.94 to 25.42°
Index ranges	-12 ≤ h ≤ 12, -14 ≤ k ≤ 14, -9 ≤ l ≤ 9
Reflections collected	10215
Independent reflections	1800 [R(int) = 0.0186]
Completeness to theta = 25.42°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.7116
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1800 / 0 / 120
Goodness-of-fit on F ²	1.052
Final R indices [I>2sigma(I)]	R1 = 0.0372, wR2 = 0.0992
R indices (all data)	R1 = 0.0416, wR2 = 0.1025
Largest diff. peak and hole	0.300 and -0.288 e.Å ⁻³

Atom	Х	У	Z	U _{eq} , A ²						
01	0.04931(10)	0.13263(8)	0.02719(12)	0.0312(3)						
O2	0.16028(8)	0.32363(8)	0.15505(11)	0.0233(2)						
N1	0.09860(11)	0.24769(10)	0.25225(14)	0.0262(3)						
C1	-0.03391(14)	0.08862(12)	0.28568(17)	0.0276(3)						
C2	0.04145(12)	0.15783(11)	0.17563(16)	0.0200(3)						
C3	0.29561(12)	0.31421(11)	0.20418(16)	0.0221(3)						
C4	0.35920(12)	0.40162(12)	0.10469(17)	0.0250(3)						
C5	0.50158(12)	0.39843(11)	0.15748(16)	0.0227(3)						
C6	0.57841(14)	0.32349(13)	0.08237(18)	0.0293(3)						
C7	0.70832(15)	0.31763(14)	0.1370(2)	0.0374(4)						
C8	0.76343(14)	0.38640(14)	0.2685(2)	0.0381(4)						
C9	0.68831(15)	0.46141(13)	0.34363(19)	0.0347(4)						
C10	0.55827(14)	0.46772(12)	0.28837(17)	0.0273(3)						
U _{eq} = ¹ / ₃ [U ₁₁ (aa*) ²	+U ₂₂ (bb*) ² +U ₃₃ (cc*) ² +	2U ₁₂ aa*bb*cos γ+2U ₁	₃ aa*cc*cos β+2U ₂₃ bb	$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}aa^*bb^*\cos\gamma + 2U_{13}aa^*cc^*\cos\beta + 2U_{23}bb^*cc^*\cos\alpha]$						

 Table 2. Refined Positional Parameters for Compound 1412

 Table 3. Positional Parameters for Hydrogens in Compound 1412

Atom	Х	у	Z	U _{iso} , Á ^z
H1	0.0978	0.2591	0.3590	0.035
H1a	-0.1231	0.1045	0.2557	0.041
H1b	-0.0081	0.1078	0.4029	0.041
H1c	-0.0186	0.0094	0.2688	0.041
H3a	0.3243	0.2386	0.1794	0.029
H3b	0.3171	0.3279	0.3252	0.029
H4a	0.3398	0.3859	-0.0160	0.033
H4b	0.3269	0.4766	0.1257	0.033
H6	0.5422	0.2767	-0.0056	0.039
H7	0.7587	0.2673	0.0853	0.050
H8	0.8505	0.3820	0.3058	0.051
H9	0.7249	0.5080	0.4317	0.046
H10	0.5085	0.5189	0.3395	0.036

 Table 4. Refined Thermal Parameters (U's) for Compound 1412

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
01	0.0510(7)	0.0258(6)	0.0167(5)	-0.0013(4)	0.0045(4)	-0.0072(4)	
02	0.0211(5)	0.0280(5)	0.0213(5)	0.0026(4)	0.0047(4)	-0.0060(4)	
N1	0.0302(6)	0.0328(7)	0.0177(6)	-0.0031(5)	0.0105(5)	-0.0113(5)	
C1	0.0312(7)	0.0272(7)	0.0242(7)	0.0041(6)	0.0036(6)	-0.0051(6)	
C2	0.0205(6)	0.0209(6)	0.0180(6)	0.0020(5)	0.0006(5)	0.0026(5)	
C3	0.0207(7)	0.0242(7)	0.0210(6)	0.0011(5)	0.0018(5)	-0.0019(5)	
C4	0.0228(7)	0.0272(7)	0.0244(7)	0.0059(5)	0.0014(5)	-0.0031(5)	
C5	0.0233(7)	0.0239(7)	0.0209(7)	0.0067(5)	0.0029(5)	-0.0042(5)	
C6	0.0307(8)	0.0271(8)	0.0297(8)	0.0003(6)	0.0024(6)	-0.0032(6)	
C7	0.0304(8)	0.0356(9)	0.0472(10)	0.0059(7)	0.0085(7)	0.0061(6)	
C8	0.0221(7)	0.0429(9)	0.0465(10)	0.0156(7)	-0.0046(6)	-0.0036(6)	
C9	0.0357(8)	0.0365(9)	0.0286(8)	0.0066(6)	-0.0076(6)	-0.0121(7)	
C10	0.0321(8)	0.0268(7)	0.0229(7)	0.0024(5)	0.0033(6)	-0.0040(6)	
The form of	The form of the anisotropic displacement parameter is:						
exp[-2π²(a*²l	$J_{11}h^2 + b^{*2}U_{22}k^2 +$	-c* ² U ₃₃ l ² +2b*c*U	J ₂₃ kl+2a*c*U ₁₃ hl	+2a*b*U ₁₂ hk)]			

Table 5. Bond Distances in Compound 1412, Å

O1-C2	1.2297(16)	O2-N1	1.4008(14)	O2-C3	1.4362(15)
N1-C2	1.3249(17)	C1-C2	1.5026(18)	C3-C4	1.5116(18)
C4-C5	1.5082(18)	C5-C6	1.390(2)	C5-C10	1.3910(19)
C6-C7	1.386(2)	C7-C8	1.385(2)	C8-C9	1.379(2)
C9-C10	1.388(2)				

Table 6. Bond Angles in Compound 1412, °

N1-02-C3	108.93(9)	C2-N1-O2	118.38(10)	01-C2-N1	123.11(12)
01-C2-C1	122.57(12)	N1-C2-C1	114.32(11)	O2-C3-C4	107.75(10)
C5-C4-C3	109.75(11)	C6-C5-C10	118.42(13)	C6-C5-C4	121.22(12)
C10-C5-C4	120.30(13)	C7-C6-C5	120.78(14)	C8-C7-C6	120.23(15)
C9-C8-C7	119.55(14)	C8-C9-C10	120.25(14)	C9-C10-C5	120.77(14)

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} R1 &= \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ wR2 &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ GOF &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ where \ n &= the \ number \ of \ reflections \ and \ p = the \ number \ of \ parameters \ refined. \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

X-ray Structure Determination of Compound 1392 (i.e., compound 6; CCDC 1427789)

Compound 1392, $C_8H_{11}PO_3$, crystallizes in the monoclinic space group P2₁ (systematic absences 0k0: k=odd) with a=5.5818(3)Å, b=7.5619(4)Å, c=10.4572(5)Å, β =103.324(2)°, V=429.51(4)Å³, Z=2, and d_{calc}=1.439 g/cm³. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 2541 frames were collected with a crystal to detector distance of 37.5 mm, rotation widths of 0.5° and exposures of 10 seconds:

scan type	20	ω	φ	χ	frames
φ	-23.00	315.83	12.48	28.88	704
ω	-23.00	333.49	158.99	-70.01	69
ω	12.00	322.28	290.21	72.15	105
ω	-20.50	19.29	178.64	-31.86	105
φ	19.50	59.55	348.71	-26.26	739
ф ф	-23.00	334.21	38.95	73.66	739
Ψ ω	-10.50	306.95	272.07	99.72	80

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 9150 reflections were measured over the ranges 2.00 $\leq \theta \leq 25.35^{\circ}$, $-6 \leq h \leq 6$, $-9 \leq k \leq 9$, $-12 \leq l \leq 12$ yielding 1563 unique reflections (Rint = 0.0179). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.6974, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting scheme used was $w=1/[\sigma^2(F_0^2) + (0.0205P)^2 + 0.1314P]$ where P = $(F_0^2 + 2F_c^2)/3$. Non-hydrogen atoms

were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0171 and wR2=0.0463 for 1562 observed reflections for which $F > 4\sigma(F)$ and R1=0.0171 and wR2=0.0463 and GOF =1.129 for all 1563 unique, non-zero reflections and 112 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.000 and the two most prominent peaks in the final difference Fourier were +0.211 and -0.175 e/Å³. The molecule is hydrogen-bonded to two neighboring molecules as shown in the drawing below:

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 1. is an ORTEP^{vii} representation of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of the title compound with 50% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1392

Empirical formula	$C_8H_{11}PO_3$		
Formula weight	186.14		
Temperature	100(1) K		
Wavelength	0.71073 Å		
Crystal system	monoclinic		
Space group	P21		
Cell constants:			
a	5.5818(3) Å		
b	7.5619(4) Å		
C	10.4572(5) Å		
β	103.324(2)°		
Volume	429.51(4) Å ³		
Z	2		
Density (calculated)	1.439 Mg/m ³		
Absorption coefficient	0.282 mm ⁻¹		
F(000)	196		
Crystal size	0.35 x 0.24 x 0.08 mm ³		
Theta range for data collection	2.00 to 25.35°		
Index ranges	$-6 \le h \le 6, -9 \le k \le 9, -12 \le l \le 12$		
Reflections collected	9150		
Independent reflections	1563 [R(int) = 0.0179]		
Completeness to theta = 25.35°	99.2 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7452 and 0.6974		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	1563 / 1 / 112		
Goodness-of-fit on F ²	1.129		
Final R indices [I>2sigma(I)]	R1 = 0.0171, wR2 = 0.0463		
R indices (all data)	R1 = 0.0171, wR2 = 0.0463		
Absolute structure parameter	0.05(7)		
Largest diff. peak and hole	0.211 and -0.175 e.Å ⁻³		

Atom	X	У	Z	U _{eq} , A ²		
C1	0.7053(3)	0.43808(18)	0.62098(13)	0.0134(3)		
C2	0.5431(3)	0.36236(18)	0.51283(14)	0.0157(3)		
C3	0.5886(3)	0.37566(19)	0.38812(14)	0.0176(3)		
C4	0.7939(3)	0.46620(19)	0.36936(14)	0.0186(3)		
C5	0.9546(3)	0.54277(19)	0.47620(14)	0.0177(3)		
C6	0.9107(2)	0.52866(18)	0.60122(14)	0.0157(3)		
C7	0.6633(3)	0.41141(18)	0.75764(14)	0.0161(3)		
C8	0.7652(3)	0.22973(17)	0.80947(13)	0.0129(3)		
01	0.78496(17)	-0.02376(12)	0.99438(10)	0.0150(2)		
02	0.44370(16)	0.19093(13)	0.97077(9)	0.0158(2)		
O3	0.87027(18)	0.29459(13)	1.07246(9)	0.0157(2)		
P1	0.71895(̀5) ′́	0.16770(̀4) ′́	0.96696(3)	0.0108Ò(́9)		
$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}aa^*bb^*\cos\gamma + 2U_{13}aa^*cc^*\cos\beta + 2U_{23}bb^*cc^*\cos\alpha]$						

Table 2. Refined Positional Parameters for Compound 1392

 Table 3. Positional Parameters for Hydrogens in Compound 1392

Atom	Х	у	Z	U _{iso} , A ²
H2	0.4040	0.3027	0.5245	0.021
H3	0.4809	0.3237	0.3169	0.023
H4	0.8237	0.4755	0.2857	0.025
H5	1.0923	0.6038	0.4640	0.024
H6	1.0195	0.5801	0.6723	0.021
H7a	0.4887	0.4175	0.7550	0.021
H7b	0.7459	0.5039	0.8157	0.021
H8a	0.9406	0.2283	0.8137	0.017
H8b	0.6897	0.1406	0.7462	0.017
H2a	0.4159	0.2955	0.9821	0.024
H3a	0.9714	0.3480	1.0413	0.024

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
C1	0.0156(6)	0.0095(6)	0.0152(7)	0.0023(5)	0.0041(5)	0.0048(5)	
C2	0.0153(7)	0.0116(6)	0.0194(7)	0.0020(6)	0.0027(6)	-0.0001(5)	
C3	0.0217(7)	0.0136(7)	0.0153(7)	0.0000(5)	-0.0002(6)	0.0023(6)	
C4	0.0265(8)	0.0156(8)	0.0153(7)	0.0019(5)	0.0084(6)	0.0052(6)	
C5	0.0160(7)	0.0155(7)	0.0236(8)	0.0039(6)	0.0084(6)	0.0010(5)	
C6	0.0148(7)	0.0134(7)	0.0173(7)	-0.0001(5)	0.0005(5)	0.0018(5)	
C7	0.0202(7)	0.0131(7)	0.0159(7)	0.0009(5)	0.0060(5)	0.0022(5)	
C8	0.0144(6)	0.0130(6)	0.0119(6)	-0.0003(5)	0.0044(5)	0.0001(5)	
01	0.0130(5)	0.0120(5)	0.0213(5)	0.0023(4)	0.0066(4)	0.0006(4)	
02	0.0138(4)	0.0102(5)	0.0252(5)	-0.0015(4)	0.0080(4)	0.0003(4)	
O3	0.0181(5)	0.0161(5)	0.0142(5)	-0.0009(4)	0.0062(4)	-0.0047(4)	
P1 0.01088(15) 0.00919(15) 0.01306(15) 0.00027(14) 0.00429(10) -0.00019(1							
The form of	The form of the anisotropic displacement parameter is:						
exp[-2π²(a* ²	$U_{11}h^2 + b^{*2}U_{22}k^2 + c$	* ² U ₃₃ l ² +2b*c*U ₂	₂₃kl+2a*c*U₁₃hl-	⊦2a*b*U ₁₂ hk)]			

Table 4. Refined Thermal Parameters (U's) for Compound 1392

Table 5. Bond Distances in Compound 1392, Å

	1 00 1 5 (10)	01.00	4 0070(40)	01.07	4 5 4 9 9 (4 9)
C1-C6	1.3915(19)	C1-C2	1.3978(19)	C1-C7	1.5139(18)
C2-C3	1.388(2)	C3-C4	1.387(2)	C4-C5	1.388(2)
C5-C6	1.389(2)	C7-C8	1.5371(18)	C8-P1	1.7874(13)
O1-P1	1.5051(9)	O2-P1	1.5560(9) ′	O3-P1	1.5562(10)

Table 6. Bond Angles in Compound 1392, °

C6-C1-C2	118,92(13)	C6-C1-C7	121,18(12)	C2-C1-C7	119.80(13)
LC3-C2-C1	120 39(13)	C4-C3-C2	120 29(13)	C3-C4-C5	119 59(13)
00 02 01	120.00(10)	010002	120.20(10)	00 01 00	110.00(10)
C_{1}	120 28(13)	C5-C6-C1	120 53(13)	C1_C7_C8	100 08(11)
04-03-00	120.20(10)	03-00-01	120.00(10)	01-07-00	103.00(11)
C7_C9_D1	116 06(0)	$O1_P1_O2$	107 67(5)	01_D1_03	112 80/6)
07-00-11	110.00(9)	01-11-02	107.07(3)	01-11-03	112.09(0)
	106 06/5		110 20/6)		110 21/6
02-61-03	100.00(5)	01-F1-00	110.30(0)	02-F I-Co	110.31(0)
	100 74/6		· · /		()
03-P1-08	108.74(0)				

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} R1 &= \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ wR2 &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ GOF &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ where \ n &= the \ number \ of \ reflections \ and \ p = the \ number \ of \ parameters \ refined. \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

Compound 1401, $C_8H_{12}SO_4Cl_2Na_2$, crystallizes in the triclinic space group $P\overline{1}$ with a=6.0118(3)Å, b=8.0508(4)Å, c=18.6019(10)Å, α =82.918(2)°, β =87.785(2)°, γ =89.956(2)°, V=892.78(8)Å³, Z=4, and d_{calc}=2.389 g/cm³. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 2221 frames were collected with a crystal to detector distance of 37.4 mm, rotation widths of 0.5° and exposures of 5 seconds:

scan type	20	ω	φ	χ	frames
φ	-15.50	258.48	8.28	19.46	739
ω	-10.50	306.95	272.07	99.72	80
φ	-20.50	342.55	321.55	-73.06	496
φ	-23.00	315.83	12.48	28.88	739
Ψ ω	17.00	333.38	184.44	82.07	91
ω	17.00	341.19	318.36	83.36	76

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 17811 reflections were measured over the ranges 2.21 $\leq \theta \leq 25.39^{\circ}$, -7 $\leq h \leq$ 7, -9 $\leq k \leq$ 9, -22 $\leq I \leq$ 22 yielding 3277 unique reflections (Rint = 0.0310). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.6495, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting

scheme used was w=1/[$\sigma^2(F_0^2)$ + (0.0483P)² + 0.8076P] where P = (F₀² + 2F_c²)/3. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0313 and wR2=0.0835 for 3100 observed reflections for which F > 4 σ (F) and R1=0.0329 and wR2=0.0854 and GOF =1.053 for all 3277 unique, non-zero reflections and 236 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.001 and the two most prominent peaks in the final difference Fourier were +0.745 and -0.532 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figures 1. and 2. are ORTEP^{vii} representations of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of molecule no. 1 of the asymmetric unit with 50% probability thermal ellipsoids.

Figure 2. ORTEP drawing of molecule no. 2 of the asymmetric unit with 50% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1401

Empirical formula	$C_8H_{12}SO_4Cl_2Na_2$
Formula weight	321.12
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	triclinic
Space group	PĪ
Cell constants:	
a	6.0118(3) Å
b	8.0508(4) Å
с	18.6019(10) Å
α	82.918(2)°
β	87.785(2)°
γ	89.956(2)°
Volume	892.78(8) Å ³
Z	4
Density (calculated)	2.389 Mg/m ³
Absorption coefficient	1.053 mm ⁻¹
F(000)	656
Crystal size	0.32 x 0.28 x 0.04 mm ³
Theta range for data collection	2.21 to 25.39°
Index ranges	-7 ≤ h ≤ 7, -9 ≤ k ≤ 9, -22 ≤ l ≤ 22
Reflections collected	17811
Independent reflections	3277 [R(int) = 0.0310]
Completeness to theta = 25.39°	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.6495
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3277 / 0 / 236
Goodness-of-fit on F ²	1.053
Final R indices [I>2sigma(I)]	R1 = 0.0313, wR2 = 0.0835
R indices (all data)	R1 = 0.0329, wR2 = 0.0854
Largest diff. peak and hole	0.745 and -0.532 e.Å ⁻³

Table 2. Refined Positional Parameters for Compound	1401
---	------

Atom	Х	У	Z	U _{eq} , A ²
C1	0.0878(3)	0.6241(2)	0.20965(9)	0.0113(3)
C2	-0.1216(3)	0.5478(2)	0.21939(10)	0.0143(4)
C3	-0.2424(3)	0.5164(2)	0.16053(10)	0.0187(4)
C4	-0.1571(3)	0.5639(2)	0.09063(10)	0.0214(4)
C5	0.0479(3)	0.6430(2)	0.08032(10)	0.0219(4)
C6	0.1705(3)	0.6727(2)	0.13937(10)	0.0164(4)
C7	0.2204(3)	0.6504(2)	0.27478(9)	0.0133(4)
C8	0.2881(3)	0.4828(2)	0.31617(9)	0.0091(3)
01	0.20495(18)	0.56718(14)	0.44461(6)	0.0092(2)
O2	0.45246(18)	0.33502(14)	0.43376(6)	0.0095(2)
O3	0.57544(19)	0.62217(14)	0.39280(6)	0.0108(3)
S1	0.39110(6)	0.50262(5)	0.40280(2)	0.00626(12)
Na1	0.63621(10)	0.16907(8)	0.52918(3)	0.00880(16)
C1'	0.5903(3)	0.0381(2)	0.20953(9)	0.0122(3)
C2'	0.3812(3)	0.1113(2)	0.21422(10)	0.0175(4)
C3'	0.2739(3)	0.1758(2)	0.15260(12)	0.0266(5)
C4'	0.3734(4)	0.1654(3)	0.08502(12)	0.0322(5)
C5'	0.5798(4)	0.0906(3)	0.07942(11)	0.0291(5)
C6'	0.6882(3)	0.0270(2)	0.14139(10)	0.0188(4)
C7'	0.7086(3)	-0.0253(2)	0.27757(10)	0.0167(4)
C8'	0.7862(3)	0.1198(2)	0.31631(8)	0.0092(3)
01'	0.70525(18)	-0.03536(14)	0.44530(6)	0.0094(2)
O2'	0.95320(18)	0.20307(14)	0.43332(6)	0.0094(2)
O3'	1.07490(19)	-0.06170(14)	0.39286(6)	0.0109(3)
S1'	0.89072(6)	0.05252(5)	0.40293(2)	0.00638(12)
Na1'	0.86362(10)	0.68558(8)	0.47097(3)	0.00875(16)
$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2]$	+U ₂₂ (bb*) ² +U ₃₃ (cc*) ² +	2U ₁₂ aa*bb*cos y+2U	₁₃ aa*cc*cos β+2U ₂₃ bb	*cc*cosα]

Table 3. Positional Parameters for Hydrogens in Compound 1401

Atom	Х	У	Z	U _{iso} , A ²
H2	-0.1809	0.5176	0.2661	0.019
H3	-0.3804	0.4636	0.1679	0.025
H4	-0.2372	0.5426	0.0510	0.028
H5	0.1042	0.6765	0.0335	0.029
H6	0.3084	0.7255	0.1318	0.022
H7a	0.1317	0.7129	0.3068	0.018
H7b	0.3528	0.7157	0.2589	0.018
H8a	0.4018	0.4320	0.2877	0.012
H8b	0.1600	0.4085	0.3220	0.012
H2'	0.3127	0.1169	0.2595	0.023
H3'	0.1354	0.2260	0.1566	0.035
H4'	0.3017	0.2086	0.0434	0.043
H5'	0.6462	0.0830	0.0339	0.039
H6'	0.8267	-0.0232	0.1373	0.025
H7a'	0.8362	-0.0914	0.2651	0.022
H7b'	0.6089	-0.0971	0.3098	0.022
H8a'	0.6623	0.1950	0.3218	0.012
H8b'	0.9017	0.1819	0.2865	0.012

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0139(8)	0.0074(8)	0.0129(8)	-0.0013(6)	-0.0034(7)	0.0036(6)
C2	0.0151(9)	0.0136(8)	0.0139(8)	-0.0004(7)	-0.0007(7)	0.0019(7)
C3	0.0152(9)	0.0172(9)	0.0239(10)	-0.0017(7)	-0.0069(7)	0.0000(7)
C4	0.0270(10)	0.0213(10)	0.0173(9)	-0.0048(7)	-0.0118(8)	0.0033(8)
C5	0.0296(11)	0.0243(10)	0.0114(9)	-0.0004(7)	-0.0007(8)	0.0030(8)
C6	0.0159(9)	0.0160(9)	0.0167(9)	0.0001(7)	-0.0001(7)	0.0000(7)
C7	0.0179(9)	0.0083(8)	0.0140(8)	-0.0010(6)	-0.0059(7)	0.0004(6)
C8	0.0106(8)	0.0086(8)	0.0086(8)	-0.0022(6)	-0.0024(6)	0.0002(6)
01	0.0084(6)	0.0087(6)	0.0108(6)	-0.0027(4)	0.0000(4)	0.0013(4)
02	0.0090(6)	0.0079(6)	0.0116(6)	-0.0007(4)	-0.0017(4)	0.0017(4)
O3	0.0097(6)	0.0105(6)	0.0121(6)	-0.0011(4)	-0.0014(4)	-0.0040(4)
S1	0.0056(2)	0.0054(2)	0.0080(2)	-0.00129(14)	-0.00097(14)	-0.00023(14)
Na1	0.0066(3)	0.0078(3)	0.0123(3)	-0.0026(2)	-0.0009(2)	0.0002(2)
C1'	0.0154(8)	0.0081(8)	0.0134(8)	-0.0019(6)	-0.0046(7)	-0.0030(6)
C2'	0.0163(9)	0.0147(9)	0.0224(10)	-0.0052(7)	-0.0025(7)	-0.0024(7)
C3'	0.0212(10)	0.0191(10)	0.0409(13)	-0.0039(9)	-0.0179(9)	0.0027(8)
C4'	0.0454(14)	0.0233(11)	0.0275(11)	0.0065(9)	-0.0257(10)	-0.0064(9)
C5'	0.0408(13)	0.0336(12)	0.0126(9)	-0.0019(8)	-0.0012(9)	-0.0159(10)
C6'	0.0178(9)	0.0221(10)	0.0178(9)	-0.0072(7)	0.0001(7)	-0.0053(7)
C7'	0.0261(10)	0.0093(8)	0.0157(9)	-0.0031(7)	-0.0099(7)	0.0020(7)
C8'	0.0109(8)	0.0082(8)	0.0084(8)	-0.0001(6)	-0.0028(6)	0.0008(6)
01'	0.0087(6)	0.0083(5)	0.0110(6)	-0.0002(4)	-0.0004(4)	-0.0016(4)
O2'	0.0092(6)	0.0073(6)	0.0123(6)	-0.0027(4)	-0.0019(4)	-0.0014(4)
O3'	0.0098(6)	0.0115(6)	0.0117(6)	-0.0025(4)	-0.0014(4)	0.0049(4)
S1'	0.0059(2)	0.0054(2)	0.0079(2)	-0.00103(14)	-0.00117(14)	0.00043(14)
Na1'	0.0066(3)	0.0075(3)	0.0122(3)	-0.0009(2)	-0.0008(2)	0.0001(2)
The form of t	the anisotropic o	lisplacement pa	rameter is:			
exp[-2π²(a* ² L	J ₁₁ h ² +b* ² U ₂₂ k ² +0	2* ² U ₃₃ l ² +2b*c*U	₂₃ kl+2a*c*U ₁₃ hl	+2a*b*U ₁₂ hk)]		

Table 4. Refined Thermal Parameters (U's) for Compound 1401

Table 5. Bond Distances in Compound 1401, Å

C1-C6	1.390(2)	C1-C2	1.397(2)	C1-C7	1.512(2)
C2-C3	1.386(3)	C3-C4	1.388(3)	C4-C5	1.383(3)
C5-C6	1.391(3)	C7-C8	1.532(2)	C8-S1	1.7738(16)
O1-S1	1.4692(12)	O1-Na1'#1	2.3226(13)	O1-Na1'#2	2.4373(13)
O1-Na1#2	2.4398(12)	02-S1	1.4534(11)	O2-Na1	2.3918(13)
O2-Na1'#2	2.5390(13)	O3-S1	1.4597(12)	O3-Na1'	2.3991(13)
O3-Na1#2	2.6468(13)	S1-Na1'#2	3.0003(7)	S1-Na1#2	3.0695(7)
Na1-O1'#3	2.3239(13)	Na1-O3'#4	2.3979(13)	Na1-01'	2.4285(13)
Na1-O1#2	2.4398(12)	Na1-02'	2.5503(13)	Na1-O3#2	2.6468(13)
Na1-S1'	3.0001(7)	Na1-S1#2	3.0695(7)	Na1-Na1'#2	3.2238(9)
Na1-Na1'#5	3.2272(9)	Na1-Na1#3	3.4849(12)	C1'-C6'	1.390(3)
C1'-C2'	1.392(3)	C1'-C7'	1.509(2)	C2'-C3'	1.382(3)
C3'-C4'	1.383(3)	C4'-C5'	1.385(3)	C5'-C6'	1.388(3)
C7'-C8'	1.529(2)	C8'-S1'	1.7740(16)	01'-S1'	1.4700(12)
O1'-Na1#3	2.3239(12)	O1'-Na1'#6	2.4391(13)	02'-S1'	1.4546(11)
O2'-Na1'#5	2.3943(13)	O3'-S1'	1.4600(12)	O3'-Na1#4	2.3979(13)
O3'-Na1'#6	2.6451(13)	S1'-Na1'#6	3.0690(7)	Na1'-O1#7	2.3226(13)
Na1'-O2'#5	2.3943(13)	Na1'-O1#2	2.4373(13)	Na1'-O1'#8	2.4391(13)
Na1'-O2#2	2.5390(13)	Na1'-O3'#8	2.6451(13)	Na1'-S1#2	3.0003(7)
Na1'-S1'#8	3.0690(7)	Na1'-Na1#2	3.2238(9)	Na1'-Na1#5	3.2272(9)
Na1'-Na1'#5	3.4811(12)		· /		、 <i>'</i>

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y,z #2 -x+1,-y+1,-z+1 #3 -x+1,-y,-z+1 #4 -x+2,-y,-z+1 #5 -x+2,-y+1,-z+1 #6 x,y-1,z #7 x+1,y,z #8 x,y+1,z

Table 6. Bond Angles in Compound 1401, °

C6-C1-C2	118.58(16)	C6-C1-C7	121.45(16)	C2-C1-C7	119.96(15)
C3-C2-C1	121.01(17)	C2-C3-C4	119.87(17)	C5-C4-C3	119.62(17)
C4-C5-C6	120 55(17)	C1-C6-C5	120 35(17)	C1-C7-C8	111 05(13)
C7-C8-S1	113 16(11)	S1-01-Na1'#1	160 24(7)	S1-O1-Na1'#2	97 24(6)
Na1'#1-01-Na1'#2	03 07(1)	S1-O1-Na1#2	100.24(7)	$N_{21}'#1_{01}N_{21}#2$	85 28(4)
$N_{a1}#2_{1}N_{a1}#2$	127 40(5)	S1-O2-Na1	146 26(7)	$S1_02_Na1'#2$	03.20(4)
Not Ω^2 Not $\#^2$	91 60(4)	S1 O2 No1	122 22(7)	S1 O2 No1#2	33.44(0)
Nat 02 Nat #2	70.05(4)	00.01.02	132.22(7)	00.01 01	92.12(0)
02 $01 $ 01	19.20(4)	02-31-03	114.41(7)	02-31-01	111.10(7)
03-31-01	110.00(7)		100.24(7)	03-31-00	107.02(7)
	105.82(7)	02-51-Na1#2	57.64(5)	03-51-Na1#2	130.37(5)
01-51-Na1#2	53.69(5)	C8-S1-Na1'#2	115.60(6)	02-S1-Na1#2	130.65(5)
03-S1-Na1#2	59.51(5)	01-S1-Na1#2	51.39(5)	C8-S1-Na1#2	122.55(6)
Na1#2-S1-Na1#2	92.16(2)	01'#3-Na1-02	85.67(4)	01'#3-Na1-03'#4	114.07(5)
O2-Na1-O3'#4	160.26(5)	01'#3-Na1-01'	85.70(4)	02-Na1-01'	87.48(4)
O3'#4-Na1-O1'	93.26(4)	O1'#3-Na1-O1#2	134.59(5)	O2-Na1-O1#2	85.63(4)
O3'#4-Na1-O1#2	80.69(4)	O1'-Na1-O1#2	138.20(5)	O1'#3-Na1-O2'	141.31(5)
O2-Na1-O2'	80.38(4)	O3'#4-Na1-O2'	83.31(4)	01'-Na1-O2'	57.96(4)
O1#2-Na1-O2'	80.24(4)	O1'#3-Na1-O3#2	78.20(4)	O2-Na1-O3#2	81.20(4)
O3'#4-Na1-O3#2	102.58(4)	O1'-Na1-O3#2	160.91(5)	O1#2-Na1-O3#2	56.43(4)
O2'-Na1-O3#2	133.85(4)	O1'#3-Na1-S1'	113.45(4)	O2-Na1-S1'	81.66(3)
O3'#4-Na1-S1'	89.44(3) [′]	O1'-Na1-S1'	29.06(3)	O1#2-Na1-S1'	109.17(3)
O2'-Na1-S1'	28.96(3)	O3#2-Na1-S1'	158.39(4)	O1'#3-Na1-S1#2	106.52(̀4)́
02-Na1-S1#2	81.76(3)	O3'#4-Na1-S1#2	92,48(3)	01'-Na1-S1#2	162,94(4)
01#2-Na1-S1#2	28.07(3)	02'-Na1-S1#2	106.90(3)	O3#2-Na1-S1#2	28.37(3)
S1'-Na1-S1#2	135.09(2)	01'#3-Na1-Na1'#2	48 93(3)	02-Na1-Na1'#2	51 18(3)
03'#4-Na1-Na1'#2	14320(4)	01'-Na1-Na1'#2	114 19(4)	01#2-Na1-Na1'#2	92 75(3)
02'-Na1-Na1'#2	131 52(4)	03#2-Na1-Na1'#2	46 98(3)	S1'-Na1-Na1'#2	12649(2)
S1#2-Na1-Na1'#2	68 597(18)	01'#3-Na1-Na1'#5	167 22(4)	02-Na1-Na1'#5	106 67(4)
O3'#4-Na1-Na1'#5	53 67(3)	01'-Na1-Na1'#5	07 01(3)	01#2-Na1-Na1'#5	15 83(3)
$O2'_Na1_Na1'#5$	17 10(3)	O3#2-Na1-Na1'#5	100 00(3)	S1'-Na1-Na1'#5	72 589(10)
81#2 No1 No1!#5	70 704(10)	No1'#2 No1 No1'#5	100.00(0)	O1'#2 No1 No1#2	12.303(13)
O2 No1 No1#2	72.794(10) 05.25(4)	O2!#4 No1 No1#2	100 16(4)	$O1^{+}No1^{+}No1^{+}O$	44.02(3)
02-Na1-Na1#3	170.07(4)	O2' Na1 Na1#3	100.10(4)	$O_2 \#_2 N_{01} N_{01} \#_2$	41.00(3)
01#2-Na1-Na1#3	170.97(4)	02 - Na 1 - Na 1 # 3	90.07(4) 140.05(2)	No1!#2 No1 No1#2	121.40(4)
SI-NaI-NaI#S	120,09(2)		140.00(0)	rar #2-rar-rar #3	01.22(2)
Na1 #5-Na1-Na1#3	100.10(10)		110.00(17)		121.01(10)
	120.19(10)		121.04(18)		119.76(19)
	119.89(18)		120.28(19)		120.22(18)
	111.00(14)		112.81(11)	S1-01-Na1#3	159.41(7)
S1-01-Na1	97.58(6)	Na1#3-01-Na1	94.30(4)	S1'-01'-Na1'#6	100.51(6)
Na1#3-01-Na1#6	85.16(4)	Na1-01'-Na1'#6	127.81(5)	S1'-02'-Na1'#5	145.98(7)
S1'-02'-Na1	92.94(5)	Na1'#5-02'-Na1	81.42(4)	S1'-O3'-Na1#4	132.15(7)
S1'-O3'-Na1'#6	92.15(6)	Na1#4-O3'-Na1'#6	/9.41(4)	02'-S1'-O3'	114.31(7)
02'-51'-01'	111.29(7)	03'-51'-01'	110.81(7)	02'-S1'-C8'	106.45(7)
03'-S1'-C8'	107.66(7)	01'-S1'-C8'	105.79(7)	02'-S1'-Na1	58.10(5)
03'-S1'-Na1	136.39(5)	01'-S1'-Na1	53.36(5)	C8'-S1'-Na1	115.68(6)
O2'-S1'-Na1'#6	131.00(5)	O3'-S1'-Na1'#6	59.46(5)	O1'-S1'-Na1'#6	51.39(5)
C8'-S1'-Na1'#6	122.01(5)	Na1-S1'-Na1'#6	92.15(2)	O1#7-Na1'-O2'#5	85.98(4)
O1#7-Na1'-O3	113.65(5)	O2'#5-Na1'-O3	160.36(5)	O1#7-Na1'-O1#2	86.03(4)
O2'#5-Na1'-O1#2	87.24(4)	O3-Na1'-O1#2	93.37(4)	O1#7-Na1'-O1'#8	134.30(5)
O2'#5-Na1'-O1'#8	85.37(4)	O3-Na1'-O1'#8	81.08(4)	O1#2-Na1'-O1'#8	138.09(5)
O1#7-Na1'-O2#2	141.75(5)	O2'#5-Na1'-O2#2	80.37(4)	O3-Na1'-O2#2	83.33(4)
O1#2-Na1'-O2#2	57.92(4)	O1'#8-Na1'-O2#2	80.17(4)	O1#7-Na1'-O3'#8	77.87(4)
O2'#5-Na1'-O3'#8	81.37(4)	O3-Na1'-O3'#8	102.53(4)	O1#2-Na1'-O3'#8	160.84(4)
O1'#8-Na1'-O3'#8	56.47(4)	O2#2-Na1'-O3'#8	133.95(4)	O1#7-Na1'-S1#2	113.87(4)
O2'#5-Na1'-S1#2	81.56(3)	O3-Na1'-S1#2	89.46(3) [´]	O1#2-Na1'-S1#2	29.06(3)
O1'#8-Na1'-S1#2	109.0 4 (́3)	O2#2-Na1'-S1#2	28.92 (3)	O3'#8-Na1'-S1#2	158.4 6 (4)
O1#7-Na1'-S1'#8	106.21(4)	O2'#5-Na1'-S1'#8	81.84(3)	O3-Na1'-S1'#8	92.55(3)
O1#2-Na1'-S1'#8	162.87 (4)	O1'#8-Na1'-S1'#8	28.10(3)	O2#2-Na1'-S1'#8	106.95(3)
O3'#8-Na1'-S1'#8	28.39(3)	S1#2-Na1'-S1'#8	135.08(2)	O1#7-Na1'-Na1#2	166.80(4)
O2'#5-Na1'-Na1#2	106.69(4)	O3-Na1'-Na1#2	53.77(3)	O1#2-Na1'-Na1#2	98.03(3)
O1'#8-Na1'-Na1#2	45.91(3)	O2#2-Na1'-Na1#2	47.22(3)	O3'#8-Na1'-Na1#2	99.98(3)

S1#2-Na1'-Na1#2	72.612(19)	S1'#8-Na1'-Na1#2	72.789(19)	O1#7-Na1'-Na1#5	48.89(3)
O2'#5-Na1'-Na1#5	51.39(3)	O3-Na1'-Na1#5	143.01(4)	O1#2-Na1'-Na1#5	114.17(4)
O1'#8-Na1'-Na1#5	92.57(3)	O2#2-Na1'-Na1#5	131.72(4)	O3'#8-Na1'-Na1#5	46.92(3)
S1#2-Na1'-Na1#5	126.63(2)	S1'#8-Na1'-Na1#5	68.521(18)	Na1#2-Na1'-Na1#5	137.47(3)
O1#7-Na1'-Na1'#5	44.30(3)	O2'#5-Na1'-Na1'#5	85.39(4)	O3-Na1'-Na1'#5	107.99(̀4)́
O1#2-Na1'-Na1'#5	41.73(3)	O1'#8-Na1'-Na1'#5	170.7Š(́4)	O2#2-Na1'-Na1'#5	98.75(À) ́
O3'#8-Na1'-Na1'#5	121.41(4)	S1#2-Na1'-Na1'#5	70.00(2)	S1'#8-Na1'-Na1'#5	148.8Ò(́3)
Na1#2-Na1'-Na1'#5	138.36(3)	Na1#5-Na1'-Na1'#5	81.26(2)		~ /

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y,z #2 -x+1,-y+1,-z+1 #3 -x+1,-y,-z+1 #4 -x+2,-y,-z+1 #5 -x+2,-y+1,-z+1 #6 x,y-1,z

#7 x+1,y,z #8 x,y+1,z

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} R1 &= \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ wR2 &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ GOF &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ where \ n &= the \ number \ of \ reflections \ and \ p = the \ number \ of \ parameters \ refined. \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

X-ray Structure Determination of Compound 1391 (i.e., compound 10; CCDC 1427790)

Compound 1391, C₈H₁₁NSO₂, crystallizes in the orthorhombic space group P2₁2₁2₁ (systematic absences h00: h=odd, 0k0: k=odd, and 00l: l=odd) with a=5.8429(4)Å, b=7.5550(6)Å, c=20.0010(15)Å, V=882.91(11)Å³, Z=4, and d_{calc}=1.394 g/cm³. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 1547 frames were collected with a crystal to detector distance of 37.5 mm, rotation widths of 0.5° and exposures of 5 seconds:

scan type	20	ω	φ	χ	frames
φ	-23.00	315.83	12.48	28.88	739
φ.	-15.50	349.33	103.59	-77.44	69
φ	-23.00	328.34	44.17	79.39	739

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 10455 reflections were measured over the ranges 2.04 $\leq \theta \leq 25.36^{\circ}$, $-6 \leq h \leq 7$, $-9 \leq k \leq 9$, $-24 \leq l \leq 24$ yielding 1608 unique reflections (Rint = 0.0159). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.6885, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting scheme used was $w=1/[\sigma^2(F_0^2) + (0.0332P)^2 + 0.2108P]$ where P = $(F_0^2 + 2F_c^2)/3$. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined isotropically. Refinement converged to R1=0.0195 and wR2=0.0527 for 1598 observed reflections for which F > 4 σ (F) and R1=0.0196 and

wR2=0.0530 and GOF =1.077 for all 1608 unique, non-zero reflections and 155 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.001 and the two most prominent peaks in the final difference Fourier were +0.205 and -0.314 e/Å³.

The molecule is hydrogen-bonded to two neighboring molecules as shown in the drawing below:

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 1. is an ORTEP^{vii} representation of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of the title compound with 50% probability thermal ellipsoids.

•	•
Empirical formula	C ₈ H ₁₁ NSO ₂
Formula weight	185.24
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	orthorhombic
Space group	P212121
Cell constants:	
a	5.8429(4) Å
b	7.5550(6) Å
c	20.0010(15) Å
Volume	882.91(11) Å ³
Z	4
Density (calculated)	1.394 Mg/m ³
Absorption coefficient	0.324 mm ⁻¹
F(000)	392
Crystal size	0.45 x 0.38 x 0.06 mm ³
Theta range for data collection	2.04 to 25.36°
Index ranges	$-6 \le h \le 7, -9 \le k \le 9, -24 \le l \le 24$
Reflections collected	10455
Independent reflections	1608 [R(int) = 0.0159]
Completeness to theta = 25.36°	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.6885
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1608 / 0 / 155
Goodness-of-fit on F ²	1.077
Final R indices [I>2sigma(I)]	R1 = 0.0195, wR2 = 0.0527
R indices (all data)	R1 = 0.0196, wR2 = 0.0530
Absolute structure parameter	0.24(6)
Largest diff. peak and hole	0.205 and -0.314 e.Å ⁻³

Table 1. Summary of Structure Determination of Compound 1391

Atom	Х	У	Z	U _{eq} , A ²
C1	0.6505(2)	0.72938(16)	0.30559(7)	0.0147(3)
C2	0.5428(3)	0.66141(19)	0.24915(7)	0.0169(3)
C3	0.6416(2)	0.67986(18)	0.18624(7)	0.0187(3)
C4	0.8494(2)	0.76743(18)	0.17919(7)	0.0197(3)
C5	0.9581(3)	0.8366(2)	0.23530(7)	0.0194(3)
C6	0.8594(2)	0.81720(17)	0.29800(6)	0.0167(3)
C7	0.5489(2)	0.70389(19)	0.37427(7)	0.0173(3)
C8	0.6803(2)	0.55942(17)	0.41150(6)	0.0143(3)
N1	0.35288(19)	0.46355(15)	0.50515(5)	0.0173(2)
01	0.60947(15)	0.71092(11)	0.52756(4)	0.0147(2)
02	0.76226(16)	0.40593(13)	0.52435(5)	0.0186(2)
S1	0.60895(̀5) ´	0.53759(4) ′	0.497628(1́4)	0.01228(10)
U _{eq} = ¹ / ₃ [U ₁₁ (aa*) ²	² +U ₂₂ (bb*) ² +U ₃₃ (cc*) ² +	2U ₁₂ aa*bb*cos γ+2U ₁	₁₃ aa*cc*cos β+2U ₂₃ bb'	*cc*cosα]

Table 2. Refined Positional Parameters for Compound 1391

Table 3. Positional Parameters for Hydrogens in Compound 1391

Atom	Х	У	Z	U _{iso} , A ²
H1a	0.332(3)	0.355(2)	0.4936(8)	0.024(4)
H1b	0.246(4)	0.539(2)	0.4938(9)	0.035(5)
H2	0.403(3)	0.603(2)	0.2556(7)	0.019(4)
H3	0.574(3)	0.637(2)	0.1474(8)	0.023(4)
H4	0.920(3)	0.773(2)	0.1348(9)	0.022(4)
H5	1.101(3)	0.889(2)	0.2310(8)	0.025(4)
H6	0.932(3)	0.866(2)	0.3366(8)	0.023(4)
H7a	0.559(3)	0.814(2)	0.4004(7)	0.016(4)
H7b	0.390(3)	0.675(2)	0.3707(8)	0.022(4)
H8a	0.844(3)	0.588(2)	0.4108(8)	0.025(4)
H8b	0.657(3)	0.440(2)	0.3910(7)	0.017(̀4)́

Table 4. Refined Thermal Parameters (U's) for Compound 1391

Atom	U_{11}	U_{22}	U ₃₃	U_{23}	U ₁₃	U ₁₂	
C1	0.0160(6)	0.0121(6)	0.0160(6)	0.0014(5)	-0.0001(5)	0.0038(5)	
C2	0.0174(7)	0.0150(6)	0.0183(6)	0.0007(5)	-0.0003(5)	0.0002(7)	
C3	0.0235(7)	0.0176(7)	0.0151(6)	-0.0015(5)	-0.0037(6)	0.0008(6)	
C4	0.0235(7)	0.0194(7)	0.0162(7)	0.0021(5)	0.0046(5)	0.0023(6)	
C5	0.0174(7)	0.0167(7)	0.0240(7)	0.0024(6)	0.0014(6)	-0.0008(7)	
C6	0.0188(6)	0.0142(6)	0.0173(6)	-0.0004(5)	-0.0034(5)	0.0003(6)	
C7	0.0183(6)	0.0186(7)	0.0151(6)	0.0006(5)	0.0005(5)	0.0033(6)	
C8	0.0169(7)	0.0137(6)	0.0124(6)	-0.0022(5)	0.0017(5)	0.0002(5)	
N1	0.0182(5)	0.0120(5)	0.0217(6)	-0.0006(5)	0.0010(4)	-0.0019(4)	
01	0.0169(4)	0.0126(4)	0.0147(4)	-0.0020(3)	0.0001(4)	0.0005(4)	
02	0.0224(5)	0.0163(5)	0.0171(4)	0.0009(4)	-0.0023(4)	0.0047(4)	
S1 0.01492(16) 0.01041(16) 0.01150(15) -0.00018(12) -0.00055(12) 0.00070(10							
The form of the anisotropic displacement parameter is:							
exp[-2π ² (a* ²)	J ₁₁ h ² +b* ² U ₂₂ k ² +c	* ² U ₃₃ l ² +2b*c*U ₂	₃kl+2a*c*U₁₃hl+	⊦2a*b*U ₁₂ hk)]			

Table 5. Bond Distances in Compound 1391, Å

C1-C2	1.391(2)	C1-C6	1.3976(18)	C1-C7	1.5089(18)
C2-C3	1.3914(19)	C2-H2	0.938(17)	C3-C4	1.390(2)
C3-H3	0.930(17)	C4-C5	1.391(2)	C4-H4	0.980(18)
C5-C6	1.388Ò(19)	C5-H5	0.928(18)	C6-H6	0.954(17)
C7-C8	1.5281(18)	C7-H7a	0.983(16)	C7-H7b	0.954(18)
C8-S1	1.7800(13)	C8-H8a	0.979(18)	C8-H8b	1.000(16)
N1-S1	1.6044(11)	N1-H1a	0.864(18)	N1-H1b	0.88(2)
01-S1	1.4399(9) ´	O2-S1	1.4413(10)		

Table 6. Bond Angles in Compound 1391, °

118.85(12)	C2-C1-C7	120.91(12)	C6-C1-C7	120.21(12)
120.60(13)	C1-C2-H2	117.1(9)	C3-C2-H2	122.3(9)
120.14(13)	C4-C3-H3	116.9(11)	C2-C3-H3	122.9(11)
119.71(13)	C3-C4-H4	118.7(10)	C5-C4-H4	121.5(10)
119.98(13)	C6-C5-H5	120.1(10)	C4-C5-H5	119.8(10)
120.72(12)	C5-C6-H6	120.3(10)	C1-C6-H6	118.9(10)
109.70(11)	C1-C7-H7a	110.6(9)	C8-C7-H7a	108.2(9)
110.1(9)	C8-C7-H7b	111.3(10)	H7a-C7-H7b	106.9(14)
114.84(9)	C7-C8-H8a	109.0(10)	S1-C8-H8a	105.3(9)
112.2(9)	S1-C8-H8b	106.3(9)	H8a-C8-H8b	108.9(14)
116.1(11)	S1-N1-H1b	114.4(13)	H1a-N1-H1b	116.9(17)
118.18(6)	O1-S1-N1	106.26(6)	O2-S1-N1	107.71(6)
108.52(6)	O2-S1-C8	106.10(6)	N1-S1-C8	109.96(6)
	118.85(12) 120.60(13) 120.14(13) 119.71(13) 119.98(13) 120.72(12) 109.70(11) 110.1(9) 114.84(9) 112.2(9) 116.1(11) 118.18(6) 108.52(6)	118.85(12)C2-C1-C7120.60(13)C1-C2-H2120.14(13)C4-C3-H3119.71(13)C3-C4-H4119.98(13)C6-C5-H5120.72(12)C5-C6-H6109.70(11)C1-C7-H7a110.1(9)C8-C7-H7b114.84(9)C7-C8-H8a112.2(9)S1-C8-H8b116.1(11)S1-N1-H1b118.18(6)O1-S1-N1108.52(6)O2-S1-C8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} R1 &= \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ wR2 &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ GOF &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ where \ n &= the \ number \ of \ reflections \ and \ p = the \ number \ of \ parameters \ refined. \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

Compound 1357, $C_{10}H_{15}NSO_2$, crystallizes in the orthorhombic space group Pca2₁ (systematic absences h0l: h=odd and 0kl: l=odd) with a=15.8467(11)Å, b=20.1022(14)Å, c=6.8680(5)Å, V=2187.8(3)Å³, Z=8, and d_{calc}=1.295 g/cm³. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 3591 frames were collected with a crystal to detector distance of 37.6 mm, rotation widths of 0.5° and exposures of 15 seconds:

scan type	20	ω	φ	χ	frames
φ	-23.00	315.83	12.48	28.88	739
ω	14.50	306.52	54.11	21.36	103
φ	-15.50	258.48	18.97	19.46	715
ф ф	-10.50	336.23	38.95	73.66	739
ф ф	19.50	59.55	353.14	-26.26	727
ф ф	-18.00	353.69	82.73	-86.54	459
ω	2.00	308.89	175.72	99.23	109

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 67397 reflections were measured over the ranges $1.64 \le \theta \le 25.38^{\circ}$, $-19 \le h \le 19$, $-24 \le k \le 24$, $-8 \le l \le 8$ yielding 3989 unique reflections (Rint = 0.0216). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.6915, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). The asymmetric unit consists of two

molecules. Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting scheme used was $w=1/[\sigma^2(F_o^2) + (0.0228P)^2 + 0.7245P]$ where P = $(F_o^2 + 2F_c^2)/3$. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0228 and wR2=0.0581 for 3853 observed reflections for which F > 4 σ (F) and R1=0.0246 and wR2=0.0598 and GOF =1.134 for all 3989 unique, non-zero reflections and 256 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.001 and the two most prominent peaks in the final difference Fourier were +0.279 and -0.193 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figures 1. and 2. are ORTEP^{vii} representations of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of molecule no. 1 of the asymmetric unit with 50% probability thermal ellipsoids.

Figure 2. ORTEP drawing of molecule no. 2 of the asymmetric unit with 50% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1357

Empirical formula	$C_{10}H_{15}NSO_2$
Formula weight	213.29
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	orthorhombic
Space group	Pca2 ₁
Cell constants:	
a	15.8467(11) Å
b	20.1022(14) Å
С	6.8680(5) Å
Volume	2187.8(3) Å ³
Z	8
Density (calculated)	1.295 Mg/m ³
Absorption coefficient	0.271 mm ⁻¹
F(000)	912
Crystal size	0.42 x 0.14 x 0.02 mm ³
Theta range for data collection	1.64 to 25.38°
Index ranges	-19 ≤ h ≤ 19, -24 ≤ k ≤ 24, -8 ≤ l ≤ 8
Reflections collected	67397
Independent reflections	3989 [R(int) = 0.0216]
Completeness to theta = 25.38°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.6915
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3989 / 1 / 256
Goodness-of-fit on F ²	1.134
Final R indices [I>2sigma(I)]	R1 = 0.0228, wR2 = 0.0581
R indices (all data)	R1 = 0.0246, wR2 = 0.0598
Absolute structure parameter	0.01(4)
Largest diff. peak and hole	0.279 and -0.193 e.Å ⁻³

Atom	Х	у	Z	U _{eq} , A ²
C1	0.39833(9)	0.25581(8)	0.1192(2)	0.0166(3)
C2	0.40679(10)	0.19053(8)	0.1818(2)	0.0199(3)
C3	0.36642(10)	0.13870(8)	0.0863(2)	0.0210(4)
C4	0.31614(10)	0.15194(8)	-0.0746(2)	0.0203(3)
C5	0.30828(9)	0.21666(8)	-0.1421(2)	0.0193(3)
C6	0.34954(10)	0.26811(8)	-0.0462(2)	0.0184(3)
C7	0.43570(9)	0.31344(8)	0.2305(2)	0.0200(3)
C8	0.37189(10)	0.33989(8)	0.3799(2)	0.0197(3)
C9	0.40363(10)	0.40137(8)	0.4833(3)	0.0199(3)
C10	0.39419(10)	0.55223(8)	0.6613(3)	0.0239(4)
N1	0.33869(8)	0.42459(7)	0.6228(2)	0.0185(3)
01	0.29136(7)	0.49285(6)	0.89793(18)	0.0261(3)
02	0.43935(8)	0.45416(6)	0.88299(19)	0.0306(3)
S1	0.36595(2)	0.478988(19)	0.78481(5)	0.01713(10)
C1'	0.41291(9)	0.76803(8)	0.1378(2)	0.0173(3)
C2'	0.42073(10)	0.70499(8)	0.2188(2)	0.0222(3)
C3'	0.37159(10)	0.65232(8)	0.1519(3)	0.0250(4)
C4'	0.31405(10)	0.66226(9)	0.0027(3)	0.0247(4)
C5'	0.30568(10)	0.72466(8)	-0.0796(3)	0.0226(4)
C6'	0.35474(10)	0.77713(8)	-0.0127(2)	0.0188(3)
C7'	0.46608(9)	0.82592(8)	0.2057(3)	0.0215(3)
C8'	0.41617(10)	0.88048(8)	0.3099(2)	0.0197(3)
C9'	0.37677(10)	0.85521(8)	0.4974(2)	0.0179(3)
C10'	0.38580(10)	1.03121(7)	0.5778(3)	0.0203(3)
N1'	0.32323(7)	0.90349(6)	0.60128(19)	0.0168(3)
01'	0.29822(7)	0.98428(5)	0.86277(17)	0.0231(3)
O2'	0.44100(7)	0.93820(6)	0.81187(18)	0.0243(3)
S1'	0.36360(2)	0.962732(19)	0.73120(5)	0.01536(9)
U _{eq} = ¹ / ₃ [U ₁₁ (aa*) ²	+U ₂₂ (bb*) ² +U ₃₃ (cc*) ² +	2U ₁₂ aa*bb*cos γ+2U ₁	3aa*cc*cos β+2U23bb	*cc*cosα]

Table 2. Refined Positional Parameters for Compound 1357

Atom	Х	У	Z	U _{iso} , A ^z
H2	0.4402	0.1813	0.2899	0.027
H3	0.3730	0.0952	0.1299	0.028
H4	0.2878	0.1175	-0.1370	0.027
H5	0.2755	0.2256	-0.2513	0.026
H6	0.3446	0.3114	-0.0928	0.024
H7a	0.4509	0.3487	0.1407	0.027
H7b	0.4865	0.2991	0.2970	0.027
H8a	0.3194	0.3503	0.3141	0.026
H8b	0.3604	0.3055	0.4753	0.026
H9a	0.4555	0.3912	0.5523	0.027
H9b	0.4155	0.4361	0.3891	0.027
H10a	0.4107	0.5855	0.7540	0.036
H10b	0.3468	0.5680	0.5874	0.036
H10c	0.4405	0.5432	0.5751	0.036
H2'	0.4592	0.6979	0.3188	0.030
H3'	0.3774	0.6104	0.2075	0.033
H4'	0.2812	0.6271	-0.0419	0.033
H5'	0.2672	0.7315	-0.1799	0.030
H6'	0.3488	0.8190	-0.0689	0.025
H7a'	0.4943	0.8453	0.0939	0.029
H7b'	0.5093	0.8094	0.2932	0.029
H8a'	0.4535	0.9174	0.3393	0.026
H8b'	0.3721	0.8967	0.2243	0.026
H9a'	0.3430	0.8163	0.4674	0.024
H9b'	0.4217	0.8412	0.5841	0.024
H10a'	0.4009	1.0690	0.6557	0.030
H10b'	0.3368	1.0416	0.5016	0.030
H10c'	0.4318	1.0202	0.4927	0.030
H1	0.2881	0.4396	0.5662	0.030
H1'	0.2775	0.9171	0.5289	0.030

Table 3. Positional Parameters for Hydrogens in Compound 1357

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂		
C1	0.0117(7)	0.0210(8)	0.0171(8)	-0.0026(6)	0.0046(6)	0.0016(6)		
C2	0.0163(7)	0.0270(8)	0.0165(8)	0.0013(6)	0.0011(6)	0.0051(6)		
C3	0.0224(8)	0.0173(8)	0.0233(9)	0.0007(7)	0.0069(7)	0.0036(6)		
C4	0.0170(7)	0.0214(8)	0.0226(8)	-0.0071(7)	0.0043(6)	-0.0030(6)		
C5	0.0134(7)	0.0274(8)	0.0171(8)	-0.0026(6)	0.0000(6)	0.0021(6)		
C6	0.0173(8)	0.0168(8)	0.0209(9)	0.0005(6)	0.0030(6)	0.0011(6)		
C7	0.0159(7)	0.0230(8)	0.0211(8)	-0.0023(7)	-0.0002(7)	-0.0009(6)		
C8	0.0178(8)	0.0215(8)	0.0198(8)	-0.0032(7)	0.0001(7)	-0.0006(6)		
C9	0.0144(7)	0.0212(8)	0.0242(8)	-0.0042(7)	0.0009(7)	-0.0009(6)		
C10	0.0222(8)	0.0208(8)	0.0288(9)	-0.0008(7)	0.0085(8)	-0.0012(7)		
N1	0.0136(6)	0.0208(7)	0.0211(8)	-0.0016(6)	-0.0010(6)	0.0001(5)		
01	0.0261(6)	0.0281(6)	0.0240(6)	-0.0054(5)	0.0093(5)	-0.0072(5)		
O2	0.0283(6)	0.0358(7)	0.0278(7)	-0.0018(6)	-0.0137(6)	0.0004(5)		
S1	0.01651(18)	0.01924(18)	0.0156(2)	-0.00111(15)	-0.00030(16)	-0.00209(14)		
C1'	0.0152(7)	0.0214(8)	0.0155(8)	-0.0036(6)	0.0033(6)	0.0026(6)		
C2'	0.0194(8)	0.0280(8)	0.0193(9)	-0.0008(7)	-0.0001(7)	0.0062(6)		
C3'	0.0286(9)	0.0187(8)	0.0278(9)	0.0007(7)	0.0123(7)	0.0046(7)		
C4'	0.0190(8)	0.0257(8)	0.0294(9)	-0.0118(7)	0.0087(7)	-0.0034(7)		
C5'	0.0164(8)	0.0317(9)	0.0197(8)	-0.0083(7)	-0.0003(6)	0.0007(6)		
C6'	0.0196(8)	0.0198(8)	0.0168(8)	-0.0004(6)	0.0024(6)	0.0014(6)		
C7'	0.0172(7)	0.0262(8)	0.0211(9)	-0.0053(7)	0.0012(6)	-0.0037(6)		
C8'	0.0184(7)	0.0207(7)	0.0200(8)	-0.0037(7)	0.0009(7)	-0.0029(6)		
C9'	0.0186(8)	0.0170(7)	0.0181(8)	-0.0025(6)	-0.0003(6)	0.0017(6)		
C10'	0.0201(8)	0.0190(8)	0.0218(9)	0.0018(7)	0.0058(7)	-0.0028(6)		
N1'	0.0120(6)	0.0186(6)	0.0197(7)	-0.0012(5)	-0.0001(5)	-0.0002(5)		
01'	0.0245(6)	0.0216(6)	0.0233(6)	-0.0036(5)	0.0089(5)	-0.0027(5)		
02'	0.0204(6)	0.0271(6)	0.0254(6)	-0.0007(5)	-0.0075(5)	-0.0012(5)		
S1'	<u>S1' 0.01412(18) 0.01772(17) 0.0142(2) -0.00099(14) 0.00104(15) -0.00184(13)</u>							
The form of t	he anisotropic d	isplacement pai	rameter is:					
exp[-2π²(a*²U	J ₁₁ h ⁻ +b* ⁻ U ₂₂ k ⁻ +c	**U ₃₃ l*+2b*c*U ₂	₃ kl+2a*c*U₁₃h	l+2a*b*U₁₂hk)]				

Table 4. Refined Thermal Parameters (U's) for Compound 1357
Table 5. Bond Distances in Compound 1357, Å

C1-C2	1.387(2)	C1-C6	1.396(2)	C1-C7	1.509(2)
C2-C3	1.388(2)	C3-C4	1.388(2)	C4-C5	1.387(2)
C5-C6	1.390(2)	C7-C8	1.535(2)	C8-C9	1.512(2)
C9-N1	1.481(2)	C10-S1	1.7571(17)	N1-S1	1.6190(14)
01-S1	1.4416(12)	02-S1	1.4340(12)	C1'-C2'	1.389(2)
C1'-C6'	1.397(2)	C1'-C7'	1.511(2)	C2'-C3'	1.392(2)
C3'-C4'	1.386(3)	C4'-C5'	1.382(2)	C5'-C6'	1.389(2)
C7'-C8'	1.530(2)	C8'-C9'	1.519(2)	C9'-N1'	1.4735(19)
C10'-S1'	1.7690(16)	N1'-S1'	1.6198(13)	01'-S1'	1.4414(11)
O2'-S1'	1.4333(11)	-			

Table 6. Bond Angles in Compound 1357, °

C2-C1-C6	118,24(15)	C2-C1-C7	122,08(14)	C6-C1-C7	119,58(14)
C1-C2-C3	121.27(15)	C4-C3-C2	119.81(15)	C5-C4-C3	119.84(15)
C4-C5-C6	119.84(15)	C5-C6-C1	120.96(15)	C1-C7-C8	110.23(12)
C9-C8-C7	112.21(13)	N1-C9-C8	109.28(12)	C9-N1-S1	118.15(10)
02-S1-O1	118.61(8)	O2-S1-N1	107.73(7)	O1-S1-N1	106.40(7)
O2-S1-C10	108.18(8)	O1-S1-C10	107.87(8)	N1-S1-C10	107.59(8)
C2'-C1'-C6'	118.33(15)	C2'-C1'-C7'	121.95(14)	C6'-C1'-C7'	119.71(14)
C1'-C2'-C3'	120.77(16)	C4'-C3'-C2'	120.15(16)	C5'-C4'-C3'	119.76(16)
C4'-C5'-C6'	120.01(16)	C5'-C6'-C1'	120.98(15)	C1'-C7'-C8'	114.10(12)
C9'-C8'-C7'	111.67(13)	N1'-C9'-C8'	115.28(13)	C9'-N1'-S1'	121.58(10)
02'-S1'-O1'	118.44(8)	O2'-S1'-N1'	107.33(7)	O1'-S1'-N1'	106.40(7)
O2'-S1'-C10'	109.14(7)	O1'-S1'-C10'	106.41(7)	N1'-S1'-C10'	108.82(7)

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} R1 &= \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ wR2 &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ GOF &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ where \ n &= the \ number \ of \ reflections \ and \ p = the \ number \ of \ parameters \ refined. \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

Compound 1363, $C_{10}H_{13}NSO_3$, crystallizes in the monoclinic space group P2₁/c (systematic absences 0k0: k=odd and h0l: l=odd) with a=12.5027(6)Å, b=9.3720(5)Å, c=9.8492(5)Å, β =112.719(2)°, V=1064.54(9)Å³, Z=4, and d_{calc}=1.418 g/cm³. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 1987 frames were collected with a crystal to detector distance of 37.6 mm, rotation widths of 0.5° and exposures of 5 seconds:

scan type	20	ω	φ	χ	frames
φ	-23.00	315.83	12.48	28.88	577
φ	-15.50	258.48	277.85	19.46	199
φ φ	-20.50	342.55	354.55	-73.06	588
φ φ	19.50	327.79	20.94	36.30	623

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 17582 reflections were measured over the ranges 2.80 $\leq \theta \leq 25.39^{\circ}$, -15 $\leq h \leq 15$, -11 $\leq k \leq 11$, -11 $\leq l \leq 11$ yielding 1952 unique reflections (Rint = 0.0202). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.7035, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting scheme used was $w=1/[\sigma^2(F_0^2) + (0.0342P)^2 + 0.6312P]$ where P = $(F_0^2 + 2F_c^2)/3$. Non-hydrogen atoms

were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0261 and wR2=0.0697 for 1863 observed reflections for which $F > 4\sigma(F)$ and R1=0.0271 and wR2=0.0709 and GOF =1.091 for all 1952 unique, non-zero reflections and 138 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.000 and the two most prominent peaks in the final difference Fourier were +0.363 and -0.392 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 1. is an ORTEP^{vii} representation of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of the title compound with 50% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1363

Empirical formula	C ₁₀ H ₁₃ NSO ₃
Formula weight	227.27
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P21/c
Cell constants:	
a	12.5027(6) Å
b	9.3720(5) Å
с	9.8492(5) Å
β	112.719(2)°
Volume	1064.54(9) Å ³
Z	4
Density (calculated)	1.418 Mg/m ³
Absorption coefficient	0.290 mm ⁻¹
F(000)	480
Crystal size	0.42 x 0.22 x 0.08 mm ³
Theta range for data collection	2.80 to 25.39°
Index ranges	-15 ≤ h ≤ 15, -11 ≤ k ≤ 11, -11 ≤ l ≤ 11
Reflections collected	17582
Independent reflections	1952 [R(int) = 0.0202]
Completeness to theta = 25.39°	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.7035
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1952 / 0 / 138
Goodness-of-fit on F ²	1.091
Final R indices [I>2sigma(I)]	R1 = 0.0261, wR2 = 0.0697
R indices (all data)	R1 = 0.0271, wR2 = 0.0709
Largest diff. peak and hole	0.363 and -0.392 e.Å ⁻³

A to inc			_	11 12
Alom	X	У	Z	U _{eq} , A
C1	0.18582(12)	0.16299(14)	0.27919(15)	0.0158(3)
C2	0.08499(12)	0.16996(15)	0.15285(16)	0.0209(3)
C3	-0.01465(12)	0.09849(16)	0.14393(16)	0.0233(3)
C4	-0.01462(12)	0.01702(16)	0.26092(17)	0.0221(3)
C5	0.08582(12)	0.00726(16)	0.38649(16)	0.0228(3)
C6	0.18538(12)	0.07949(15)	0.39585(15)	0.0195(3)
C7	0.29381(12)	0.24077(15)	0.28712(15)	0.0181(3)
C8	0.36839(11)	0.14718(14)	0.23240(14)	0.0148(3)
C9	0.46572(11)	0.22768(14)	0.21322(13)	0.0132(3)
C10	0.74784(11)	0.26593(15)	0.29316(14)	0.0178(3)
N1	0.53738(9)	0.14197(11)	0.17007(12)	0.0141(2)
01	0.48010(8)	0.35589(10)	0.22776(10)	0.0164(2)
O2	0.68848(8)	0.07822(10)	0.08100(10)	0.0192(2)
O3	0.60342(8)	0.31981(10)	0.02721(10)	0.0175(2)
S1	0.64434(3)	0.20256(3)	0.12655(3) ′	0.01275(12)
U _{eq} = ¹ / ₃ [U ₁₁ (aa*) ²	² +U ₂₂ (bb*) ² +U ₃₃ (cc*) ² +	2U ₁₂ aa*bb*cos γ+2U	₁₃ aa*cc*cos β+2U ₂₃ bb)*cc*cosα]

Table 2. Refined Positional Parameters for Compound 1363

Table 3. Positional Parameters for Hydrogens in Compound 1363

Atom	Х	У	Z	U _{iso} , A ²
H2	0.0843	0.2234	0.0730	0.028
H3	-0.0817	0.1054	0.0590	0.031
H4	-0.0814	-0.0307	0.2553	0.029
H5	0.0866	-0.0481	0.4652	0.030
H6	0.2524	0.0720	0.4808	0.026
H7a	0.3383	0.2689	0.3881	0.024
H7b	0.2720	0.3266	0.2277	0.024
H8a	0.4008	0.0700	0.3019	0.020
H8b	0.3198	0.1052	0.1389	0.020
H10a	0.8127	0.3047	0.2763	0.027
H10b	0.7736	0.1888	0.3624	0.027
H10c	0.7138	0.3390	0.3320	0.027
H1	0.5255	0.0514	0.1656	0.019

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0169(7)	0.0127(6)	0.0213(7)	-0.0038(5)	0.0110(5)	0.0017(5)
C2	0.0221(7)	0.0206(7)	0.0212(7)	0.0044(6)	0.0097(6)	0.0006(6)
C3	0.0169(7)	0.0259(8)	0.0233(7)	0.0030(6)	0.0037(6)	0.0000(6)
C4	0.0160(7)	0.0203(7)	0.0329(8)	0.0029(6)	0.0127(6)	-0.0001(5)
C5	0.0226(7)	0.0252(7)	0.0250(7)	0.0085(6)	0.0139(6)	0.0050(6)
C6	0.0166(7)	0.0246(7)	0.0177(7)	0.0003(6)	0.0072(5)	0.0043(6)
C7	0.0175(7)	0.0163(6)	0.0227(7)	-0.0046(6)	0.0103(6)	-0.0011(5)
C8	0.0152(6)	0.0120(6)	0.0183(6)	-0.0011(5)	0.0079(5)	-0.0009(5)
C9	0.0135(6)	0.0139(6)	0.0110(6)	0.0003(5)	0.0036(5)	0.0008(5)
C10	0.0155(6)	0.0204(7)	0.0156(6)	-0.0002(5)	0.0039(5)	-0.0008(5)
N1	0.0159(5)	0.0091(5)	0.0198(6)	-0.0004(4)	0.0097(5)	-0.0017(4)
01	0.0187(5)	0.0110(5)	0.0209(5)	-0.0007(4)	0.0091(4)	-0.0005(4)
02	0.0223(5)	0.0168(5)	0.0233(5)	-0.0024(4)	0.0142(4)	0.0003(4)
O3	0.0202(5)	0.0173(5)	0.0150(5)	0.0033(4)	0.0068(4)	-0.0012(4)
S1	0.01385(18)	0.01281(18)	0.01300(18)	0.00004(11)	0.00675(13)	-0.00054(11)
The form of	the anisotropic d	isplacement pa	rameter is:			
exp[-2π²(a*²l	J ₁₁ h ² +b ^{*2} U ₂₂ k ² +c	;* ² U ₃₃ l ² +2b*c*U ₂	₃kl+2a*c*U ₁₃ hl-	-2a*b*U ₁₂ hk)]		

Table 4. Refined Thermal Parameters (U's) for Compound 1363

Table 5. Bond Distances in Compound 1363, Å

C1-C2	1.389(2)	C1-C6	1.3920(19)	C1-C7	1.5095(18)
C2-C3	1.387(2)	C3-C4	1.382(2)	C4-C5	1.384(2)
C5-C6	1.388(2)	C7-C8	1.5224(17)	C8-C9	1.5044(17)
C9-O1	1.2152(17)	C9-N1	1.3867(17)	C10-S1	1.7550(13)
N1-S1	1.6545(11)	O2-S1	1.4336(10)	O3-S1	1.4282(9)

Table 6. Bond Angles in Compound 1363, °

C2-C1-C6	118.31(13)	C2-C1-C7	120.51(12)	C6-C1-C7	121.15(12)
C3-C2-C1	121.08(13)	C4-C3-C2	120.19(13)	C3-C4-C5	119.31(13)
C4-C5-C6	120.53(13)	C5-C6-C1	120.57(13)	C1-C7-C8	111.18(11)
C9-C8-C7	113.03(11)	O1-C9-N1	121.68(12)	O1-C9-C8	124.83(12)
N1-C9-C8	113.43(11)	C9-N1-S1	124.27(9)	03-S1-02	119.36(6)
03-S1-N1	109.27(6)	02-S1-N1	104.44(6)	O3-S1-C10	108.65(6)
O2-S1-C10	109.50(6)	N1-S1-C10	104.58(6)		

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} R1 &= \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ wR2 &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ GOF &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ where \ n &= the \ number \ of \ reflections \ and \ p = the \ number \ of \ parameters \ refined. \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

Compound 1410, $C_{11}H_{16}N_2SO_3$, crystallizes in the monoclinic space group P2₁/n (systematic absences 0k0: k=odd and h0l: h+l=odd) with a=12.6711(5)Å, b=6.1568(2)Å, c=16.4204(6)Å, β =105.324(2)°, V=1235.47(8)Å³, Z=4, and d_{calc}=1.378 g/cm³. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 4133 frames were collected with a crystal to detector distance of 37.4 mm, rotation widths of 0.5° and exposures of 10 seconds:

scan type	20	ω	φ	χ	frames
φ	-23.00	315.83	12.48	28.88	739
ω	12.00	323.72	290.21	72.15	101
(I)	-23.00	336.19	158.99	-70.01	63
φ	-23.00	328.34	60.01	79.39	707
φ φ	-23.00	334.21	38.95	73.66	739
ф ф	19.50	59.55	348.71	-26.26	739
Ψ Φ	-15.50	258.48	8.28	19.46	739
φ	19.50	327.79	15.97	36.30	306

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 41272 reflections were measured over the ranges $1.82 \le \theta \le 25.38^{\circ}$, $-15 \le h \le 15$, $-7 \le k \le 7$, $-19 \le l \le 19$ yielding 2260 unique reflections (Rint = 0.0144). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.7078, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting

scheme used was w=1/[$\sigma^2(F_0^2)$ + (0.0315P)² + 0.7513P] where P = (F₀² + 2F_c²)/3. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0262 and wR2=0.0698 for 2179 observed reflections for which F > 4 σ (F) and R1=0.0271 and wR2=0.0706 and GOF =1.096 for all 2260 unique, non-zero reflections and 157 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.002 and the two most prominent peaks in the final difference Fourier were +0.252 and -0.374 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 1. is an ORTEP^{vii} representation of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of the title compound with 50% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1410

Empirical formula	$C_{11}H_{16}N_2SO_3$
Formula weight	256.32
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P21/n
Cell constants:	
a	12.6711(5) Å
b	6.1568(2) Å
c	16.4204(6) Å
β	105.324(2)°
Volume	1235.47(8) Å ³
Z	4
Density (calculated)	1.378 Mg/m ³
Absorption coefficient	0.261 mm ⁻¹
F(000)	544
Crystal size	0.35 x 0.25 x 0.12 mm ³
Theta range for data collection	1.82 to 25.38°
Index ranges	$-15 \le h \le 15, -7 \le k \le 7, -19 \le l \le 19$
Reflections collected	
	41272
Independent reflections	41272 2260 [R(int) = 0.0144]
Independent reflections Completeness to theta = 25.38°	41272 2260 [R(int) = 0.0144] 99.5 %
Independent reflections Completeness to theta = 25.38° Absorption correction	41272 2260 [R(int) = 0.0144] 99.5 % Semi-empirical from equivalents
Independent reflections Completeness to theta = 25.38° Absorption correction Max. and min. transmission	41272 2260 [R(int) = 0.0144] 99.5 % Semi-empirical from equivalents 0.7452 and 0.7078
Independent reflections Completeness to theta = 25.38° Absorption correction Max. and min. transmission Refinement method	41272 2260 [R(int) = 0.0144] 99.5 % Semi-empirical from equivalents 0.7452 and $0.7078Full-matrix least-squares on F2$
Independent reflections Completeness to theta = 25.38° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters	41272 2260 [R(int) = 0.0144] 99.5 % Semi-empirical from equivalents 0.7452 and 0.7078 Full-matrix least-squares on F^2 2260 / 0 / 157
Independent reflections Completeness to theta = 25.38° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ²	41272 2260 [R(int) = 0.0144] 99.5 % Semi-empirical from equivalents 0.7452 and 0.7078 Full-matrix least-squares on F ² 2260 / 0 / 157 1.096
Independent reflections Completeness to theta = 25.38° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)]	41272 2260 [R(int) = 0.0144] 99.5 % Semi-empirical from equivalents 0.7452 and 0.7078 Full-matrix least-squares on F ² 2260 / 0 / 157 1.096 R1 = 0.0262 , wR2 = 0.0698
Independent reflections Completeness to theta = 25.38° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data)	41272 2260 [R(int) = 0.0144] 99.5 % Semi-empirical from equivalents 0.7452 and 0.7078 Full-matrix least-squares on F^2 2260 / 0 / 157 1.096 R1 = 0.0262, wR2 = 0.0698 R1 = 0.0271, wR2 = 0.0706

Table 2. Refined Positional Parameters for (Compound 1410
--	---------------

Atom	Х	У	Z	U _{eq} , A ^z
C1	0.12155(10)	0.6376(2)	0.24988(8)	0.0158(3)
C2	0.13900(10)	0.4780(2)	0.19494(8)	0.0186(3)
C3	0.11527(11)	0.5156(2)	0.10846(8)	0.0222(3)
C4	0.07363(11)	0.7144(2)	0.07569(9)	0.0232(3)
C5	0.05388(12)	0.8733(2)	0.12956(9)	0.0252(3)
C6	0.07713(11)	0.8350(2)	0.21566(9)	0.0215(3)
C7	0.15588(11)	0.6079(2)	0.34458(8)	0.0177(3)
C8	0.13508(11)	0.3835(2)	0.37566(8)	0.0171(3)
C9	0.17193(10)	0.3733(2)	0.47104(8)	0.0156(3)
C10	0.33601(11)	0.2670(2)	0.69001(9)	0.0230(3)
C11	0.28081(13)	-0.0970(2)	0.62808(10)	0.0284(3)
N1	0.11631(9)	0.22107(18)	0.50568(7)	0.0180(2)
N2	0.24696(9)	0.11219(18)	0.65582(7)	0.0171(2)
01	0.24451(8)	0.48342(16)	0.51446(6)	0.0218(2)
02	0.11203(8)	0.40520(15)	0.64190(6)	0.0212(2)
O3	0.05061(7)	0.02713(16)	0.60994(6)	0.0208(2)
S1	0.12733(2)	0.19795(5)	0.608494(18)	0.01450(11)
$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2]$	+U ₂₂ (bb*) ² +U ₃₃ (cc*) ² +	2U ₁₂ aa*bb*cos γ+2U	₁₃ aa*cc*cos β+2U ₂₃ bb*	'cc*cosα]

Atom	Х	у	Z	U _{iso} , A ^z
H2	0.1670	0.3439	0.2164	0.025
H3	0.1274	0.4070	0.0726	0.030
H4	0.0590	0.7410	0.0180	0.031
H5	0.0249	1.0065	0.1078	0.034
H6	0.0629	0.9425	0.2511	0.029
H7a	0.1173	0.7138	0.3697	0.024
H7b	0.2335	0.6393	0.3647	0.024
H8a	0.0576	0.3503	0.3566	0.023
H8b	0.1745	0.2758	0.3521	0.023
H10a	0.3848	0.2072	0.7399	0.034
H10b	0.3059	0.4008	0.7038	0.034
H10c	0.3755	0.2941	0.6486	0.034
H11a	0.3056	-0.0758	0.5782	0.043
H11b	0.2198	-0.1953	0.6158	0.043
H11c	0.3392	-0.1568	0.6721	0.043
H1	0.0733	0.1328	0.4719	0.024

A								
Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂		
C1	0.0125(6)	0.0176(6)	0.0173(6)	0.0017(5)	0.0042(5)	-0.0025(5)		
C2	0.0191(6)	0.0188(6)	0.0179(6)	0.0030(5)	0.0045(5)	0.0025(5)		
C3	0.0228(7)	0.0261(7)	0.0178(7)	0.0000(5)	0.0055(5)	0.0014(6)		
C4	0.0207(7)	0.0312(8)	0.0158(6)	0.0062(6)	0.0013(5)	-0.0009(6)		
C5	0.0259(7)	0.0212(7)	0.0261(7)	0.0082(6)	0.0024(6)	0.0037(6)		
C6	0.0239(7)	0.0177(7)	0.0225(7)	0.0008(5)	0.0054(6)	0.0013(5)		
C7	0.0217(6)	0.0156(6)	0.0161(6)	-0.0001(5)	0.0055(5)	-0.0017(5)		
C8	0.0194(6)	0.0167(6)	0.0141(6)	0.0000(5)	0.0023(5)	-0.0026(5)		
C9	0.0165(6)	0.0139(6)	0.0160(6)	-0.0003(5)	0.0039(5)	0.0004(5)		
C10	0.0173(6)	0.0280(7)	0.0200(7)	0.0012(6)	-0.0017(5)	-0.0054(6)		
C11	0.0327(8)	0.0222(7)	0.0297(8)	-0.0028(6)	0.0068(6)	0.0081(6)		
N1	0.0215(6)	0.0196(6)	0.0109(5)	-0.0010(4)	0.0005(4)	-0.0072(4)		
N2	0.0176(5)	0.0159(5)	0.0162(5)	-0.0011(4)	0.0016(4)	0.0003(4)		
01	0.0241(5)	0.0228(5)	0.0167(5)	-0.0023(4)	0.0025(4)	-0.0090(4)		
02	0.0227(5)	0.0199(5)	0.0211(5)	-0.0035(4)	0.0059(4)	0.0026(4)		
O3	0.0214(5)	0.0256(5)	0.0149(5)	0.0000(4)	0.0038(4)	-0.0084(4)		
S1 0.0150Ò(17) 0.0162Ì(18) 0.0117Ì(17) -0.0008Ì(11) 0.0025Ì(12) -0.0020Ò(11								
The form of	the anisotropic d	isplacement pa	rameter is:					
exp[-2π²(a* ² l	J ₁₁ h ² +b* ² U ₂₂ k ² +c	* ² U ₃₃ l ² +2b*c*U ₂	₃kl+2a*c*U ₁₃ hl⊣	⊦2a*b*U ₁₂ hk)]				

Table 4. Refined Thermal Parameters (U's) for Compound 1410

Table 5. Bond Distances in Compound 1410, Å

C1-C2	1.3905(18)	C1-C6	1.3940(18)	C1-C7	1.5110(17)
C2-C3	1.3911(18)	C3-C4	1.384(2)	C4-C5	1.386(2)
C5-C6	1.386(2)	C7-C8	1.5198(17)	C8-C9	1.5126(17)
C9-O1	1.2114(16)	C9-N1	1.3821(17)	C10-N2	1.4704(17)
C11-N2	1.4675(17)	N1-S1	1.6629(11)	N2-S1	1.5994(11)
O2-S1	1.4222(10)	O3-S1	1.4366(9) ′		

Table 6. Bond Angles in Compound 1410, $^{\circ}$

	110 10/10		100 00/10)		110 70/10
02-01-00	110.12(12)	02-01-07	122.03(12)	00-01-07	119.73(12)
C1-C2-C3	121.06(13)	C4-C3-C2	120.10(13)	C3-C4-C5	119.40(13)
C4-C5-C6	120.36(13)	C5-C6-C1	120.92(13)	C1-C7-C8	115.28(11)
C9-C8-C7	110.63(10)	O1-C9-N1	121.85(12)	O1-C9-C8	124.37(11)
N1-C9-C8	113.77(11)	C9-N1-S1	124.11(9)	C11-N2-C10	115.45(11)
C11-N2-S1	117.14(9) ´	C10-N2-S1	120.31(9)	O2-S1-O3	119.25(6)
O2-S1-N2	108.49(6)	O3-S1-N2	107.99(6)	O2-S1-N1	109.35(6)
O3-S1-N1	101.76(5)	N2-S1-N1	109.63(6)		

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} R1 &= \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ wR2 &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ GOF &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ where \ n &= the \ number \ of \ reflections \ and \ p = the \ number \ of \ parameters \ refined. \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

X-ray Structure Determination of Compound 1390 (i.e., compound 14; CCDC 1427791)

Compound 1390, $C_9H_{12}N_2SO_3$, crystallizes in the monoclinic space group P2₁/c (systematic absences 0k0: k=odd and h0l: l=odd) with a=12.2842(6)Å, b=9.0172(5)Å, c=9.8657(5)Å, β =105.348(2)°, V=1053.84(9)Å³, Z=4, and d_{calc}=1.439 g/cm³ . X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 1608 frames were collected with a crystal to detector distance of 37.3 mm, rotation widths of 0.5° and exposures of 5 seconds:

scan type	20	ω	φ	χ	frames
φ	-23.00	315.83	12.48	28.88	739
ω ω	-3.00	49.59	217.86	-28.13	63
ω	-20.50	332.84	178.64	-31.86	205
W	-10.50	306.95	272.07	99.72	80
(J)	17.00	321.08	318.36	83.36	117
φ	22.00	14.84	240.01	97.50	404

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 14270 reflections were measured over the ranges $1.72 \le \theta \le 25.44^\circ$, $-14 \le h \le 14$, $-10 \le k \le 10$, $-11 \le l \le 11$ yielding 1944 unique reflections (Rint = 0.0183). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.6856, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting scheme used was $w=1/[\sigma^2(F_0^2) + (0.0386P)^2 + 0.6825P]$ where P = $(F_0^2 + 2F_c^2)/3$. Non-hydrogen atoms

were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0271 and wR2=0.0715 for 1762 observed reflections for which $F > 4\sigma(F)$ and R1=0.0306 and wR2=0.0746 and GOF =1.019 for all 1944 unique, non-zero reflections and 138 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.000 and the two most prominent peaks in the final difference Fourier were +0.310 and -0.378 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 1. is an ORTEP^{vii} representation of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of the title compound with 50% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1390

Empirical formula	$C_9H_{12}N_2SO_3$		
Formula weight	228.27		
Temperature	100(1) K		
Wavelength	0.71073 Å		
Crystal system	monoclinic		
Space group	P21/c		
Cell constants:			
a	12.2842(6) Å		
b	9.0172(5) Å		
C	9.8657(5) Å		
β	105.348(2)°		
Volume	1053.84(9) Å ³		
Z	4		
Density (calculated)	1.439 Mg/m ³		
Absorption coefficient	0.296 mm ⁻¹		
F(000)	480		
Crystal size	0.38 x 0.20 x 0.04 mm ³		
Theta range for data collection	1.72 to 25.44°		
Index ranges	-14 ≤ h ≤ 14, -10 ≤ k ≤ 10, -11 ≤ l ≤ 11		
Reflections collected	14270		
Independent reflections	1944 [R(int) = 0.0183]		
Completeness to theta = 25.44°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7452 and 0.6856		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	1944 / 0 / 138		
Goodness-of-fit on F ²	1.019		
Final R indices [I>2sigma(I)]	R1 = 0.0271, wR2 = 0.0715		
R indices (all data)	R1 = 0.0306, wR2 = 0.0746		
Largest diff. peak and hole	0.310 and -0.378 e.Å ⁻³		

Atom	Х	у	Z	U _{eq} , A ²
C1	0.22648(12)	0.14280(15)	0.32580(16)	0.0177(3)
C2	0.18355(13)	0.18325(18)	0.18633(17)	0.0269(4)
C3	0.07277(14)	0.1534(2)	0.1159(2)	0.0362(4)
C4	0.00343(14)	0.0819(2)	0.1834(2)	0.0384(5)
C5	0.04478(15)	0.0403(2)	0.3215(2)	0.0359(4)
C6	0.15646(13)	0.07055(17)	0.39320(17)	0.0251(3)
C7	0.34784(12)	0.17625(16)	0.40038(15)	0.0178(3)
C8	0.49693(11)	0.20341(15)	0.27977(14)	0.0155(3)
C9	0.76732(12)	0.26864(17)	0.31896(15)	0.0210(3)
N1	0.42484(9)	0.11844(13)	0.32387(12)	0.0162(3)
N2	0.57010(10)	0.12481(13)	0.22080(13)	0.0193(3)
01	0.50180(8)	0.33956(11)	0.28765(11)	0.0191(2)
02	0.63144(8)	0.32269(11)	0.07654(10)	0.0188(2)
O3	0.72156(9)	0.07673(11)	0.11313(11)	0.0225(2)
S1	0.67231(3)	0.19962(4) ′	0.16686(4) ′	0.01571(12)
$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2]$	² +U ₂₂ (bb*) ² +U ₃₃ (cc*) ² +	2U ₁₂ aa*bb [*] cos γ+2U ₁	₁₃ aa*cc*cos β+2U ₂₃ bb	o*cc*cosα]

Table 2. Refined Positional Parameters for Compound 1390

 Table 3. Positional Parameters for Hydrogens in Compound 1390

Atom	Х	У	Z	U _{iso} , A ²
H2	0.2300	0.2311	0.1395	0.036
H3	0.0451	0.1818	0.0225	0.048
H4	-0.0712	0.0618	0.1360	0.051
H5	-0.0020	-0.0083	0.3673	0.048
H6	0.1839	0.0420	0.4866	0.033
H7a	0.3578	0.2827	0.4109	0.024
H7b	0.3659	0.1327	0.4936	0.024
H9a	0.8294	0.3159	0.2942	0.031
H9b	0.7951	0.1884	0.3827	0.031
H9c	0.7295	0.3394	0.3633	0.031
H1a	0.4237	0.0249	0.3064	0.022
H2a	0.5610	0.0304	0.2121	0.026

Atom	U_{11}	U_{22}	U ₃₃	U_{23}	U ₁₃	U ₁₂
C1	0.0160(7)	0.0123(7)	0.0267(7)	-0.0017(6)	0.0091(6)	0.0019(5)
C2	0.0230(8)	0.0250(8)	0.0319(9)	0.0068(7)	0.0059(7)	0.0012(6)
C3	0.0257(9)	0.0352(10)	0.0406(10)	0.0011(8)	-0.0035(7)	0.0064(7)
C4	0.0158(8)	0.0384(10)	0.0582(12)	-0.0168(9)	0.0049(8)	0.0029(7)
C5	0.0274(9)	0.0307(9)	0.0594(12)	-0.0164(9)	0.0289(9)	-0.0098(7)
C6	0.0281(8)	0.0210(8)	0.0317(8)	-0.0062(6)	0.0175(7)	-0.0043(6)
C7	0.0181(7)	0.0167(7)	0.0205(7)	-0.0012(6)	0.0084(6)	-0.0005(6)
C8	0.0132(6)	0.0138(7)	0.0187(7)	0.0010(5)	0.0030(5)	0.0014(5)
C9	0.0182(7)	0.0233(8)	0.0209(7)	0.0036(6)	0.0042(6)	-0.0023(6)
N1	0.0149(6)	0.0117(6)	0.0233(6)	-0.0020(5)	0.0071(5)	-0.0007(4)
N2	0.0181(6)	0.0094(6)	0.0338(7)	-0.0010(5)	0.0129(5)	-0.0017(5)
01	0.0210(5)	0.0110(5)	0.0277(6)	0.0011(4)	0.0106(4)	0.0012(4)
02	0.0210(5)	0.0160(5)	0.0197(5)	0.0013(4)	0.0057(4)	-0.0001(4)
O3	0.0212(5)	0.0173(5)	0.0331(6)	-0.0013(4)	0.0142(4)	0.0014(4)
S1	0.01455(19)	0.01281(19)	0.0212(2)	0.00039(13)	0.00724(14)	-0.00045(12)
The form of the anisotropic displacement parameter is:						
exp[-2π²(a*²l	J ₁₁ h ² +b* ² U ₂₂ k ² +c	^{**2} U ₃₃ l ² +2b*c*U ₂	₃kl+2a*c*U ₁₃ hl	+2a*b*U ₁₂ hk)]		

Table 4. Refined Thermal Parameters (U's) for Compound 1390

Table 5. Bond Distances in Compound 1390, Å

C1-C6	1.382(2)	C1-C2	1.386(2)	C1-C7	1.508(2)
C2-C3	1.381(2)	C3-C4	1.373(3)	C4-C5	1.374(3)
C5-C6	1.394(2)	C7-N1	1.4540(17)	C8-O1	1.2305(17)
C8-N1	1.3284(18)	C8-N2	1.3877(18)	C9-S1	1.7534(15)
N2-S1	1.6335(12)	O2-S1	1.4286(10)	O3-S1	1.4299(11)

Table 6. Bond Angles in Compound 1390, $^{\circ}$

C6-C1-C2	118.69(14)	C6-C1-C7	121.36(14)	C2-C1-C7	119.94(13)
C3-C2-C1	120.92(16)	C4-C3-C2	120.17(17)	C3-C4-C5	119.68(16)
C4-C5-C6	120.39(16)	C1-C6-C5	120.15(16)	N1-C7-C1	111.71(11)
01-C8-N1	125.47(13)	01-C8-N2	120.66(13)	N1-C8-N2	113.87(12)
C8-N1-C7	123.02(12)	C8-N2-S1	124.38(10)	02-S1-03	118,95(6)
02-S1-N2	110.52(6)	03-S1-N2	103.76(6)	02-S1-C9	107.61(7)
O3-S1-C9	109.95(7)	N2-S1-C9	105.23(7)		

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} R1 &= \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ wR2 &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ GOF &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ where \ n &= the \ number \ of \ reflections \ and \ p = the \ number \ of \ parameters \ refined. \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

X-ray Structure Determination of Compound 1356 (i.e., compound 15; CCDC 1428191)

Compound 1356, $C_{10}H_{12}N_2O_2$, crystallizes in the triclinic space group P1 with a=9.8278(3)Å, b=9.9383(2)Å, c=10.3889(3)Å, α =77.6710(10)°, β =86.2200(10)°, γ =80.5480(10)°, V=977.34(5)Å³, Z=4, and d_{calc}=1.306 g/cm³ . X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 1498 frames were collected with a crystal to detector distance of 37.6 mm, rotation widths of 0.5° and exposures of 5 seconds:

scan type	20	ω	φ	χ	frames
φ	-23.00	315.83	12.48	28.88	739
ω	-23.00	333.59	158.99	-70.01	68
ω	-5.50	322.57	133.99	70.63	68
φ	-10.50	300.13	74.42	39.97	623

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 12642 reflections were measured over the ranges 2.01 $\leq \theta \leq 25.40^{\circ}$, -11 $\leq h \leq 11$, -11 $\leq k \leq 11$, -12 $\leq l \leq 12$ yielding 3571 unique reflections (Rint = 0.0161). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.7007, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). The asymmetric unit consists of two molecules which exhibit hydrogen-bonding with each other (see Figure 1.). Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting scheme used was $w=1/[\sigma^2(F_0^2) + (0.0401P)^2 + 0.3392P]$ where P = $(F_0^2 + 2F_c^2)/3$. Non-hydrogen atoms

were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0311 and wR2=0.0815 for 3331 observed reflections for which F > $4\sigma(F)$ and R1=0.0334 and wR2=0.0835 and GOF =1.055 for all 3571 unique, non-zero reflections and 256 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.001 and the two most prominent peaks in the final difference Fourier were +0.247 and -0.243 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 1. is an ORTEP^{vii} representation of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of the two molecules in the asymmetric unit with 50% probability thermal

ellipsoids.

Table 1. Summary of Structure Determination of Compound 1356

Empirical formula	$C_{10}H_{12}N_2O_2$
Formula weight	192.22
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	triclinic
Space group	PĪ
Cell constants:	
a	9.8278(3) Å
b	9.9383(2) Å
C	10.3889(3) Å
α	77.6710(10)°
β	86.2200(10)°
γ	80.5480(10)°
Volume	977.34(5) Å ³
Z	4
Density (calculated)	1.306 Mg/m ³
Absorption coefficient	0.093 mm ⁻¹
F(000)	408
Crystal size	0.35 x 0.25 x 0.20 mm ³
Theta range for data collection	2.01 to 25.40°
Index ranges	$-11 \le h \le 11, -11 \le k \le 11, -12 \le l \le 12$
Reflections collected	12642
Independent reflections	3571 [R(int) = 0.0161]
Completeness to theta = 25.40°	99.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.7007
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3571 / 0 / 256
Goodness-of-fit on F ²	1.055
Final R indices [I>2sigma(I)]	R1 = 0.0311, wR2 = 0.0815
R indices (all data)	R1 = 0.0334, wR2 = 0.0835
Largest diff. peak and hole	0.247 and -0.243 e.Å ⁻³

Atom	Х	У	Z	U _{eq} , A ²
C1	0.56909(11)	0.34331(11)	0.17531(11)	0.0176(2)
C2	0.70809(11)	0.31055(12)	0.14385(11)	0.0216(2)
C3	0.74993(12)	0.26950(13)	0.02598(12)	0.0256(3)
C4	0.65303(12)	0.26125(12)	-0.06180(11)	0.0237(3)
C5	0.51408(12)	0.29456(12)	-0.03129(11)	0.0238(3)
C6	0.47277(11)	0.33483(12)	0.08631(11)	0.0223(2)
C7	0.51669(11)	0.38989(12)	0.30143(11)	0.0199(2)
C8	0.67682(11)	0.48286(11)	0.41500(10)	0.0177(2)
C9	0.82641(11)	0.33424(11)	0.59323(11)	0.0191(2)
C10	0.92519(12)	0.34907(12)	0.69184(11)	0.0238(3)
N1	0.62175(10)	0.37503(9)	0.39762(9)	0.0190(2)
N2	0.77610(10)	0.45701(9)	0.51188(9)	0.0186(2)
01	0.64643(8)	0.60370(8)	0.35261(8)	0.02305(19)
O2	0.79275(9)	0.22209(8)	0.58883(8)	0.0253(2)
C1'	0.91260(10)	0.84249(11)	0.80654(11)	0.0188(2)
C2'	0.87270(12)	0.93585(13)	0.88914(12)	0.0263(3)
C3'	0.83257(13)	0.88955(14)	1.01943(13)	0.0316(3)
C4'	0.83164(12)	0.74924(14)	1.06875(12)	0.0286(3)
C5'	0.87246(12)	0.65506(13)	0.98771(12)	0.0266(3)
C6'	0.91317(11)	0.70116(12)	0.85747(12)	0.0221(2)
C7'	0.95469(11)	0.89478(11)	0.66439(11)	0.0196(2)
C8'	0.81147(11)	0.81357(11)	0.52421(11)	0.0187(2)
C9'	0.62386(11)	0.96747(11)	0.38765(11)	0.0197(2)
C10'	0.52430(13)	0.96314(12)	0.28532(12)	0.0250(3)
N1'	0.84159(9)	0.91778(9)	0.57351(9)	0.0187(2)
N2'	0.70588(10)	0.84279(9)	0.43334(9)	0.0199(2)
01'	0.87301(8)	0.69286(8)	0.55306(8)	0.02338(19)
O2'	0.63232(8)	1.07367(8)	0.42606(8)	0.02349(19)
U _{eq} = ¹ / ₃ [U ₁₁ (aa*) ²	+U ₂₂ (bb*) ² +U ₃₃ (cc*) ² +	2U ₁₂ aa*bb*cos γ+2U	₁₃ aa*cc*cos β+2U ₂₃ bb	*cc*cosα]

Table 2. Refined Positional Parameters for Compound 1356

Table 3. Positional Parameters for Hydrogens in Compound 1356	

Atom	Х	У	Z	U _{iso} , A ²
H2	0.7738	0.3161	0.2021	0.029
H3	0.8435	0.2474	0.0059	0.034
H4	0.6811	0.2335	-0.1407	0.032
H5	0.4484	0.2898	-0.0900	0.032
H6	0.3792	0.3566	0.1063	0.030
H7a	0.4748	0.4870	0.2796	0.026
H7b	0.4452	0.3363	0.3414	0.026
H10a	0.8744	0.3836	0.7633	0.036
H10b	0.9857	0.4132	0.6500	0.036
H10c	0.9786	0.2599	0.7253	0.036
H1	0.6491	0.2939	0.4447	0.025
H2a	0.8101	0.5286	0.5214	0.025
H2'	0.8729	1.0306	0.8567	0.035
H3'	0.8062	0.9532	1.0737	0.042
H4'	0.8038	0.7182	1.1559	0.038
H5'	0.8726	0.5604	1.0207	0.035
H6'	0.9410	0.6371	0.8039	0.029
H7a'	0.9902	0.9816	0.6573	0.026
H7b'	1.0287	0.8276	0.6382	0.026
H10a'	0.4459	1.0344	0.2877	0.038
H10b'	0.4944	0.8735	0.3033	0.038
H10c'	0.5690	0.9788	0.1996	0.038
H1'	0.7941	0.9995	0.5517	0.025
H2a'	0.6905	0.7734	0.4021	0.026

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0201(5)	0.0127(5)	0.0192(5)	-0.0005(4)	-0.0022(4)	-0.0037(4)
C2	0.0185(5)	0.0263(6)	0.0203(6)	-0.0042(5)	-0.0051(4)	-0.0037(4)
C3	0.0181(5)	0.0343(7)	0.0244(6)	-0.0077(5)	-0.0004(4)	-0.0015(5)
C4	0.0268(6)	0.0263(6)	0.0187(5)	-0.0061(5)	-0.0008(4)	-0.0038(5)
C5	0.0232(6)	0.0278(6)	0.0224(6)	-0.0057(5)	-0.0068(4)	-0.0070(5)
C6	0.0163(5)	0.0261(6)	0.0253(6)	-0.0059(5)	-0.0023(4)	-0.0037(4)
C7	0.0184(5)	0.0202(6)	0.0213(6)	-0.0044(4)	-0.0023(4)	-0.0029(4)
C8	0.0214(5)	0.0171(5)	0.0146(5)	-0.0049(4)	0.0018(4)	-0.0015(4)
C9	0.0229(6)	0.0175(5)	0.0170(5)	-0.0046(4)	0.0006(4)	-0.0024(4)
C10	0.0289(6)	0.0215(6)	0.0213(6)	-0.0031(5)	-0.0051(5)	-0.0051(5)
N1	0.0242(5)	0.0151(4)	0.0178(5)	-0.0024(4)	-0.0039(4)	-0.0029(4)
N2	0.0244(5)	0.0146(4)	0.0184(5)	-0.0048(4)	-0.0028(4)	-0.0046(4)
01	0.0321(4)	0.0151(4)	0.0216(4)	-0.0023(3)	-0.0065(3)	-0.0024(3)
02	0.0345(5)	0.0163(4)	0.0257(4)	-0.0023(3)	-0.0089(3)	-0.0050(3)
C1'	0.0134(5)	0.0212(6)	0.0219(6)	-0.0030(4)	-0.0033(4)	-0.0035(4)
C2'	0.0283(6)	0.0227(6)	0.0274(6)	-0.0052(5)	0.0016(5)	-0.0035(5)
C3'	0.0301(7)	0.0396(7)	0.0263(6)	-0.0113(6)	0.0034(5)	-0.0041(5)
C4'	0.0189(6)	0.0446(8)	0.0202(6)	0.0015(5)	-0.0027(4)	-0.0088(5)
C5'	0.0208(6)	0.0268(6)	0.0294(6)	0.0063(5)	-0.0091(5)	-0.0083(5)
C6'	0.0188(5)	0.0209(6)	0.0269(6)	-0.0034(5)	-0.0064(4)	-0.0041(4)
C7'	0.0192(5)	0.0183(5)	0.0223(6)	-0.0045(4)	-0.0005(4)	-0.0052(4)
C8'	0.0213(5)	0.0176(5)	0.0172(5)	-0.0032(4)	0.0022(4)	-0.0048(4)
C9'	0.0239(6)	0.0174(5)	0.0173(5)	-0.0020(4)	0.0017(4)	-0.0049(4)
C10'	0.0305(6)	0.0222(6)	0.0225(6)	-0.0047(5)	-0.0056(5)	-0.0024(5)
N1'	0.0227(5)	0.0139(4)	0.0198(5)	-0.0032(4)	-0.0023(4)	-0.0032(4)
N2'	0.0268(5)	0.0151(5)	0.0194(5)	-0.0056(4)	-0.0031(4)	-0.0042(4)
01'	0.0274(4)	0.0159(4)	0.0273(4)	-0.0057(3)	-0.0059(3)	-0.0009(3)
02'	0.0309(4)	0.0152(4)	0.0248(4)	-0.0041(3)	-0.0044(3)	-0.0037(3)
The form of t	the anisotropic	displacement p	arameter is:			
exp[-2π²(a* ² l	J ₁₁ h ² +b* ² U ₂₂ k ² +	-c* ² U ₃₃ l ² +2b*c*L	J ₂₃ kl+2a*c*U ₁₃ h	l+2a*b*U₁₂hk)]		

Table 4. Refined Thermal Parameters (U's) for Compound 1356

Table 5. Bond Distances in Compound 1356, Å

C1-C2	1.3854(16)	C1-C6	1.3903(15)	C1-C7	1.5126(15)
C2-C3	1.3881(16)	C3-C4	1.3846(16)	C4-C5	1.3835(17)
C5-C6	1.3812(17)	C7-N1	1.4523(13)	C8-O1	1.2356(13)
C8-N1	1.3267(14)	C8-N2	1.4028(14)	C9-O2	1.2242(14)
C9-N2	1.3653(14)	C9-C10	1.5021(15)	C1'-C2'	1.3882(17)
C1'-C6'	1.3904(16)	C1'-C7'	1.5114(15)	C2'-C3'	1.3866(17)
C3'-C4'	1.3804(19)	C4'-C5'	1.3837(19)	C5'-C6'	1.3874(17)
C7'-N1'	1.4635(14)	C8'-O1'	1.2357(13)	C8'-N1'	1.3303(14)
C8'-N2'	1.4019(14)	C9'-O2'	1.2219(14)	C9'-N2'	1.3717(15)
C9'-C10'	1.5033(15)				

Table 6. Bond Angles in Compound 1356, °

	110.00(10)	00.01.07		00.01.07	110 10(10)
02-01-06	118.68(10)	02-01-07	123.13(10)	06-01-07	118.18(10)
C1-C2-C3	120.49(10)	C4-C3-C2	120.31(11)	C5-C4-C3	119.49(11)
C6-C5-C4	120.06(10)	C5-C6-C1	120.97(10)	N1-C7-C1	114.56(9)
O1-C8-N1	124.72(10)	O1-C8-N2	118.05(9)	N1-C8-N2	117.22(9)
O2-C9-N2	123.58(10)	O2-C9-C10	122.52(10)	N2-C9-C10	113.89(9)
C8-N1-C7	121.98(9)	C9-N2-C8	129.14(9)	C2'-C1'-C6'	118.67(11)
C2'-C1'-C7'	120.14(10)	C6'-C1'-C7'	121.19(10)	C3'-C2'-C1'	120.79(11)
C4'-C3'-C2'	120.18(12)	C3'-C4'-C5'	119.56(11)	C4'-C5'-C6'	120.33(11)
C5'-C6'-C1'	120.47(11)	N1'-C7'-C1'	113.44(9)	O1'-C8'-N1'	123.36(10)
O1'-C8'-N2'	118.38(9)	N1'-C8'-N2'	118.25(10)	O2'-C9'-N2'	122.62(10)
O2'-C9'-C10'	122.83(10)	N2'-C9'-C10'	114.55(9)	C8'-N1'-C7'	120.68(9)
C9'-N2'-C8'	128.54(9)				

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} R1 &= \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ wR2 &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ GOF &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ where \ n &= the \ number \ of \ reflections \ and \ p = the \ number \ of \ parameters \ refined. \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

Compound 1352, $C_9H_{10}N_4$, crystallizes in the triclinic space group $P\overline{1}$ with a=9.7468(5)Å, b=16.6468(8)Å, c=22.8910(10)Å, α =91.652(2)°, β =90.027(2)°, γ =103.810(2)°, V=3605.2(3)Å³, Z=16, and d_{calc}=1.284 g/cm³. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 3624 frames were collected with a crystal to detector distance of 37.6 mm, rotation widths of 0.5° and exposures of 20 seconds:

scan type	20	ω	φ	χ	frames
φ	-15.50	258.48	16.03	19.46	721
φ	-5.50	86.60	310.32	-30.00	92
T (I)	12.00	322.28	290.21	72.15	85
ŵ	-5.50	350.73	18.26	-42.87	210
¢	-23.00	334.21	67.29	73.66	669
Ψ Φ	19.50	59.55	9.15	-26.26	681
Ψ Φ	-23.00	315.83	18.32	28.88	684
Ψ W	-10.50	307.73	272.07	99.72	67
¢	-23.00	316.70	113.43	98.89	415

The crystal grew as a non-merohedral twin; the program CELL_NOWⁱ was used to index the diffraction images and to determine the twinning mechanism. The crystal was twinned by a rotation of 180° about the 001 real direction. Rotation frames were integrated using SAINTⁱⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱⁱ program package for further processing and structure solution. A total of 152538 reflections were measured over the ranges $1.52 \le \theta \le 25.40^\circ$, $-11 \le h \le 11$, $-20 \le k \le 20$, $0 \le l \le 27$ yielding 13079 unique reflections (Rint = 0.0477). The intensity data were corrected for Lorentz and polarization effects and for absorption using TWINABS^{iv}

(minimum and maximum transmission 0.6307, 0.7452).

The structure was solved by direct methods (SHELXS-97^v). The asymmetric unit consists of eight molecules of the title compound. Refinement was by full-matrix least squares based on F² using SHELXL-97.^{vi} All reflections were used during refinement. The weighting scheme used was $w=1/[\sigma^2(F_o^2)+(0.0500P)^2 + 2.0654P]$ where P = $(F_o^2 + 2F_c^2)/3$. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0466 and wR2=0.1251 for 11471 observed reflections for which F > 4 σ (F) and R1=0.0565 and wR2=0.1332 and GOF =1.165 for all 13079 unique, non-zero reflections and 939 variables.^{vii} The maximum Δ/σ in the final cycle of least squares was 0.001 and the two most prominent peaks in the final difference Fourier were +0.247 and -0.245 e/Å³. The twinning parameter refined to a value of 0.490(1).

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 2. is an ORTEP^{viii} representation of the eight molecules in the asymmetric unit with 30% probability thermal ellipsoids displayed (the numbering scheme is as shown below)

Figure 2. ORTEP drawings of the eight molecules in the asymmetric unit with 30% probability

thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1352

Empirical formula	$C_9H_{10}N_4$
Formula weight	174.21
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	triclinic
Space group	P1
Cell constants:	
а	9.7468(5) Å
b	16.6468(8) Å
c	22.8910(10) Å
α	91.652(2)°
β	90.027(2)°
γ	103.810(2)°
Volume	3605.2(3) Å ³
Z	16
Density (calculated)	1.284 Mg/m ³
Absorption coefficient	0.083 mm ⁻¹
F(000)	1472
Crystal size	0.32 x 0.22 x 0.06 mm ³
Theta range for data collection	1.52 to 25.40°
Index ranges	-11 ≤ h ≤ 11, -20 ≤ k ≤ 20, 0 ≤ l ≤ 27
Reflections collected	152538
Independent reflections	13079 [R(int) = 0.0477]
Completeness to theta = 25.40°	98.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.6307
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	13079 / 0 / 939
Goodness-of-fit on F ²	1.165
Final R indices [I>2sigma(I)]	R1 = 0.0466, wR2 = 0.1251
R indices (all data)	R1 = 0.0565, wR2 = 0.1332
Largest diff. peak and hole	0.247 and -0.245 e.Å ⁻³

Atom	Х	у	Z	U _{eq} , A ^z
		Molecule No. 1		
C1	0.4740(3)	0.89734(17)	0.21991(11)	0.0221(6)
C2	0.4851(3)	0.83397(18)	0.18063(13)	0.0278(6)
C3	0.5150(3)	0.85010(18)	0.12257(12)	0.0291(6)
C4	0.5339(3)	0.92903(19)	0.10275(12)	0.0294(6)
C5	0.5227(3)	0.99292(18)	0.14153(12)	0.0273(6)
C6	0.4936(3)	0.97683(17)	0.19961(12)	0.0246(6)
C7	0.4434(3)	0.8802(2)	0.28359(12)	0.0315(7)
C8	0.5768(3)	0.89416(18)	0.32053(11)	0.0215(6)
C9	0.5471(3)	0.88207(16)	0.38394(11)	0.0180(5)
N10	0.6385(2)	0.87353(14)	0.42517(9)	0.0206(5)
N11	0.5751(2)	0.86550(16)	0.47743(9)	0.0256(5)
N12	0.4460(2)	0.86914(15)	0.46771(9)	0.0255(5)
N13	0.4252(2)	0.87945(14)	0.40978(9)	0.0223(5)
	· · ·	Molecule No. 2		
C1	1.2005(3)	0.91309(17)	0.59873(11)	0.0221(6)
C2	1.3205(3)	0.88377(18)	0.61026(12)	0.0266(6)
C3	1.3495(3)	0.8618(2)	0.66582(12)	0.0318(7)
C4	1.2603(3)	0.8690Š(19)	0.71142(12)	0.0295(7)
C5	1.1404(3)	0.89887(18)	0.70082(12)	0.0293(7)
C6	1.1112(3)	0.92016(17)	0.64533(12)	0.0258(6)
C7	1.1658(3)	0.93197(17)	0.53710(12)	0.0249(6)
C8	1.0759(3)	0.85422(17)	0.50571(11)	0.0205(6)
C9	1.0465(3)	0.86515(16)	0.44292(11)	0.0186(5)
N10	1.1387(2)	0.87168(14)	0.39962(9)	0.0204(5)
N11	1.0761(2)	0.87852(15)	0.34853(10)	0.0253(5)
N12	0.9456(2)	0.87627(15)	0.36055(9)	0.0255(5)
N13	0.9238(2)	0.86817(14)	0.41927(9)	0.0233(5)
		Molecule No. 3		. ,
C1	0.7376(3)	0.65312(18)	0.23743(11)	0.0249(6)
C2	0.7467(3)	0.58326(19)	0.20430(14)	0.0315(7)
C3	0.7751(3)	0.58907(19)	0.14535(14)	0.0324(7)
C4	0.7934(3)	0.66330(19)	0.11805(13)	0.0306(7)
C5	0.7853(3)	0.73317(19)	0.15066(12)	0.0309(7)
C6	0.7583(3)	0.72759(19)	0.20975(12)	0.0314(7)
C7	0.7059(3)	0.6491(2)	0.30193(12)	0.0398(8)
C8	0.8334(3)	0.6573(2)	0.33968(12)	0.0341(7)
C9	0.8062(3)	0.66253(17)	0.40313(11)	0.0228(6)
N10	0.9004(2)	0.66713(14)	0.44648(9)	0.0225(5)
N11	0.8391(2)	0.67423(15)	0.49802(10)	0.0253(5)
N12	0.7089(2)	0.67333(16)	0.48675(10)	0.0268(5)
N13	0.6846(2)	0.66645(15)	0.42786(10)	0.0246(5)
		Molecule No. 4		
C1	0.4237(3)	0.57702(17)	0.60061(11)	0.0226(6)
C2	0.3613(3)	0.60578(18)	0.64907(11)	0.0260(6)
C3	0.4155(3)	0.60383(19)	0.70486(11)	0.0273(6)
C4	0.5338(3)	0.57308(18)	0.71322(12)	0.0272(6)
C5	0.5976(3)	0.54483(18)	0.66579(12)	0.0275(6)
C6	0.5430(3)	0.54714(17)	0.60983(12)	0.0252(6)
C7	0.3655(3)	0.57974(17)	0.53954(11)	0.0265(6)
C8	0.3547(3)	0.66675(17)	0.52358(11)	0.0224(6)
C9	0.3171(3)	0.67193(16)	0.46096(11)	0.0195(5)
N10	0.4045(2)	0.67201(14)	0.41591(9)	0.0213(5)
N11	0.3393(2)	0.67893(15)	0.36542(9)	0.0240(5)
N12	0.2125(2)	0.68267(15)	0.37939(10)	0.0254(5)
N13	0.1943(2)	0.67847(14)	0.43841(9)	0.0224(5)

Table 2. Refined Positional Parameters for Compound 1352
Molecule No. 5					
C1	-0.0215(3)	0.40451(17)	0.27429(11)	0.0228(6)	
C2	0.0052(3)	0.47838(17)	0.30578(12)	0.0274(6)	
C3	0.0244(3)	0.4804(2)	0.36575(13)	0.0337(7)	
C4	0.0196(3)	0 4096(2)	0.39472(13)	0.0399(8)	
Č5	-0.0047(4)	0.3353(2)	0.36389(14)	0.0406(8)	
C6	-0.0262(3)	0.33294(18)	0.30411(14)	0.0318(7)	
00	0.0202(0)	0.00294(10)	0.00411(14)	0.0310(7)	
	-0.0403(3)	0.4011(2) 0.20050(19)	0.20912(12) 0.17425(11)	0.0339(7)	
	0.0621(3)	0.39039(10)	0.17430(11)	0.0229(0)	
09	0.0535(3)	0.38387(10)	0.11010(11)	0.0183(5)	
N10	0.1453(2)	0.37676(14)	0.06871(9)	0.0226(5)	
N11	0.0810(2)	0.37156(16)	0.01603(9)	0.0271(5)	
N12	-0.0478(2)	0.37478(16)	0.02595(10)	0.0274(5)	
N13	-0.0692(2)	0.38190(14)	0.08459(9)	0.0229(5)	
		Molecule No. 6			
C1	0.7020(3)	0.40702(17)	-0.10524(12)	0.0254(6)	
C2	0.6160(3)	0.41506(18)	-0.15223(12)	0.0283(6)	
C3	0.6481(3)	0.39301(19)	-0.20852(12)	0.0312(7)	
C4	0 7643(3)	0.3615(2)	-0.21905(12)	0.0326(7)	
C5	0.8500(3)	0 3528(2)	-0 17267(12)	0.0371(8)	
00 C6	0.8100(3)	0.3757(2)	-0.11648(12)	0.0328(7)	
C7	0.6652(3)	0.0707(2)	0.11040(12)	0.0320(7)	
	0.0052(3)	0.42004(10)	-0.04322(11)	0.0257(6)	
08	0.5799(3)	0.35162(17)	-0.01311(11)	0.0220(6)	
09	0.5518(3)	0.36658(16)	0.05013(11)	0.0191(5)	
N10	0.6449(2)	0.37389(13)	0.09374(9)	0.0201(5)	
N11	0.5832(2)	0.38472(14)	0.14492(9)	0.0231(5)	
N12	0.4530(2)	0.38374(14)	0.13240(10)	0.0251(5)	
N13	0.4302(2)	0.37243(14)	0.07370(9)	0.0218(5)	
		Molecule No. 7			
C1	0.2433(3)	0.14545(18)	0.27053(12)	0.0237(6)	
C2	0.2551(3)	0.22196(18)	0.29920(12)	0.0274(6)	
C3	0.2786(3)	0.23129(18)	0.35858(13)	0.0292(6)	
C4	0.2908(3)	0.16412(19)	0.39071(12)	0.0283(6)	
C5	0.2791(3)	0.08801(19)	0.36294(12)	0.0282(6)	
Č6	0.2544(3)	0.07870(18)	0.30322(12)	0.0268(6)	
C7	0.2188(3)	0.1370(2)	0.20500(12)	0.0326(7)	
	0.3485(3)	0.17703(19)	0.17073(11)	0.0255(6)	
	0.3403(3)	0.17343(17)	0.17673(11)	0.0206(5)	
N10	0.3223(3)	0.17343(17)	0.10034(11)	0.0200(3)	
	0.4170(2)	0.17190(14)	0.00454(9)	0.0217(5)	
	0.3561(2)	0.17140(10)	0.01176(10)	0.0200(5)	
N12	0.2256(2)	0.17182(16)	0.02163(10)	0.0290(6)	
N13	0.2012(2)	0.17304(15)	0.08037(10)	0.0250(5)	
	/ - \	Molecule No. 8			
C1	0.9263(3)	0.07639(16)	-0.09633(11)	0.0220(6)	
C2	1.0448(3)	0.04445(17)	-0.10804(12)	0.0253(6)	
C3	1.0945(3)	0.04133(17)	-0.16459(12)	0.0254(6)	
C4	1.0284(3)	0.06981(17)	-0.21045(11)	0.0240(6)	
C5	0.9118(3)	0.10211(18)	-0.19945(12)	0.0263(6)	
C6	0.8611(3)	0.10451(17)	-0.14302(12)	0.0243(6)	
C7	0.8731(3)	0.08028(18)	-0.03454(11)	0.0266(6)	
C8	0.8609(3)	0.16724(17)	-0.01579(11)	0.0225(6)	
C9	0.8299(3)	0.17565(16)	0.04760(11)	0.0199(5)	
N10	0.9215(2)	0 17726(14)	0.09115(9)	0.0205(5)	
N11	0.8601/2)	0 18719(15)	0 14255(9)	0.0246(5)	
N12	0.7320(2)	0 10118(14)	0.13040(10)	0.0236(5)	
N12	0.7020(2)	0.18388(17)	0.10040(10)	0.0218(5)	
	0.7100(2)			0.0210(0)	
$U_{eq} = \frac{1}{3} [U_{11}(aa^{*})^{2} + U_{22}(bb^{*})^{2} + U_{33}(cc^{*})^{2} + 2U_{12}aa^{*}bb^{*}cos\gamma + 2U_{13}aa^{*}cc^{*}cos\beta + 2U_{23}bb^{*}cc^{*}cos\alpha]$					

Molecule No. 1 H2 0.4723 0.7802 0.1936 0.037 H3 0.5224 0.8072 0.0967 0.039 H4 0.5540 0.8397 0.0636 0.039 H5 0.5348 1.0465 0.1283 0.036 H6 0.4871 1.0199 0.2254 0.033 H7a 0.3851 0.9159 0.2985 0.0422 H7b 0.3851 0.9159 0.2985 0.0422 H8b 0.6326 0.9500 0.3152 0.029 H8b 0.6326 0.9500 0.3152 0.029 H10 0.7254 0.8732 0.4192 0.027 Molecule No. 2 H2 1.3819 0.8732 0.7314 0.039 H5 1.0802 0.9043 0.7314 0.039 H5 1.0802 0.9043 0.7314 0.033 H7b 1.1145 0.9753 0.5380 0.033 H6	Atom	Х	у	Z	U _{iso} , A ²
H2 0.4723 0.7802 0.1936 0.037 H3 0.5224 0.8072 0.0967 0.039 H4 0.5540 0.3397 0.06836 0.039 H5 0.5348 1.0465 0.1283 0.0366 H7a 0.3902 0.8233 0.2254 0.0366 H7b 0.3851 0.9159 0.2985 0.042 H8a 0.6323 0.8562 0.3070 0.029 H8b 0.6326 0.8700 0.5800 0.029 H10 0.7254 0.8790 0.5800 0.035 H3 1.4294 0.8420 0.6725 0.042 H3 1.4294 0.8420 0.5725 0.042 H4 1.2798 0.8543 0.7488 0.039 H5 1.0802 0.99753 0.5380 0.033 H7a 1.25266 0.9518 0.5157 0.033 H7a 1			Molecule No. 1		
H3 0.5224 0.8072 0.0967 0.039 H4 0.5540 0.3977 0.0636 0.039 H5 0.5348 1.0465 0.1283 0.036 H7a 0.3902 0.8233 0.2871 0.042 H7b 0.3851 0.9159 0.2985 0.042 H8a 0.6326 0.8562 0.3070 0.029 H8b 0.6326 0.8502 0.3152 0.029 H8b 0.6326 0.8500 0.3152 0.027 Molecule No. 2 0.4192 0.027 H2 1.3819 0.8543 0.7488 0.039 H5 1.0802 0.9043 0.7314 0.039 H5 1.0802 0.9043 0.7314 0.033 H6 1.0307 0.9396 0.6388 0.033 H7a 1.2526 0.9753 0.5380 0.027 H8a 1.1241 0.8098 0.5085 0.027	H2	0.4723	0.7802	0.1936	0.037
H4 0.5540 0.9397 0.0636 0.039 H5 0.5348 1.0465 0.1283 0.036 H6 0.4871 1.0199 0.2254 0.033 H7a 0.3902 0.8233 0.2861 0.042 H7b 0.3851 0.9159 0.2985 0.042 H8a 0.6323 0.8662 0.3070 0.029 H8b 0.6326 0.9500 0.3152 0.027 H10 0.7254 0.8732 0.4192 0.027 H3 1.4294 0.8420 0.6725 0.042 H4 1.2798 0.8543 0.7488 0.039 H5 1.0802 0.9043 0.7314 0.039 H6 1.0307 0.3996 0.6388 0.034 H7a 1.2526 0.9518 0.5157 0.033 H7b 1.1145 0.9753 0.5380 0.027 H8b 0.9866 0.8374 0.5259 0.027 H8b </td <td>H3</td> <td>0.5224</td> <td>0.8072</td> <td>0.0967</td> <td>0.039</td>	H3	0.5224	0.8072	0.0967	0.039
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H4	0.5540	0.9397	0.0636	0.039
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H5	0.5348	1.0465	0.1283	0.036
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H6	0.4871	1.0199	0.2254	0.033
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H7a	0.3902	0.8233	0.2871	0.042
H8a 0.6326 0.3562 0.3070 0.029 H8b 0.6326 0.9500 0.3152 0.029 H10 0.7254 0.8732 0.4192 0.027 H2 1.3819 0.8790 0.5800 0.035 H3 1.4294 0.8420 0.6725 0.042 H4 1.2798 0.8543 0.7348 0.039 H5 1.0802 0.9043 0.7314 0.039 H6 1.0307 0.3396 0.6388 0.033 H7a 1.2526 0.9753 0.5380 0.033 H7b 1.1145 0.9753 0.5380 0.027 H8b 0.9866 0.8374 0.5259 0.027 H10 1.2263 0.8715 0.4038 0.027 H3 0.7316 0.5324 0.2220 0.0442 H3 0.7316 0.5324 0.2220 0.0442 H3 0.73	H7b	0.3851	0.9159	0.2985	0.042
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H8a	0.6323	0.8562	0.3070	0.029
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H8b	0.6326	0.9500	0.3152	0.029
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	H10	0.7254	0.8732	0.4192	0.027
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Molecule No. 2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H2	1.3819	0.8790	0.5800	0.035
H4 1.2798 0.8543 0.7488 0.039 H5 1.0802 0.9043 0.7314 0.039 H6 1.0307 0.9396 0.6388 0.034 H7a 1.2526 0.9518 0.5157 0.033 H7b 1.1145 0.9753 0.5380 0.033 H8a 1.1241 0.8098 0.5085 0.027 H8b 0.9866 0.8374 0.5259 0.027 H10 1.2263 0.8715 0.4038 0.027 H2 0.7336 0.5324 0.2220 0.042 H3 0.7819 0.5420 0.1237 0.043 H4 0.8111 0.6665 0.0782 0.041 H5 0.7980 0.7839 0.1328 0.041 H6 0.7540 0.7750 0.2314 0.042 H7b 0.6492 0.5968 0.3094 0.053 H8b 0.9034 0.7065 0.3290 0.034 H7b </td <td>H3</td> <td>1.4294</td> <td>0.8420</td> <td>0.6725</td> <td>0.042</td>	H3	1.4294	0.8420	0.6725	0.042
H5 1.0802 0.9043 0.7314 0.039 H6 1.0307 0.9396 0.6388 0.034 H7a 1.2526 0.9518 0.5157 0.033 H7b 1.1145 0.9753 0.5380 0.027 H8b 0.9866 0.8374 0.5259 0.027 H10 1.2263 0.8715 0.4038 0.027 H10 1.2263 0.8715 0.4038 0.027 H2 0.7336 0.5324 0.2220 0.043 H3 0.7819 0.5420 0.1237 0.043 H4 0.8111 0.6665 0.0782 0.041 H5 0.7980 0.7839 0.1328 0.041 H6 0.7540 0.7750 0.2314 0.042 H7a 0.6599 0.6930 0.3127 0.053 H7b 0.6402 0.5968 0.3094 0.053 H8a 0.8734 0.6100 0.3318 0.045 H7b<	H4	1.2798	0.8543	0.7488	0.039
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H5	1.0802	0.9043	0.7314	0.039
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H6	1.0307	0.9396	0.6388	0.034
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H7a	1.2526	0.9518	0.5157	0.033
H8a 1.1241 0.8098 0.5055 0.027 H8b 0.9866 0.8374 0.5259 0.027 H10 1.2263 0.8715 0.4038 0.027 H2 0.7336 0.5324 0.2220 0.042 H3 0.7819 0.5420 0.1237 0.043 H4 0.8111 0.6665 0.0782 0.041 H5 0.7980 0.7839 0.1328 0.041 H6 0.7540 0.7750 0.2314 0.042 H7a 0.6599 0.6930 0.3127 0.053 H7b 0.6402 0.5968 0.3094 0.053 H8a 0.8734 0.6100 0.3318 0.045 H8b 0.9034 0.7065 0.3290 0.045 H4b 0.5701 0.5715 0.7507 0.036 H4 0.5772 0.5242 0.6712 0.037 H6 0.6872 0.5242 0.6712 0.036 H7a<	H7b	1.1145	0.9753	0.5380	0.033
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H8a	1.1241	0.8098	0.5085	0.027
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H8b	0.9866	0.8374	0.5259	0.027
Molecule No. 3 H2 0.7336 0.5324 0.2220 0.042 H3 0.7819 0.5420 0.1237 0.043 H4 0.8111 0.6665 0.0782 0.041 H5 0.7980 0.7839 0.1328 0.041 H6 0.7540 0.7750 0.2314 0.042 H7a 0.6659 0.6930 0.3127 0.053 H7b 0.6402 0.5968 0.3094 0.053 H8a 0.8734 0.6100 0.3318 0.045 H8b 0.9034 0.7065 0.3290 0.045 H10 0.9873 0.6657 0.4419 0.030 H2 0.219 0.6267 0.6439 0.035 H3 0.3722 0.6232 0.7367 0.036 H4 0.5701 0.5715 0.7507 0.036 H5 0.6772 0.5242 0.6712 0.037 H6 0.58472 0.5283 0.5781 <td>H10</td> <td>1.2263</td> <td>0.8715</td> <td>0.4038</td> <td>0.027</td>	H10	1.2263	0.8715	0.4038	0.027
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Molecule No. 3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H2	0.7336	0.5324	0.2220	0.042
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H3	0.7819	0.5420	0.1237	0.043
H5 0.7980 0.7839 0.1328 0.041 H6 0.7540 0.7750 0.2314 0.042 H7a 0.6599 0.6930 0.3127 0.053 H7b 0.6402 0.5968 0.3094 0.053 H8a 0.8734 0.6100 0.3318 0.045 H8b 0.9034 0.7065 0.3290 0.045 H10 0.9873 0.66677 0.4419 0.030 Molecule No. 4H2 0.2819 0.6267 0.6439 0.035 H3 0.3722 0.6232 0.7367 0.036 H4 0.5701 0.5715 0.7507 0.036 H5 0.6772 0.5242 0.6712 0.037 H6 0.5872 0.5283 0.5781 0.035 H7b 0.4261 0.5604 0.5116 0.035 H7b 0.4261 0.5604 0.5116 0.035 H8a 0.2836 0.6829 0.5478 0.030 H10 0.4906 0.66681 0.4189 0.028 H2 0.0104 0.5275 0.2865 0.036 H3 0.0407 0.5307 0.3833 0.054 H4 0.3327 0.4114 0.4350 0.533 H5 -0.0067 0.2867 0.3833 0.054 H6 -0.04411 0.2824 0.2837 0.0425 H7a -0.0707 0.4517 0.1993 0.0455 H7a -0.0707 0.4517 0.193	H4	0.8111	0.6665	0.0782	0.041
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H5	0.7980	0.7839	0.1328	0.041
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H6	0.7540	0.7750	0.2314	0.042
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H7a	0.6599	0.6930	0.3127	0.053
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H7b	0.6402	0.5968	0.3094	0.053
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H8a	0.8734	0.6100	0.3318	0.045
H10 0.9873 0.6657 0.4419 0.030 Molecule No. 4 Molecule No. 4 1	H8b	0.9034	0.7065	0.3290	0.045
Molecule No. 4 H2 0.2819 0.6267 0.6439 0.035 H3 0.3722 0.6232 0.7367 0.036 H4 0.5701 0.5715 0.7507 0.036 H5 0.6772 0.5242 0.6712 0.037 H6 0.5872 0.5283 0.5781 0.034 H7a 0.2724 0.5424 0.5366 0.035 H7b 0.4261 0.5604 0.5116 0.035 H8a 0.2836 0.6829 0.5478 0.030 H8b 0.4444 0.7055 0.5319 0.030 H10 0.4906 0.6681 0.4189 0.028 Molecule No. 5 H2 0.0104 0.5275 0.2865 0.036 H3 0.0407 0.5307 0.3865 0.045 H4 0.0327 0.4114 0.4350 0.053 H5 -0.0067 0.2867 0.3833 0.054 H6 -0.0441	H10	0.9873	0.6657	0.4419	0.030
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Molecule No. 4		
$\begin{array}{c cccccc} H3 & 0.3722 & 0.6232 & 0.7367 & 0.036 \\ H4 & 0.5701 & 0.5715 & 0.7507 & 0.036 \\ H5 & 0.6772 & 0.5242 & 0.6712 & 0.037 \\ H6 & 0.5872 & 0.5283 & 0.5781 & 0.034 \\ H7a & 0.2724 & 0.5424 & 0.5366 & 0.035 \\ H7b & 0.4261 & 0.5604 & 0.5116 & 0.035 \\ H8a & 0.2836 & 0.6829 & 0.5478 & 0.030 \\ H8b & 0.4444 & 0.7055 & 0.5319 & 0.030 \\ H10 & 0.4906 & 0.6681 & 0.4189 & 0.028 \\ \hline & & & & & & & & & & & & & & & & & &$	H2	0.2819	0.6267	0.6439	0.035
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H3	0.3722	0.6232	0.7367	0.036
H5 0.6772 0.5242 0.6712 0.037 H6 0.5872 0.5283 0.5781 0.034 H7a 0.2724 0.5424 0.5366 0.035 H7b 0.4261 0.5604 0.5116 0.030 H8a 0.2836 0.6829 0.5478 0.030 H8b 0.4444 0.7055 0.5319 0.030 H10 0.4906 0.6681 0.4189 0.028 Molecule No. 5 H2 0.0104 0.5275 0.2865 0.036 H3 0.0407 0.5307 0.3865 0.045 H4 0.0327 0.4114 0.4350 0.053 H5 -0.0067 0.2867 0.3833 0.054 H6 -0.0441 0.2824 0.2837 0.042 H7a -0.0707 0.4517 0.1978 0.045 H7b -0.1259 0.3553 0.1993 0.045 H7b -0.1259 0.3553 0.1	H4	0.5701	0.5715	0.7507	0.036
H6 0.5872 0.5283 0.5781 0.034 H7a 0.2724 0.5424 0.5366 0.035 H7b 0.4261 0.5604 0.5116 0.030 H8a 0.2836 0.6829 0.5478 0.030 H8b 0.4444 0.7055 0.5319 0.030 H10 0.4906 0.6681 0.4189 0.028 Molecule No. 5 H2 0.0104 0.5275 0.2865 0.036 H3 0.0407 0.5307 0.3865 0.045 H4 0.0327 0.4114 0.4350 0.053 H5 -0.0067 0.2867 0.3833 0.054 H6 -0.0441 0.2824 0.2837 0.042 H7a -0.0707 0.4517 0.1978 0.045 H7b -0.1259 0.3553 0.1993 0.045 H7b -0.1259 0.3553 0.1993 0.045 H7b 0.1089 0.3412 0.	H5	0.6772	0.5242	0.6712	0.037
H7a 0.2724 0.5424 0.5366 0.035 H7b 0.4261 0.5604 0.5116 0.035 H8a 0.2836 0.6829 0.5478 0.030 H8b 0.4444 0.7055 0.5319 0.030 H10 0.4906 0.6681 0.4189 0.028 Molecule No. 5 H2 0.0104 0.5275 0.2865 0.036 H3 0.0407 0.5307 0.3865 0.045 H4 0.0327 0.4114 0.4350 0.053 H5 -0.0067 0.2867 0.3833 0.054 H6 -0.0441 0.2824 0.2837 0.042 H7a -0.0707 0.4517 0.1978 0.045 H7b -0.1259 0.3553 0.1993 0.045 H7b -0.1259 0.3553 0.1993 0.045 H7b -0.1259 0.3553 0.1993 0.045 H7b 0.1607 0.4376	H6	0.5872	0.5283	0.5781	0.034
H7b 0.4261 0.5604 0.5116 0.035 H8a 0.2836 0.6829 0.5478 0.030 H8b 0.4444 0.7055 0.5319 0.030 H10 0.4906 0.6681 0.4189 0.028 Molecule No. 5 0.2865 0.036 0.045 H3 0.0407 0.5307 0.3865 0.045 H4 0.0327 0.4114 0.4350 0.053 H5 -0.0067 0.2867 0.3833 0.054 H6 -0.0441 0.2824 0.2837 0.042 H7a -0.0707 0.4517 0.1978 0.045 H7b -0.1259 0.3553 0.1993 0.045 H7b -0.1259 0.3553 0.1993 0.045 H8a 0.1607 0.4376 0.1827 0.030 H8b 0.1089 0.3412 0.1866 0.030 H40 0.2320 0.3756 0.0745 0.030	H7a	0.2724	0.5424	0.5366	0.035
H8a 0.2836 0.6829 0.5478 0.030 H8b 0.4444 0.7055 0.5319 0.030 H10 0.4906 0.6681 0.4189 0.028 Molecule No. 5 0.2865 0.036 H2 0.0104 0.5275 0.2865 0.036 H3 0.0407 0.5307 0.3865 0.045 H4 0.0327 0.4114 0.4350 0.053 H5 -0.0067 0.2867 0.3833 0.054 H6 -0.0441 0.2824 0.2837 0.042 H7a -0.0707 0.4517 0.1978 0.045 H7b -0.1259 0.3553 0.1993 0.045 H8a 0.1607 0.4376 0.1827 0.030 H8b 0.1089 0.3412 0.1866 0.030 H10 0.2320 0.3756 0.0745 0.030	H7b	0.4261	0.5604	0.5116	0.035
H8b 0.4444 0.7055 0.5319 0.030 H10 0.4906 0.6681 0.4189 0.028 Molecule No. 5 Molecule No. 5 0.336 0.036 H2 0.0104 0.5275 0.2865 0.036 H3 0.0407 0.5307 0.3865 0.045 H4 0.0327 0.4114 0.4350 0.053 H5 -0.0067 0.2867 0.3833 0.054 H6 -0.0441 0.2824 0.2837 0.042 H7a -0.0707 0.4517 0.1978 0.045 H7b -0.1259 0.3553 0.1993 0.045 H8a 0.1607 0.4376 0.1827 0.030 H8b 0.1089 0.3412 0.1866 0.030 H10 0.2320 0.3756 0.0745 0.030	H8a	0.2836	0.6829	0.5478	0.030
H10 0.4906 0.6681 0.4189 0.028 Molecule No. 5 Molecule No. 5 0.2865 0.036 H2 0.0104 0.5275 0.2865 0.036 H3 0.0407 0.5307 0.3865 0.045 H4 0.0327 0.4114 0.4350 0.053 H5 -0.0067 0.2867 0.3833 0.054 H6 -0.0441 0.2824 0.2837 0.042 H7a -0.0707 0.4517 0.1978 0.045 H7b -0.1259 0.3553 0.1993 0.045 H8a 0.1607 0.4376 0.1827 0.030 H8b 0.1089 0.3412 0.1866 0.030 H10 0.2320 0.3756 0.0745 0.030	H8b	0.4444	0.7055	0.5319	0.030
Molecule No. 5 H2 0.0104 0.5275 0.2865 0.036 H3 0.0407 0.5307 0.3865 0.045 H4 0.0327 0.4114 0.4350 0.053 H5 -0.0067 0.2867 0.3833 0.054 H6 -0.0441 0.2824 0.2837 0.042 H7a -0.0707 0.4517 0.1978 0.045 H7b -0.1259 0.3553 0.1993 0.045 H8a 0.1607 0.4376 0.1827 0.030 H8b 0.1089 0.3412 0.1866 0.030 H10 0.2320 0.3756 0.0745 0.030	H10	0.4906	0.6681	0.4189	0.028
H2 0.0104 0.5275 0.2865 0.036 H3 0.0407 0.5307 0.3865 0.045 H4 0.0327 0.4114 0.4350 0.053 H5 -0.0067 0.2867 0.3833 0.054 H6 -0.0441 0.2824 0.2837 0.042 H7a -0.0707 0.4517 0.1978 0.0455 H7b -0.1259 0.3553 0.1993 0.0455 H8a 0.1607 0.4376 0.1827 0.030 H8b 0.1089 0.3412 0.1866 0.030 H10 0.2320 0.3756 0.0745 0.030		0	Molecule No. 5	000	0.020
H3 0.0407 0.5307 0.3865 0.045 H4 0.0327 0.4114 0.4350 0.053 H5 -0.0067 0.2867 0.3833 0.054 H6 -0.0441 0.2824 0.2837 0.042 H7a -0.0707 0.4517 0.1978 0.045 H7b -0.1259 0.3553 0.1993 0.045 H8a 0.1607 0.4376 0.1827 0.030 H8b 0.1089 0.3412 0.1866 0.030 H10 0.2320 0.3756 0.0745 0.030	H2	0.0104	0.5275	0.2865	0.036
H4 0.0327 0.4114 0.4350 0.053 H5 -0.0067 0.2867 0.3833 0.054 H6 -0.0441 0.2824 0.2837 0.042 H7a -0.0707 0.4517 0.1978 0.045 H7b -0.1259 0.3553 0.1993 0.045 H8a 0.1607 0.4376 0.1827 0.030 H8b 0.1089 0.3412 0.1866 0.030 H10 0.2320 0.3756 0.0745 0.030	H3	0.0407	0.5307	0.3865	0.045
H5 -0.0067 0.2867 0.3833 0.054 H6 -0.0441 0.2824 0.2837 0.042 H7a -0.0707 0.4517 0.1978 0.045 H7b -0.1259 0.3553 0.1993 0.045 H8a 0.1607 0.4376 0.1827 0.030 H8b 0.1089 0.3412 0.1866 0.030 H10 0.2320 0.3756 0.0745 0.030	H4	0.0327	0.4114	0.4350	0.053
H6 -0.0441 0.2824 0.2837 0.042 H7a -0.0707 0.4517 0.1978 0.045 H7b -0.1259 0.3553 0.1993 0.045 H8a 0.1607 0.4376 0.1827 0.030 H8b 0.1089 0.3412 0.1866 0.030 H10 0.2320 0.3756 0.0745 0.030	H5	-0.0067	0.2867	0.3833	0.054
H7a -0.0707 0.4517 0.1978 0.045 H7b -0.1259 0.3553 0.1993 0.045 H8a 0.1607 0.4376 0.1827 0.030 H8b 0.1089 0.3412 0.1866 0.030 H10 0.2320 0.3756 0.0745 0.030	H ₆	-0.0441	0.2824	0.2837	0.042
H7b -0.1259 0.3553 0.1993 0.045 H8a 0.1607 0.4376 0.1827 0.030 H8b 0.1089 0.3412 0.1866 0.030 H10 0.2320 0.3756 0.0745 0.030	H7a	-0.0707	0.4517	0.1978	0.045
H8a 0.1607 0.4376 0.1827 0.030 H8b 0.1089 0.3412 0.1866 0.030 H10 0.2320 0.3756 0.0745 0.030	H7b	-0.1259	0.3553	0.1993	0.045
H8b 0.1089 0.3412 0.1866 0.030 H10 0.2320 0.3756 0.0745 0.030	H8a	0.1607	0.4376	0.1827	0.030
H10 0.2320 0.3756 0.0745 0.030	H8b	0.1089	0.3412	0.1866	0.030
	H10	0.2320	0.3756	0.0745	0.030

Table 3. Positional Parameters for Hydrogens in Compound 1352

	Molecule No. 6					
H2	0.5362	0.4354	-0.1458	0.038		
H3	0.5904	0.3996	-0.2395	0.042		
H4	0.7850	0.3464	-0.2568	0.043		
H5	0.9285	0.3314	-0.1793	0.049		
H6	0.8791	0.3700	-0.0858	0.044		
H7a	0.6105	0.4702	-0.0440	0.034		
H7b	0.7514	0.4516	-0.0212	0.034		
H8a	0.4904	0.3320	-0.0335	0.029		
H8b	0.6310	0.3083	-0.0163	0.029		
H10	0.7318	0.3720	0.0897	0.027		
		Molecule No. 7	7			
H2	0.2468	0.2673	0.2779	0.037		
H3	0.2864	0.2827	0.3771	0.039		
H4	0.3067	0.1702	0.4308	0.038		
H5	0.2880	0.0429	0.3844	0.037		
H6	0.2451	0.0270	0.2850	0.036		
H7a	0.1902	0.0787	0.1938	0.043		
H7b	0.1422	0.1621	0.1950	0.043		
H8a	0.3807	0.2345	0.1837	0.034		
H8b	0.4233	0.1495	0.1789	0.034		
H10	0.5039	0.1713	0.0704	0.029		
		Molecule No. 8	3			
H2	1.0903	0.0252	-0.0776	0.034		
H3	1.1730	0.0199	-0.1718	0.034		
H4	1.0617	0.0673	-0.2483	0.032		
H5	0.8677	0.1221	-0.2300	0.035		
H6	0.7820	0.1254	-0.1362	0.032		
H7a	0.9370	0.0626	-0.0080	0.035		
H7b	0.7811	0.0422	-0.0316	0.035		
H8a	0.9487	0.2065	-0.0246	0.030		
H8b	0.7863	0.1814	-0.0385	0.030		
H10	1.0070	0.1726	0.0870	0.027		

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
			Molecule No.	1		
C1	0.0115(12)	0.0316(15)	0.0224(13)	0.0048(11)	-0.0003(10)	0.0031(11)
C2	0.0257(15)	0.0222(14)	0.0377(16)	0.0043(12)	-0.0040(12)	0.0096(12)
C3	0.0275(15)	0.0307(15)	0.0301(15)	-0.0080(12)	-0.0020(12)	0.0099(12)
C4	0.0235(14)	0.0424(17)	0.0230(14)	0.0010(12)	0.0029(11)	0.0094(12)
C5	0.0271(15)	0.0216(14)	0.0338(15)	0.0083(12)	0.0024(12)	0.0061(11)
C6	0.0216(14)	0.0246(15)	0.0275(14)	-0.0046(11)	0.0014(11)	0.0059(11)
C7	0.0177(14)	0.0521(19)	0.0236(14)	0.0068(13)	-0.0008(11)	0.0053(13)
C8	0.0124(13)	0.0343(16)	0.0182(13)	0.0022(11)	0.0001(10)	0.0062(11)
C9	0.0155(13)	0.0208(13)	0.0174(12)	-0.0005(10)	-0.0008(10)	0.0042(10)
	0.0106(11)	0.0319(13)	0.0205(11)	0.0042(9)	0.0017(8)	0.0069(9)
N12	0.0195(13) 0.0170(12)	0.0392(14) 0.0406(14)	0.0203(11) 0.0200(11)	0.0007(10) 0.0035(10)	0.0010(9)	0.0100(10)
N12	0.0179(12) 0.0150(11)	0.0400(14)	0.0200(11) 0.0200(11)	0.0035(10)	0.0025(9)	0.0104(10)
NIO	0.0100(11)	0.0000(10)		2	0.0001(0)	0.000+(0)
C1	0.01/7(13)	0.0245(14)	0.0258(14)	-0.00/8(11)	-0.0008(11)	0.0026(11)
C2	0.0147(13) 0.0172(14)	0.0243(14)	0.0230(14) 0.0234(14)	-0.0040(11)	-0.0000(11)	0.0020(11)
C3	0.0198(15)	0.0002(10) 0.0484(19)	0.0204(14) 0.0261(15)	0.0010(12)	-0.0002(11)	0.0000(12) 0.0062(13)
C4	0.0230(15)	0.0383(17)	0.0225(14)	0.0000(12)	-0.0006(11)	-0.0021(12)
Č5	0.0230(15)	0.0330(16)	0.0268(15)	-0.0089(12)	0.0105(12)	-0.0026(12)
C6	0.0174(14)	0.0254(14)	0.0332(15)	-0.0063(12)	0.0014(11)	0.0035(11)
C7	0.0200(14)	0.0259(15)	0.0295(14)	-0.0028(11)	-0.0031(11)	0.0075(12)
C8	0.0150(13)	0.0259(14)	0.0203(13)	0.0003(10)	0.0020(10)	0.0040(11)
C9	0.0131(13)	0.0178(13)	0.0252(13)	0.0009(10)	0.0010(10)	0.0041(10)
N10	0.0119(11)	0.0293(13)	0.0215(11)	0.0041(9)	-0.0016(9)	0.0077(9)
N11	0.0198(12)	0.0351(13)	0.0238(12)	0.0058(10)	-0.0010(9)	0.0114(10)
N12	0.0192(12)	0.0383(14)	0.0224(11)	0.0072(10)	-0.0014(9)	0.0127(10)
N13	0.0161(11)	0.0307(13)	0.0248(12)	0.0027(9)	-0.0016(9)	0.0087(9)
			Molecule No.	3		
C1	0.0129(13)	0.0367(16)	0.0233(14)	0.0043(12)	-0.0021(10)	0.0019(11)
C2	0.0204(15)	0.0285(16)	0.0465(18)	0.0113(13)	0.0011(13)	0.0064(12)
C3	0.0222(15)	0.0306(16)	0.0417(17)	-0.0085(13)	0.0049(13)	0.0023(12)
04	0.0206(14)	0.0412(18)	0.0275(15)	-0.0012(13)	0.0079(12)	0.0027(13)
C5	0.0293(10)	0.0328(10)	0.0304(15)	0.0071(12)	0.0079(12)	0.0067(13)
	0.0292(10)	0.0317(10)	0.0319(15) 0.0220(15)	-0.0055(13)	-0.0057(13)	0.0051(13) 0.0027(15)
	0.0220(10)	0.070(2)	0.0230(13) 0.0224(14)	-0.0078(14)	-0.0013(12)	0.0027(13) 0.0217(14)
	0.0220(13)	0.002(2)	0.0224(14) 0.0254(14)	-0.0004(14)	-0.0037(12)	0.0217(14) 0.0085(11)
N10	0.0133(13) 0.0127(11)	0.0230(13) 0.0314(13)	0.0254(14) 0.0252(12)	-0.0023(11)	-0.0003(11)	0.0003(11)
N11	0.0127(11)	0.0335(13)	0.0260(12)	0.0027(0)	-0.0005(9)	0.0002(0)
N12	0.0171(12)	0.0398(14)	0.0253(12)	0.0006(10)	0.0007(9)	0.0072(10)
N13	0.0180(12)	0.0326(13)	0.0243(12)	-0.0020(10)	0.0007(9)	0.0087(10)
	. ,		Molecule No.	4 , , ,		· · ·
C1	0.0213(14)	0.0228(14)	0.0222(13)	0.0026(10)	0.0024(11)	0.0019(11)
C2	0.0197(14)	0.0333(16)	0.0255(14)	0.0037(12)	0.0028(11)	0.0069(12)
C3	0.0226(15)	0.0390(17)	0.0199(13)	0.0042(12)	0.0051(11)	0.0060(13)
C4	0.0279(15)	0.0285(15)	0.0234(14)	0.0050(11)	-0.0026(11)	0.0027(12)
C5	0.0263(15)	0.0277(15)	0.0293(14)	0.0064(12)	-0.0018(12)	0.0075(12)
C6	0.0283(15)	0.0261(15)	0.0229(13)	0.0013(11)	0.0054(11)	0.0097(12)
C7	0.0303(16)	0.0249(15)	0.0225(14)	-0.0007(11)	-0.0036(11)	0.0034(12)
C8	0.0221(14)	0.0279(15)	0.0185(13)	0.0015(10)	0.0017(10)	0.0082(11)
0.9	0.0144(13)	0.0202(13)	0.0239(13)	0.0006(10)	0.0023(10)	0.0041(10)
	0.0154(11)	0.0324(13)	0.0181(11)	0.0009(9)	-0.0013(9)	0.0098(9)
N11 N10	0.0193(12)	0.0355(13)	0.0193(11)	0.0001(9)	-0.0028(9)	0.0110(10)
	0.0100(12)	0.0001(10)	0.0242(12)	-0.0010(10)	-0.0038(9)	0.0007(10)
1110	0.0100(11)	0.0230(13)	0.0243(11)	-0.0020(9)	-0.0013(9)	0.0003(8)

Table 4. Refined Thermal Parameters (U's) for Compound 1352

Molecule No. 5						
C1	0.0138(13)	0.0334(15)	0.0229(13)	0.0004(11)	0.0032(10)	0.0091(11)
C2	0.0300(16)	0.0227(15)	0.0292(15)	0.0027(11)	0.0091(12)	0.0056(12)
C3	0.0283(16)	0.0391(18)	0.0301(15)	-0.0120(13)	0.0003(12)	0.0022(13)
C4	0.0300(17)	0.074(3)	0.0221(14)	0.0063(15)	0.0023(12)	0.0252(16)
C5	0.0444(19)	0.0441(19)	0.0428(18)	0.0260(16)	0.0188(15)	0.0260(16)
C6	0.0297(16)	0.0224(15)	0.0438(17)	0.0000(13)	0.0122(13)	0.0072(12)
C7	0.0260(16)	0.056(2)	0.0252(15)	-0.0059(13)	0.0001(12)	0.0208(14)
Č8	0.0179(14)	0.0329(16)	0.0191(13)	0.0012(11)	0.0018(10)	0.0081(12)
C9	0.0087(12)	0.0213(13)	0.0252(13)	-0.0011(10)	-0.0006(10)	0.0045(10)
N10	0.0137(11)	0.0334(13)	0.0221(11)	-0.0024(9)	-0.0012(9)	0.0086(10)
N11	0.0183(12)	0.0437(15)	0.0206(11)	-0.0038(10)	-0.0009(9)	0.0105(11)
N12	0.0194(13)	0.0434(15)	0.0202(11)	-0.0046(10)	-0.0035(9)	0.0100(11)
N13	0.0168(11)	0.0319(13)	0.0205(11)	-0.0037(9)	-0.0019(9)	0.0073(9)
		0.00.0(10)	Molecule No.	6		0.0010(0)
C1	0.0211(14)	0.0294(15)	0.0232(14)	0.0077(11)	0.0025(11)	0.0003(12)
C2	0.0215(15)	0.0274(15)	0.0202(11) 0.0345(16)	0.0079(12)	-0.0025(12)	0.0000(12)
C3	0.0270(10) 0.0271(16)	0.027 + (10) 0.0331(16)	0.00+3(10) 0.0273(14)	0.0070(12)	-0.0020(12)	-0.0023(12)
C4	0.0271(10) 0.0245(16)	0.0465(18)	0.0270(14) 0.0197(14)	0.0121(12)	0.0007(12)	-0.0000(10)
C5	0.0243(10)	0.0400(10)	0.0157(14)	0.0001(12)	0.0000(11)	0.0001(10) 0.0108(15)
C6	0.0100(15)	0.058(2)	0.0230(13) 0.0237(14)	0.0011(14)	-0.0030(11)	0.0136(14)
00 C7	0.0258(15)	0.030(2) 0.0274(15)	0.0237(14) 0.0245(14)	0.0030(13)	-0.0003(11)	0.0130(14) 0.0070(12)
	0.0230(13)	0.0274(13) 0.0258(14)	0.0243(14)	0.0044(11)	0.0014(11)	0.0070(12) 0.0047(11)
	0.0170(13)	0.0230(14) 0.0107(12)	0.0223(13)	0.0013(11)	0.0000(10)	0.0047(11) 0.0049(10)
09	0.0120(13)	0.0197(13)	0.0200(10)	0.0005(10)	-0.0000(10)	0.0046(10)
	0.0120(11)	0.0200(12)	0.0231(11)	-0.0019(9)	0.0021(9)	0.0069(9)
	0.0170(12)	0.0290(13)	0.0223(11)	-0.0022(9)	0.0022(9)	0.0055(10)
NIZ	0.0206(12)	0.0287(12)	0.0262(12)	-0.0015(10)	0.0032(9)	0.0064(10)
1113	0.0144(11)	0.0207(12)		<u> </u>	0.0014(9)	0.0072(9)
<u> </u>	0.0105(10)	0.0010/15)		/ 0.000E(11)	0.0000(10)	0.0000(11)
	0.0125(13)	0.0318(15)	0.0245(14)	-0.0005(11)	0.0029(10)	0.0008(11)
	0.0243(15)	0.0252(15)	0.0332(15)	0.0009(12)	-0.0034(12)	0.0060(12)
	0.0207(13)	0.0203(13)	0.0322(13)	-0.0029(12)	-0.0035(12)	0.0000(12)
04		0.0411(17)	0.0249(14)	0.0023(12)		0.0059(12)
	0.0218(15)	0.0318(16)	0.0323(15)	0.0082(12)	-0.0010(12)	0.0082(12)
	0.0178(14)	0.0200(10)	0.0302(15)	-0.0010(12)	0.0045(12)	0.0040(11)
67	0.0214(15)	0.0449(18)	0.0248(15)	0.0003(13)	0.0034(12)	-0.0049(13)
60	0.0138(13)	0.0433(17)	0.0204(13)	0.0040(12)	0.0002(10)	0.0083(11)
69	0.0126(12)	0.0266(14)	0.0236(13)	0.0044(11)	0.0037(10)	0.0064(10)
N10	0.0127(11)	0.0287(12)	0.0254(12)	0.0041(9)	0.0022(9)	0.0078(9)
N11	0.0166(12)	0.0405(14)	0.0239(12)	0.0008(10)	0.0012(9)	0.0090(10)
N12	0.0182(12)	0.0473(10)	0.0219(12)	0.0030(10)	0.0017(9)	0.0080(11)
IN 13	0.0148(11)	0.0404(14)	0.0216(11)	0.0043(10)	0.0017(9)	0.0097(10)
	0.0005/1.4	0.0005/1.4		0.0010(10)	0.0005(11)	0.0001/11)
	0.0225(14)	0.0205(14)	0.0213(13)	-0.0012(10)	0.0005(11)	0.0021(11)
62	0.0265(15)	0.0253(14)	0.0257(14)	0.0034(11)	-0.0027(11)	0.0092(12)
03	0.0196(14)	0.0294(15)	0.0278(14)	-0.0020(11)	0.0013(11)	0.0075(11)
C4	0.0236(14)	0.0279(15)	0.0188(13)	-0.0041(11)	0.0002(11)	0.0035(11)
05	0.0255(15)	0.0326(16)	0.0202(14)	0.0008(11)	-0.0065(11)	0.0058(12)
C6	0.0191(14)	0.0285(15)	0.0253(14)	-0.0020(11)	-0.0001(11)	0.0061(11)
C7	0.0319(16)	0.0267(15)	0.0213(14)	0.0031(11)	0.0051(12)	0.0069(12)
C8	0.0205(14)	0.0297(15)	0.0191(13)	0.0019(11)	0.0002(10)	0.0095(11)
C9	0.0139(13)	0.0213(13)	0.0252(13)	0.0018(10)	-0.0009(10)	0.0053(10)
N10	0.0103(10)	0.0312(13)	0.0214(11)	0.0017(9)	0.0024(8)	0.0076(9)
N11	0.0206(12)	0.0319(13)	0.0224(12)	0.0005(10)	0.0039(9)	0.0084(10)
N12	0.0181(12)	0.0287(12)	0.0248(11)	0.0022(9)	0.0047(9)	0.0072(9)
N13	0.0140(11)	0.0270(12)	0.0252(12)	0.0023(9)	0.0018(9)	0.0066(9)
I he form of	the anisotropic of	hisplacement pa	arameter is:			
$exp[-2\pi(a^{*2}U_{11}h^{2}+b^{*2}U_{22}k^{2}+c^{*2}U_{33}l^{2}+2b^{*}c^{*}U_{23}kl+2a^{*}c^{*}U_{13}hl+2a^{*}b^{*}U_{12}hk)]$						

Table 5. Bond Distances in Compound 1352, Å

	Molecule No. 1					
C1-C6	1.385(4)	C1-C2	1.390(4)	C1-C7	1.510(4)	
C2-C3	1.381(4)	C3-C4	1.373(4)	C4-C5	1.390(4)	
C5-C6	1.380(4)	C7-C8	1.518(4)	C8-C9	1.490(3)	
C9-N13	1.319(3)	C9-N10	1.331(3)	N10-N11	1.342(3)	
N11-N12	1.294(3)	N12-N13	1.363(3)		(0)	
		Molecul	e No. 2			
C1-C6	1,397(4)	C1-C2	1,398(4)	C1-C7	1.510(4)	
C2-C3	1 381(4)	C3-C4	1 379(4)	C4-C5	1 398(4)	
C5-C6	1 377(4)	C7-C8	1 538(4)	C8-C9	1 490(3)	
C9-N13	1 325(3)	C9-N10	1 327(3)	N10-N11	1 339(3)	
N11-N12	1 293(3)	N12-N13	1.367(3)		1.000(0)	
	1.200(0)	Molecul	e No. 3			
C1-C6	1 380(4)	C1-C2	1 391(4)	C1-C7	1 509(4)	
C2-C3	1.379(4)	C3-C4	1 374(4)	C4-C5	1 382(4)	
C5-C6	1.380(4)	C7-C8	1 491(4)	C8-C9	1 480(4)	
C9-N13	1.328(4)	C9-N10	1.339(3)	N10-N11	1.337(3)	
N11-N12	1 292(3)	N12-N13	1.365(3)		1.007(0)	
	1.202(0)	Molecul	<u>- No 4</u>			
C1-C6	1 387(1)		$\frac{1}{1}$ 302(1)	C1_C7	1 515(1)	
C2-C3	1.386(4)	C3-C4	1.392(4)	C4-C5	1.313(4)	
02-03	1.000(4)	03-04	1.505(4)	C9 C0	1.077(4)	
C0 N12	1.392(4)		1.002(4)	N10 N11	1.409(3)	
	1.000(0)		1.000(0)		1.339(3)	
	1.292(3)	NIZ-INIS Malaaul	1.304(3)			
01.00	1 077/4)			01.07	1 500(4)	
	1.377(4)		1.381(4)		1.508(4)	
02-03	1.384(4)	03-04	1.360(5)		1.376(5)	
	1.382(4)	07-08	1.525(4)	08-09	1.493(3)	
C9-N13	1.324(3)	C9-N10	1.325(3)	N10-N11	1.350(3)	
N11-N12	1.290(3)	N12-N13	1.365(3)			
01.00	4.000(4)	Molecul	e No. 6	01.07	4 540(4)	
	1.392(4)	01-02	1.393(4)	01-07	1.518(4)	
02-03	1.386(4)	03-04	1.375(5)	04-05	1.382(4)	
05-06	1.382(4)	07-08	1.534(4)	08-09	1.498(3)	
C9-N13	1.326(3)	C9-N10	1.332(3)	N10-N11	1.344(3)	
N11-N12	1.297(3)	N12-N13	1.362(3)			
0.4 0.0	1 000/10	Molecul	e No. /	<u> </u>		
C1-C6	1.383(4)	C1-C2	1.396(4)	C1-C7	1.516(4)	
C2-C3	1.377(4)	C3-C4	1.384(4)	C4-C5	1.381(4)	
C5-C6	1.386(4)	C7-C8	1.513(4)	C8-C9	1.488(4)	
C9-N13	1.322(3)	C9-N10	1.337(3)	N10-N11	1.345(3)	
N11-N12	1.293(3)	N12-N13	1.366(3)			
		Molecul	e No. 8			
C1-C6	1.391(4)	C1-C2	1.405(4)	C1-C7	1.512(4)	
C2-C3	1.386(4)	C3-C4	1.385(4)	C4-C5	1.388(4)	
C5-C6	1.386(4)	C7-C8	1.530(4)	C8-C9	1.492(3)	
C9-N13	1.326(3)	C9-N10	1.333(3)	N10-N11	1.344(3)	
N11-N12	1.296(3)	N12-N13	1.359(3)			

Table 6. Bond Angles in Compound 1352, $^\circ$

	Molecule No. 1					
C6-C1-C2	118.6(2)	C6-C1-C7	120.6(3)	C2-C1-C7	120.8(3)	
C3-C2-C1	120.6Ì3ĺ	C4-C3-C2	120.4Ì3	C3-C4-C5	119.6(3)	
C6-C5-C4	119.9(3)	C5-C6-C1	120.8(3)	C1-C7-C8	112.6(2)	
C9-C8-C7	112.8(2)	N13-C9-N10	107.3(2)	N13-C9-C8	126.1(2)	
N10-C9-C8	1267(2)	C9-N10-N11	1101(2)	N12-N11-N10	105 7(2)	
N11-N12-N13	110 5(2)	C9-N13-N12	106 5(2)		100.7(2)	
	110.0(2)	Molecu	Ile No. 2			
C6-C1-C2	117,9(3)	C6-C1-C7	121.6(2)	C2-C1-C7	120.4(2)	
C3-C2-C1	121 2(3)	C4-C3-C2	120 3(3)	C3-C4-C5	1194(3)	
C6-C5-C4	120 3(3)	C5-C6-C1	121 0(3)	C1-C7-C8	110 6(2)	
C9-C8-C7	114 4(2)	N13-C9-N10	106 8(2)	N13-C9-C8	127 0(2)	
N10-C9-C8	126 1(2)	C9-N10-N11	110 5(2)	N12-N11-N10	106 0(2)	
N11-N12-N13	110 0(2)	CQ_N13_N12	106 7(2)		100.0(2)	
	110.0(2)	Molecu	100.7(2)			
C6-C1-C2	118 2(3)	C6-C1-C7	120 0(3)	C2-C1-C7	121 8(3)	
C3-C2-C1	120 3(3)	C4-C3-C2	121.0(3)	C3-C4-C5	110 1(3)	
C6-C5-C4	110 0(3)	C5-C6-C1	121.0(0)	C8-C7-C1	113 8(3)	
	114.4(0)		121.3(3)		106 4(0)	
	114.4(2)		100.9(2)	N13-C9-C0	120.4(2)	
	120.7(2)		109.9(2)	IN 12-IN 11-IN 10	106.4(2)	
INTT-INT2-INT3	110.3(2)	<u>C9-N13-N12</u>	106.5(2)			
00.01.00	117.0/0)			00.01.07	101.0(0)	
6-61-62	117.9(2)	06-01-07	120.8(2)	02-01-07	121.2(3)	
03-02-01	121.2(3)	04-03-02	120.1(3)	05-04-03	119.6(3)	
C4-C5-C6	120.1(3)	C1-C6-C5	121.2(3)	01-07-08	112.6(2)	
C9-C8-C7	112.6(2)	N13-C9-N10	106.5(2)	N13-C9-C8	128.2(2)	
N10-C9-C8	125.3(2)	C9-N10-N11	110.6(2)	N12-N11-N10	105.6(2)	
N11-N12-N13	110.9(2)	C9-N13-N12	106.4(2)			
		Molecu	ile No. 5			
C2-C1-C6	118.1(3)	C2-C1-C7	121.3(3)	C6-C1-C7	120.5(3)	
C1-C2-C3	120.7(3)	C4-C3-C2	120.7(3)	C3-C4-C5	119.4(3)	
C4-C5-C6	119.9(3)	C1-C6-C5	121.0(3)	C1-C7-C8	112.9(2)	
C9-C8-C7	112.1(2)	N13-C9-N10	108.0(2)	N13-C9-C8	125.8(2)	
N10-C9-C8	126.1(2)	C9-N10-N11	109.2(2)	N12-N11-N10	106.4(2)	
N11-N12-N13	110.3(2)	C9-N13-N12	106.1(2)			
		Molecu	ile No. 6			
C6-C1-C2	118.1(3)	C6-C1-C7	120.9(2)	C2-C1-C7	121.0(3)	
C3-C2-C1	120.7(3)	C4-C3-C2	120.7(3)	C3-C4-C5	119.1(3)	
C4-C5-C6	120.6(3)	C5-C6-C1	120.8(3)	C1-C7-C8	110.7(2)	
C9-C8-C7	113.6(2)	N13-C9-N10	107.0(2)	N13-C9-C8	127.2(2)	
N10-C9-C8	125.8(2)	C9-N10-N11	110.1(2)	N12-N11-N10	105.9(2)	
N11-N12-N13	110.2(2)	C9-N13-N12	106.8(2)			
		Molecu	ile No. 7			
C6-C1-C2	118.5(3)	C6-C1-C7	121.5(3)	C2-C1-C7	120.0(3)	
C3-C2-C1	121.0(3)	C2-C3-C4	119.9(3)	C5-C4-C3	119.7(3)	
C4-C5-C6	120.2(3)	C1-C6-C5	120.7(3)	C8-C7-C1	112.8(2)	
C9-C8-C7	112.9(2)	N13-C9-N10	107.1(2)	N13-C9-C8	126.3(2)	
N10-C9-C8	126.6Ì2ĺ	C9-N10-N11	109.9(2)	N12-N11-N10	106.0 (2)	
N11-N12-N13	110.3(2)	C9-N13-N12	106.7(2)			
-		Molecu	ile No. 8			
C6-C1-C2	118.0(2)	C6-C1-C7	121.6(2)	C2-C1-C7	120.4(2)	
C3-C2-C1	120.6(3)	C4-C3-C2	120.5(3)	C3-C4-C5	119.5(2)	
C6-C5-C4	120.0(3)	C5-C6-C1	121.4(3)	C1-C7-C8	112.5(2)	
C9-C8-C7	113.4(2)	N13-C9-N10	107.0(2)	N13-C9-C8	127.8(2)	
N10-C9-C8	125.3(2)	C9-N10-N11	109.8(2)	N12-N11-N10	106.3(2)	
N11-N12-N13	110 0(2)	C9-N13-N12	107 0(2)		100.0(2)	
		55 5 MIL				

ⁱ. Sheldrick, G.M. (2008) CELL_NOW. University of Gottingen, Germany.

ⁱⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

^{iv}Sheldrick, G.M. (2008) TWINABS. University of Gottingen, Germany.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^{vi}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

viii "ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

Compound 1411, $C_{10}H_8NSO_2$, crystallizes in the monoclinic space group $P2_1/c$ (systematic absences 0k0: k=odd and h0l: l=odd) with a=13.0321(5)Å, b=5.7266(2)Å, c=12.9853(5)Å, β =104.646(2)°, V=937.60(6)Å³, Z=4, and d_{calc}=1.461 g/cm³. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 3299 frames were collected with a crystal to detector distance of 41.8 mm, rotation widths of 0.5° and exposures of 20 seconds:

scan type	20	ω	φ	χ	frames
φ	24.50	12.92	9.41	19.46	733
ω	-25.50	1.98	240.26	-33.72	69
ω	22.00	329.15	145.44	54.21	121
φ	14.50	10.63	50.08	50.72	664
ф I	-20.50	295.58	14.27	30.75	737
φ	-25.50	286.57	24.44	52.47	739
t (i)	-23.00	330.21	13.70	-96.00	92
ω	22.00	315.82	285.01	93.16	144

The crystal grew as a non-merohedral twin; the program CELL_NOW¹ was used to index the diffraction images and to determine the twinning mechanism. The crystal was twinned by a rotation of 180° about the 001 real direction. Rotation frames were integrated using SAINT², producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTL³ program package for further processing and structure solution. A total of 33628 reflections were measured over the ranges 1.62 $\leq \theta \leq$ 25.40°, -15 \leq h \leq 15, 0 \leq k \leq 6, 0 \leq l \leq 15 yielding 1759 unique reflections (Rint = 0.0609). The intensity data were corrected for Lorentz and polarization effects and for absorption using TWINABS⁴ (minimum and maximum transmission 0.5304, 0.7452).

The structure was solved by direct methods (SHELXS-97⁵). Refinement was by full-matrix least squares based on F² using SHELXL-97.⁶ All reflections were used during refinement. The weighting scheme used was w=1/[$\sigma^2(F_0^2)$ + (0.0674P)² + 0.4014P] where P = ($F_0^2 + 2F_c^2$)/3. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0373 and wR2=0.1039 for 1643 observed reflections for which F > 4 σ (F) and R1=0.0406 and wR2=0.1070 and GOF =1.086 for all 1759 unique, non-zero reflections and 129 variables.⁷ The maximum Δ/σ in the final cycle of least squares was 0.000 and the two most prominent peaks in the final difference Fourier were +0.802 and -0.303 e/Å³. The twinning parameter refined to a value of 0.386(2).

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 1. is an ORTEP⁸ representation of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of the title compound with 50% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1411

Empirical formula	$C_{10}H_8NSO_2$
Formula weight	206.23
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P21/c
Cell constants:	
а	13.0321(5) Å
b	5.7266(2) Å
c	12.9853(5) Å
β	104.646(2)°
Volume	937.60(6) Å ³
Z	4
Density (calculated)	1.461 Mg/m ³
Absorption coefficient	0.314 mm ⁻¹
F(000)	428
Crystal size	0.25 x 0.18 x 0.03 mm ³
Theta range for data collection	1.62 to 25.40°
Index ranges	$-15 \le h \le 15, 0 \le k \le 6, 0 \le l \le 15$
Reflections collected	33628
Independent reflections	1759 [R(int) = 0.0609]
Completeness to theta = 25.40°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.5304
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1759 / 0 / 129
Goodness-of-fit on F ²	1.086
Final R indices [I>2sigma(I)]	R1 = 0.0373, wR2 = 0.1039
R indices (all data)	R1 = 0.0406, wR2 = 0.1070
Largest diff. peak and hole	0.802 and -0.303 e.Å ⁻³

Table 2. Refined Positional Parameters for Compound 14	11
--	----

Atom	Х	V	Z	U _{eq} , A ²		
S1	0.72871(4)	1.01301(9)	0.36873(5)	0.02286(19)		
01	0.61652(12)	1.1808(3)	0.49601(13)	0.0231(À) ´		
02	0.53075(13)	0.5020(2)	0.31211(14)	0.0244(4)		
N1	0.56672(14)	0.8250(3)	0.41840(14)	0.0198(4)		
C1	0.62877(18)	1.0216(4)	0.43811(17)	0.0193(5)		
C2	0.58659(17)	0.6669(4)	0.34594(16)	0.0199(5)		
C3	0.69046(19)	0.7211(4)	0.3164(2)	0.0234(5)		
C4	0.67844(18)	0.6939(5)	0.19728(19)	0.0266(5)		
C5	0.78182(19)	0.7014(4)	0.16524(19)	0.0224(5)		
C6	0.80636(19)	0.8893(4)	0.10833(19)	0.0254(5)		
C7	0.89948(19)	0.8914(4)	0.07532(19)	0.0281(5)		
C8	0.96903(19)	0.7040(4)	0.0981(2)	0.0261(5)		
C9	0.94660(19)	0.5176(4)	0.1559(2)	0.0245(5)		
C10	0.85309(19)	0.5158(4)	0.1891(2)	0.0233(5)		
$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2]$	$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}aa^*bb^*cos \gamma + 2U_{13}aa^*cc^*cos \beta + 2U_{23}bb^*cc^*cos \alpha]$					

Table 3. Positional Parameters for Hydrogens in Compound 1411

Atom	Х	У	Z	U _{iso} , A ²
H1	0.5172	0.8014	0.4502	0.026
H4a	0.6436	0.5463	0.1743	0.035
H4b	0.6328	0.8175	0.1603	0.035
H6	0.7599	1.0150	0.0922	0.034
H7	0.9154	1.0189	0.0378	0.037
H8	1.0306	0.7042	0.0743	0.035
H9	0.9938	0.3933	0.1728	0.033
H10	0.8379	0.3893	0.2276	0.031

Table 4. Refined Thermal Parameters (U's) for Compound 1411

Atom	U_{11}	U_{22}	U ₃₃	U ₂₃	U ₁₃	U_{12}
S1	0.0233(3)	0.0227(3)	0.0246(3)	-0.0034(2)	0.0098(3)	-0.0042(2)
01	0.0272(8)	0.0204(8)	0.0234(8)	-0.0019(6)	0.0091(7)	-0.0009(6)
02	0.0272(8)	0.0192(9)	0.0269(9)	-0.0034(6)	0.0070(7)	-0.0033(6)
N1	0.0201(9)	0.0205(9)	0.0203(10)	-0.0005(8)	0.0078(7)	-0.0013(7)
C1	0.0212(10)	0.0181(11)	0.0177(11)	0.0020(8)	0.0030(9)	0.0019(8)
C2	0.0214(10)	0.0194(10)	0.0184(11)	0.0015(8)	0.0041(8)	0.0024(9)
C3	0.0242(12)	0.0229(12)	0.0246(12)	-0.0046(9)	0.0089(10)	-0.0035(9)
C4	0.0221(11)	0.0349(14)	0.0225(12)	-0.0067(10)	0.0049(9)	0.0000(10)
C5	0.0238(11)	0.0230(12)	0.0197(11)	-0.0053(9)	0.0041(9)	-0.0009(9)
C6	0.0291(11)	0.0187(12)	0.0260(12)	-0.0027(9)	0.0024(9)	0.0031(9)
C7	0.0361(13)	0.0215(13)	0.0268(12)	0.0039(9)	0.0080(11)	-0.0059(10)
C8	0.0237(11)	0.0298(13)	0.0264(12)	-0.0055(10)	0.0092(10)	-0.0043(9)
C9	0.0258(12)	0.0207(12)	0.0256(13)	-0.0021(9)	0.0042(9)	0.0040(9)
C10	0.0306(12)	0.0179(12)	0.0216(12)	0.0007(9)	0.0067(10)	-0.0012(8)
The form of the anisotropic displacement parameter is:						
exp[-2π²(a*²l	J ₁₁ h ² +b* ² U ₂₂ k ² +0	c* ² U ₃₃ l ² +2b*c*U	₂₃ kl+2a*c*U₁₃hl	+2a*b*U ₁₂ hk)]		

Table 5. Bond Distances in Compound 1411, Å

S1-C1	1.762(2)	S1-C3	1.826(2)	01-C1	1.218(3)
O2-C2	1.206(3)	N1-C1	1.372(3)	N1-C2	1.377(3)
C2-C3	1.529(3)	C3-C4	1.523(3)	C4-C5	1.508(3)
C5-C6	1.387(3)	C5-C10	1.394(3)	C6-C7	1.386(3)
C7-C8	1.387(3)	C8-C9	1.379(3)	C9-C10	1.391(3)

Table 6. Bond Angles in Compound 1411, °

C1-S1-C3	92,76(10)	C1-N1-C2	117.60(18)	01-C1-N1	124.5(2)	
01-C1-S1	124.46(17)	N1-C1-S1	111.03(16)	02-C2-N1	124.3(2)	
O2-C2-C3	124.0(2) ´	N1-C2-C3	111.68(19)	C4-C3-C2	111.3(2)́	
C4-C3-S1	114.82(Í17)	C2-C3-S1	105.55(15)	C5-C4-C3	114.1(̈́2)́	
C6-C5-C10	118.6(2)	C6-C5-C4	120.8(2)	C10-C5-C4	120.6(2)	
C7-C6-C5	120.6(2)	C6-C7-C8	120.2(2)	C9-C8-C7	119.8(2)	
C8-C9-C10	119.8(2)	C9-C10-C5	120.8(2)			

¹. Sheldrick, G.M. (2008) CELL_NOW. University of Gottingen, Germany.

²Bruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

³Bruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

⁴Sheldrick, G.M. (2007) TWINABS. University of Gottingen, Germany.

⁵Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

⁶Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

 $\label{eq:rescaled_$

⁸ ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

X-ray Structure Determination of Compound 1373 (i.e., compound 18; CCDC 1427834)

Compound 1373, $C_{10}H_9NO_3$, crystallizes in the orthorhombic space group Pca2₁ (systematic absences h0l: h=odd and 0kl: l=odd) with a=7.3827(4)Å, b=6.3470(4)Å, c=38.163(2)Å, V=1788.24(18)Å³, Z=8, and d_{calc}=1.420 g/cm³. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 2217 frames were collected with a crystal to detector distance of 59.9 mm, rotation widths of 0.5° and exposures of 30 seconds:

scan type	20	ω	φ	χ	frames
φ	-23.00	334.99	345.26	-33.72	738
φ	32.00	44.52	349.55	-24.38	739
ф ф	32.00	13.64	198.15	70.63	93
t (I)	-25.50	217.37	309.98	28.88	309
ω ω	24.50	174.25	220.05	-99.10	69
ω ω	17.00	321.50	294.44	82.07	145
ω	19.50	122.35	279.85	-91.87	124

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 19655 reflections were measured over the ranges 2.13 $\leq \theta \leq 25.37^{\circ}$, $-8 \leq h \leq 8$, $-7 \leq k \leq 7$, $-45 \leq I \leq 46$ yielding 3273 unique reflections (Rint = 0.0557). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.6290, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). The asymmetric unit consists of two

molecules, which form a hydrogen-bonded dimer. Refinement was by full-matrix least squares based on F^2 using SHELXL-97.^v All reflections were used during refinement. The weighting scheme used was $w=1/[\sigma^2(F_0^2) + (0.0000P)^2 + 14.6871P]$ where $P = (F_0^2 + 2F_c^2)/3$. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0948 and wR2=0.2086 for 2824 observed reflections for which $F > 4\sigma(F)$ and R1=0.1067 and wR2=0.2142 and GOF =1.153 for all 3273 unique, non-zero reflections and 254 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.000 and the two most prominent peaks in the final difference Fourier were +0.516 and -0.654 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 1. is an ORTEP^{vii} representation of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of the two molecules in the asymmetric unit, showing the hydrogen bonding.

Table 1. Summary of Structure Determination of Compound 1373

Empirical formula	$C_{10}H_9NO_3$
Formula weight	191.18
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	orthorhombic
Space group	Pca2 ₁
Cell constants:	
a	7.3827(4) Å
b	6.3470(4) Å
c	38.163(2) Å
Volume	1788.24(18) Å ³
Z	8
Density (calculated)	1.420 Mg/m ³
Absorption coefficient	0.106 mm ⁻¹
F(000)	800
Crystal size	0.18 x 0.12 x 0.06 mm ³
Theta range for data collection	2.13 to 25.37°
Index ranges	$-8 \le h \le 8, -7 \le k \le 7, -45 \le l \le 46$
Reflections collected	19655
Independent reflections	3273 [R(int) = 0.0557]
Completeness to theta = 25.37°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.6290
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3273 / 299 / 254
Goodness-of-fit on F ²	1.153
Final R indices [I>2sigma(I)]	R1 = 0.0948, wR2 = 0.2086
R indices (all data)	R1 = 0.1067, wR2 = 0.2142
Absolute structure parameter	0(4)
Largest diff. peak and hole	0.516 and -0.654 e.Å ⁻³

Atom	Х	у	Z	U _{eq} , A ²
C1	0.5970(10)	0.2342(13)	0.4534(2)	0.0232(15)
C2	0.5484(10)	0.4118(14)	0.4321(2)	0.0283(17)
C3	0.6107(11)	0.4151(16)	0.3984(3)	0.033(2)
C4	0.7184(10)	0.2659(15)	0.3840(3)	0.0323(19)
C5	0.7689(11)	0.0922(15)	0.4056(3)	0.0303(19)
C6	0.7073(10)	0.0854(15)	0.4391(2)	0.0295(18)
C7	0.5270(9)	0.2218(14)	0.4911(2)	0.0235(15)
C8	0.6344(9)	0.3474(15)	0.5177(2)	0.0274(16)
C9	0.5637(9)	0.3084(13)	0.5536(2)	0.0188(14)
C10	0.8614(10)	0.2189(13)	0.5541(2)	0.0207(15)
N1	0.7046(8)	0.2375(10)	0.5737(2)	0.0228(14)
01	0.4063(6)	0.3381(9)	0.56326(15)	0.0219(11)
02	1.0049(6)	0.1625(9)	0.56248(15)	0.0205(10)
O3	0.8191(6)	0.2753(8)	0.51958(13)	0.0164(10)
C1'	0.3797(11)	0.2592(19)	0.7507(2)	0.036(2)
C2'	0.4295(12)	0.101(2)	0.7713(3)	0.047(2)
C3'	0.3721(13)	0.078(2)	0.8066(3)	0.051(3)
C4'	0.2580(11)	0.241(2)	0.8194(3)	0.045(2)
C5'	0.2022(12)	0.391(2)	0.7995(2)	0.045(2)
C6'	0.2643(10)	0.4154(17)	0.7642(2)	0.035(2)
C7'	0.4422(9)	0.2882(17)	0.7135(2)	0.0304(19)
C8'	0.3366(8)	0.1567(12)	0.68767(19)	0.0158(13)
C9'	0.4059(9)	0.1826(13)	0.6499(2)	0.0226(15)
C10'	0.1120(9)	0.2750(12)	0.6521(2)	0.0180(14)
N1'	0.2639(8)	0.2461(9)	0.63116(18)	0.0148(12)
01'	0.5606(6)	0.1518(9)	0.64081(14)	0.0202(11)
O2'	-0.0419(6)	0.3427(10)	0.64264(18)	0.0316(13)
O3'	0.1467(6)	0.2357(9)	0.68492(15)	0.0239(12)
$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2]$	+U ₂₂ (bb*) ² +U ₃₃ (cc*) ² +	+2U ₁₂ aa*bb*cos γ+2U	13aa*cc*cos β+2U23bb	*cc*cosα]

Table 2. Refined Positional Parameters for Compound 1373

Table 3. Positional Parameters for Hydrogens in Compound 1373

Atom	Х	У	Z	U _{iso} , Á ^z
H2	0.4772	0.5204	0.4410	0.038
H3	0.5765	0.5279	0.3843	0.044
H4	0.7581	0.2763	0.3610	0.043
H5	0.8427	-0.0144	0.3969	0.040
H6	0.7424	-0.0275	0.4531	0.039
H7a	0.4026	0.2710	0.4915	0.031
H7b	0.5265	0.0753	0.4983	0.031
H8	0.6302	0.4981	0.5121	0.037
H1	0.6967	0.2081	0.5956	0.030
H2'	0.5069	0.0001	0.7621	0.062
H3'	0.4065	-0.0365	0.8204	0.068
H4'	0.2229	0.2396	0.8428	0.060
H5'	0.1188	0.4872	0.8084	0.060
H6'	0.2294	0.5303	0.7507	0.047
H7a'	0.5694	0.2510	0.7119	0.040
H7b'	0.4306	0.4356	0.7072	0.040
H8'	0.3379	0.0081	0.6946	0.021
H1'	0.2659	0.2667	0.6089	0.020

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.014(3)	0.020(4)	0.036(4)	0.004(3)	-0.010(3)	-0.007(3)
C2	0.020(4)	0.021(4)	0.044(4)	0.005(3)	-0.004(3)	0.004(3)
C3	0.024(4)	0.028(4)	0.046(̀5)	0.020(4)	0.004(3)	0.001(3)
C4	0.020(4)	0.044(5)	0.033(5)	0.009(4)	-0.003(3)	0.004(3)
C5	0.021(4)	0.032(4)	0.038(5)	-0.007(3)	-0.009(3)	0.007(3)
C6	0.020(4)	0.035(4)	0.033(4)	0.006(4)	-0.013(3)	0.007(3)
C7	0.011(3)	0.021(4)	0.039(4)	-0.002(3)	-0.005(3)	-0.005(3)
C8	0.015(3)	0.032(4)	0.036(3)	-0.001(3)	0.000(3)	0.004(3)
C9	0.0178(16)	0.0187(17)	0.0200(17)	-0.0001(10)	0.0003(9)	-0.0001(10)
C10	0.0203(16)	0.0205(17)	0.0212(17)	-0.0002(10)	0.0014(9)	-0.0017(9)
N1	0.014(3)	0.020(3)	0.035(3)	0.003(3)	0.000(2)	-0.001(2)
01	0.0070(19)	0.023(3)	0.036(3)	0.001(2)	0.001(2)	-0.006(2)
02	0.0145(15)	0.0220(18)	0.0250(17)	0.0022(16)	-0.0018(14)	0.0030(15)
O3	0.0140(12)	0.0172(13)	0.0180(12)	-0.0005(9)	0.0007(9)	0.0008(9)
C1'	0.028(4)	0.064(6)	0.017(3)	-0.002(4)	0.002(3)	0.004(4)
C2'	0.031(4)	0.078(7)	0.032(4)	0.005(4)	0.005(4)	0.015(5)
C3'	0.039(5)	0.085(7)	0.030(5)	0.012(5)	0.001(4)	0.001(5)
C4'	0.025(4)	0.092(7)	0.018(4)	-0.011(4)	0.003(3)	-0.020(4)
C5'	0.032(4)	0.084(7)	0.020(4)	-0.015(4)	0.001(3)	-0.002(4)
C6'	0.019(4)	0.063(6)	0.024(4)	-0.008(4)	0.002(3)	0.008(4)
C7'	0.011(3)	0.055(6)	0.025(3)	-0.002(4)	0.006(3)	0.008(3)
C8'	0.0147(15)	0.0155(16)	0.0172(15)	0.0006(10)	0.0008(9)	0.0010(9)
C9'	0.017(3)	0.015(3)	0.036(4)	-0.005(3)	0.000(3)	-0.003(3)
C10'	0.0173(16)	0.0169(16)	0.0196(16)	0.0000(9)	0.0002(9)	0.0009(9)
N1'	0.0143(14)	0.0144(15)	0.0157(14)	-0.0003(9)	0.0007(9)	-0.0014(9)
01'	0.0144(16)	0.0222(18)	0.0239(18)	-0.0007(16)	0.0026(14)	0.0030(14)
02'	0.011(2)	0.036(3)	0.049(3)	-0.002(3)	-0.001(2)	0.006(2)
O3'	0.007(2)	0.028(3)	0.037(3)	-0.003(2)	0.003(2)	0.000(2)
I he form of	the anisotropic of	displacement pa	trameter is:			
exp[-2π²(a*²l	J ₁₁ h ² +b* ² U ₂₂ k ² +0	c* ² U ₃₃ l ² +2b*c*U	₂₃ kl+2a*c*U₁₃hl	+2a*b*U ₁₂ hk)]		

Table 4. Refined Thermal Parameters (U's) for Compound 1373

Table 5. Bond Distances in Compound 1373, Å

C1-C6	1.361(12)	C1-C2	1.435(12)	C1-C7	1.531(12)
C2-C3	1.367(13)	C3-C4	1.353(14)	C4-C5	1.425(13)
C5-C6	1.357(14)	C7-C8	1.514(11)	C8-O3	1.440(8)
C8-C9	1.488(12)	C9-O1	1.233(9)	C9-N1	1.368(10)
C10-O2	1.163(9)	C10-N1	1.382(10)	C10-O3	1.401(9)
C1'-C2'	1.324(15)	C1'-C6'	1.405(13)	C1'-C7'	1.506(12)
C2'-C3'	1.421(14)	C3'-C4'	1.423(17)	C4'-C5'	1.284(16)
C5'-C6'	1.432(13)	C7'-C8'	1.508(11)	C8'-O3'	1.492(8)
C8'-C9'	1.540(11)	C9'-O1'	1.210(9)	C9'-N1'	1.331(10)
C10'-O2'	1.267(9)	C10'-O3'	1.302(10)	C10'-N1'	1.389(10)

Table 6. Bond Angles in Compound 1373, °

C6-C1-C2	117.9(8)	C6-C1-C7	123.0(8)	C2-C1-C7	119.2(8)
C3-C2-C1	117.4(8)	C4-C3-C2	124.6(9)	C3-C4-C5	117.5(10)
C6-C5-C4	118.7(9)	C5-C6-C1	123.8(9)	C8-C7-C1	115.2(6)
O3-C8-C9	103.5(6)	O3-C8-C7	111.2(7)	C9-C8-C7	110.2(7)
O1-C9-N1	126.9(7)	O1-C9-C8	125.5(7)	N1-C9-C8	107.7(6)
O2-C10-N1	129.9(8)	O2-C10-O3	122.6(7)	N1-C10-O3	107.5(6)
C9-N1-C10	111.3(7)	C10-O3-C8	109.8(6)	C2'-C1'-C6'	119.0(9)
C2'-C1'-C7'	124.5(9)	C6'-C1'-C7'	116.4(9)	C1'-C2'-C3'	124.0(10)
C2'-C3'-C4'	115.1(11)	C5'-C4'-C3'	121.9(10)	C4'-C5'-C6'	122.2(10)
C1'-C6'-C5'	117.6(10)	C1'-C7'-C8'	113.0(8)	O3'-C8'-C7'	110.2(6)
O3'-C8'-C9'	102.1(6)	C7'-C8'-C9'	112.4(6)	O1'-C9'-N1'	129.8(8)
O1'-C9'-C8'	124.3(7)	N1'-C9'-C8'	105.9(6)	O2'-C10'-O3'	121.0(7)
O2'-C10'-N1'	127.2(7)	O3'-C10'-N1'	111.7(̀6)́	C9'-N1'-C10'	111.5(7)
C10'-O3'-C8'	108.5(̀5)́		()		

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} R1 &= \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ wR2 &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ GOF &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ where \ n &= the \ number \ of \ reflections \ and \ p = the \ number \ of \ parameters \ refined. \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

Compound 1369, $C_{10}H_{10}N_2O_2$, crystallizes in the monoclinic space group P2₁/n (systematic absences 0k0: k=odd and h0l: h+l=odd) with a=7.9823(4)Å, b=5.9450(3)Å, c=38.598(2)Å, β =91.058(3)°, V=1831.35(16)Å³, Z=8, and d_{calc}=1.380 g/cm³ . X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 3244 frames were collected with a crystal to detector distance of 79.8 mm, rotation widths of 0.5° and exposures of 20 seconds:

scan type	20	ω	φ	χ	frames
φ	39.50	355.75	347.00	-30.00	739
ω	-23.00	303.71	117.92	-48.25	346
ω	-30.50	29.67	15.80	-60.33	200
φ	-35.50	205.24	89.28	23.24	576
Ψ W	17.00	322.28	227.71	72.15	112
ω	29.50	97.30	147.59	-39.24	142
ω ω	39.50	104.83	178.30	-60.33	161
ω ω	39.50	332.96	301.50	47.18	201
ф.	29.50	49.84	268.29	41.79	232
Ψ ω	32.00	249.79	81.50	47.18	285
φ	-28.00	351.96	197.71	-24.38	250

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 23805 reflections were measured over the ranges 2.11 $\leq \theta \leq 25.37^{\circ}$, $-9 \leq h \leq 9$, $-7 \leq k \leq 7$, $-46 \leq I \leq 46$ yielding 3333 unique reflections (Rint = 0.0581). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.5306, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). The asymmetric unit consists of two crystallographically-independent molecules. Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting scheme used was $w=1/[\sigma^2(F_0^2) + (0.0068P)^2 + 2.4019P]$ where P = $(F_0^2 + 2F_c^2)/3$. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0560 and wR2=0.1183 for 2887 observed reflections for which F > 4 σ (F) and R1=0.0650 and wR2=0.1218 and GOF =1.206 for all 3333 unique, non-zero reflections and 254 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.001 and the two most prominent peaks in the final difference Fourier were +0.407 and -0.258 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 1. is an ORTEP^{vii} representation of the two molecules in the asymmetric unit with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawings of the two molecules in the asymmetric unit with 50% probability thermal

ellipsoids.

The two molecules in the asymmetric unit form a hydrogen bonded tetramer (see Fig. 2).

Figure 2. ORTEP drawing of the hydrogen bonding.

Table 1. lists the hydrogen bonding parameters ("D" is the donor atom; "A" is the acceptor atom).

Table 1. Hydrogen bonding i arameters							
D	A	H…D	A…D	∠D-H…A			
N1	O2'	1.91	2.76	171.2			
N1'	02	1.92	2.76	161.8			

Table 1. Hydrogen Bonding Parameters

Table 1. Summary of Structure Determination of Compound 1369

Empirical formula	$C_{10}H_{10}N_2O_2$
Formula weight	190.20
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P2 ₁ /n
Cell constants:	
a	7.9823(4) Å
b	5.9450(3) Å
C	38.598(2) Å
β	91.058(3)°
Volume	1831.35(16) Å ³
Z	8
Density (calculated)	1.380 Mg/m ³
Absorption coefficient	0.098 mm ⁻¹
F(000)	800
Crystal size	0.25 x 0.20 x 0.03 mm ³
Theta range for data collection	2.11 to 25.37°
Index ranges	$-9 \le h \le 9, -7 \le k \le 7, -46 \le l \le 46$
Reflections collected	23805
Independent reflections	3333 [R(int) = 0.0581]
Completeness to theta = 25.37°	99.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.5306
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3333 / 0 / 254
Goodness-of-fit on F ²	1.206
Final R indices [I>2sigma(I)]	R1 = 0.0560, wR2 = 0.1183
R indices (all data)	R1 = 0.0650, wR2 = 0.1218
Largest diff. peak and hole	0.407 and -0.258 e.Å ⁻³

Table 2. Refine	d Positional	Parameters	for Con	npound	1369
-----------------	--------------	------------	---------	--------	------

Atom	Х	У	Z	U _{eq} , A ²
C1	0.7902(3)	0.9573(4)	0.40116(6)	0.0240(5)
C2	0.7096(3)	0.9073(4)	0.36968(6)	0.0257(5)
C3	0.7168(3)	1.0545(5)	0.34212(6)	0.0282(6)
C4	0.8028(3)	1.2547(5)	0.34541(6)	0.0285(6)
C5	0.8819(3)	1.3073(4)	0.37656(6)	0.0266(6)
C6	0.8751(3)	1.1610(4)	0.40422(6)	0.0258(5)
C7	0.7926(3)	0.7846(4)	0.42994(6)	0.0297(6)
C8	0.7734(3)	0.8806(4)	0.46617(6)	0.0287(6)
C9	0.7897(3)	0.7037(4)	0.49325(6)	0.0251(5)
C10	0.7400(3)	0.3924(4)	0.52199(6)	0.0239(5)
N1	0.7032(2)	0.5057(3)	0.49255(5)	0.0233(5)
N2	0.8861(3)	0.7208(4)	0.52034(5)	0.0293(5)
01	0.8550(2)	0.5172(3)	0.53962(4)	0.0271(4)
02	0.6862(2)	0.2151(3)	0.53236(4)	0.0346(5)
C1'	0.6895(3)	0.1424(4)	0.70174(6)	0.0224(5)
C2'	0.6397(3)	-0.0174(4)	0.72552(6)	0.0254(5)
C3'	0.5081(3)	0.0263(5)	0.74769(6)	0.0284(6)
C4'	0.4250(3)	0.2293(5)	0.74602(6)	0.0276(6)
C5'	0.4732(3)	0.3891(4)	0.72234(6)	0.0266(6)
C6'	0.6051(3)	0.3463(4)	0.70027(6)	0.0248(5)
C7'	0.8391(3)	0.1015(5)	0.67895(6)	0.0295(6)
C8'	0.8049(3)	0.1316(4)	0.64002(6)	0.0259(6)
C9'	0.7100(3)	-0.0570(4)	0.62375(6)	0.0198(5)
C10'	0.5762(3)	-0.2503(4)	0.58335(6)	0.0242(5)
N1'	0.6571(2)	-0.0560(3)	0.58981(5)	0.0220(4)
N2'	0.6686(2)	-0.2387(4)	0.63933(5)	0.0256(5)
01'	0.5805(2)	-0.3695(3)	0.61321(4)	0.0274(4)
O2'	0.5095(2)	-0.3176(3)	0.55678(4)	0.0307(4)
$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2]$	+U ₂₂ (bb*) ² +U ₃₃ (cc*) ²	² +2U ₁₂ aa*bb*cos γ+2l	$J_{13}aa^{*}cc^{*}cos \beta + 2U_{23}bb$)*cc*cosα]

Table 3. Positional Parameters for Hydrogens in Compound 1369

Atom	Х	У	Z	U _{iso} , A ²
H2	0.6505	0.7733	0.3673	0.034
H3	0.6634	1.0185	0.3212	0.037
H4	0.8075	1.3539	0.3268	0.038
H5	0.9401	1.4422	0.3789	0.035
H6	0.9278	1.1988	0.4251	0.034
H7a	0.8975	0.7026	0.4292	0.039
H7b	0.7028	0.6777	0.4256	0.039
H8a	0.8583	0.9948	0.4702	0.038
H8b	0.6645	0.9518	0.4678	0.038
H1	0.6367	0.4610	0.4762	0.031
H2'	0.6946	-0.1552	0.7267	0.034
H3'	0.4762	-0.0818	0.7637	0.038
H4'	0.3368	0.2583	0.7608	0.037
H5'	0.4172	0.5262	0.7211	0.035
H6'	0.6370	0.4552	0.6844	0.033
H7a'	0.8791	-0.0505	0.6830	0.039
H7b'	0.9281	0.2037	0.6860	0.039
H8a'	0.7424	0.2698	0.6364	0.034
H8b'	0.9111	0.1474	0.6284	0.034
H1'	0.6730	0.0505	0.5752	0.029

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0200(12)	0.0257(13)	0.0263(12)	-0.0009(10)	0.0021(9)	0.0015(10)
C2	0.0183(12)	0.0298(14)	0.0290(12)	-0.0019(11)	0.0006(9)	-0.0026(11)
C3	0.0213(12)	0.0369(16)	0.0262(12)	-0.0030(11)	-0.0021(10)	0.0011(11)
C4	0.0275(13)	0.0311(15)	0.0272(12)	0.0060(11)	0.0055(10)	0.0035(12)
C5	0.0244(13)	0.0240(13)	0.0316(13)	-0.0002(11)	0.0062(10)	-0.0007(11)
C6	0.0257(13)	0.0257(14)	0.0261(12)	-0.0022(10)	-0.0003(10)	-0.0002(11)
C7	0.0325(14)	0.0261(14)	0.0303(13)	0.0013(11)	-0.0007(11)	-0.0015(12)
C8	0.0282(13)	0.0261(14)	0.0317(13)	-0.0004(11)	0.0015(10)	-0.0045(11)
C9	0.0217(12)	0.0276(14)	0.0261(12)	-0.0016(10)	0.0010(10)	-0.0047(11)
C10	0.0255(13)	0.0228(13)	0.0234(12)	-0.0008(10)	0.0026(10)	-0.0012(11)
N1	0.0233(10)	0.0241(11)	0.0224(10)	0.0008(8)	-0.0021(8)	-0.0069(9)
N2	0.0280(11)	0.0306(13)	0.0292(11)	0.0046(9)	-0.0022(9)	-0.0097(10)
01	0.0269(9)	0.0281(10)	0.0262(8)	0.0029(7)	-0.0028(7)	-0.0027(8)
O2	0.0510(12)	0.0247(10)	0.0281(9)	0.0035(8)	0.0017(8)	-0.0067(9)
C1'	0.0177(12)	0.0250(13)	0.0242(11)	-0.0052(10)	-0.0031(9)	-0.0003(10)
C2'	0.0266(13)	0.0196(13)	0.0297(12)	-0.0012(10)	-0.0077(10)	0.0018(11)
C3'	0.0281(13)	0.0300(15)	0.0271(12)	0.0052(11)	-0.0020(10)	-0.0075(11)
C4'	0.0204(12)	0.0357(15)	0.0268(12)	-0.0010(11)	0.0022(10)	-0.0017(11)
C5'	0.0243(13)	0.0249(14)	0.0306(13)	-0.0021(11)	-0.0011(10)	0.0054(11)
C6'	0.0254(13)	0.0248(13)	0.0243(12)	0.0009(10)	0.0003(10)	-0.0040(11)
C7'	0.0198(12)	0.0377(16)	0.0309(13)	-0.0106(12)	-0.0009(10)	0.0009(11)
C8'	0.0204(12)	0.0279(14)	0.0296(12)	-0.0048(11)	0.0060(10)	-0.0064(11)
C9'	0.0162(11)	0.0198(12)	0.0235(11)	0.0003(10)	0.0044(9)	0.0008(10)
C10'	0.0179(12)	0.0260(13)	0.0289(12)	-0.0043(11)	0.0046(10)	0.0004(11)
N1'	0.0219(10)	0.0204(11)	0.0239(10)	-0.0003(8)	0.0022(8)	-0.0027(9)
N2'	0.0248(11)	0.0246(11)	0.0274(10)	-0.0021(9)	-0.0014(8)	-0.0037(9)
01'	0.0281(9)	0.0237(9)	0.0303(9)	-0.0004(7)	0.0015(7)	-0.0077(8)
02'	0.0257(9)	0.0348(11)	0.0315(9)	-0.0107(8)	-0.0014(7)	-0.0042(8)
The form of t	ne anisotropic c	isplacement pa	rameter is:			
exp[-2π²(a*²L	J ₁₁ h ² +b* ² U ₂₂ k ² +0	2**U ₃₃ l*+2b*c*U	₂₃ kl+2a*c*U₁₃hl	+2a*b*U ₁₂ hk)]		

Table 4. Refined Thermal Parameters (U's) for Compound 1369

Table 5. Bond Distances in Compound 1369, Å

C1 - C6	1 302/3)	$C1_{-}C2$	1 306(3)	C1 - C7	1 512(2)
01-00	1.092(0)	01-02	1.390(3)	01-07	1.515(5)
C2-C3	1.379(4)	C3-C4	1.379(4)	C4-C5	1.383(4)
C5-C6	1.379(3)	C7-C8	1.521(3)	C8-C9	1.487(3)
C9-N2	1.291(3)	C9-N1	1.364(3)	C10-O2	1.209(3)
C10-N1	1.349(3)	C10-O1	1.354(3)	N2-01	1.445(3)
C1'-C2'	1.385(3)	C1'-C6'	1.387(3)	C1'-C7'	1.516(3)
C2'-C3'	1.391(3)	C3'-C4'	1.378(4)	C4'-C5'	1.378(4)
C5'-C6'	1.390(3)	C7'-C8'	1.533(3)	C8'-C9'	1.486(3)
C9'-N2'	1.282(3)	C9'-N1'	1.369(3)	C10'-O2'	1.215(3)
C10'-N1'	1.345(3)	C10'-O1'	1.353(3)	N2'-O1'	1.446(3)

Table 6. Bond Angles in Compound 1369, °

C6-C1-C2	118.4(2)	C6-C1-C7	121.9(2)	C2-C1-C7	119.6(2)
C3-C2-C1	120.7(2)	C4-C3-C2	120.3(2)	C3-C4-C5	119.6(2)
C6-C5-C4	120.4(2)	C5-C6-C1	120.6(2)	C1-C7-C8	114.9(2)
C9-C8-C7	111.8(2)	N2-C9-N1	112.2(2)	N2-C9-C8	123.8(2)
N1-C9-C8	124.0(2)	O2-C10-N1	129.9(2)	O2-C10-O1	123.6(2)
N1-C10-O1	106.5(2)	C10-N1-C9	108.2(2)	C9-N2-O1	104.22(19)
C10-O1-N2	108.77(17)	C2'-C1'-C6'	118.8(2)	C2'-C1'-C7'	120.9(2)
C6'-C1'-C7'	120.2(2)	C1'-C2'-C3'	120.6(2)	C4'-C3'-C2'	120.2(2)
C5'-C4'-C3'	119.6(2)	C4'-C5'-C6'	120.3(2)	C1'-C6'-C5'	120.5(2)
C1'-C7'-C8'	115.0(2)	C9'-C8'-C7'	114.0(2)	N2'-C9'-N1'	112.0(2)
N2'-C9'-C8'	124.8(2)	N1'-C9'-C8'	123.1(2)	O2'-C10'-N1'	129.9(2)
O2'-C10'-O1'	123.4(2)	N1'-C10'-O1'	106.7(2)	C10'-N1'-C9'	108.2(2)
C9'-N2'-O1'	104.63(18)	C10'-O1'-N2'	108.45(18)		. /

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} R1 &= \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ wR2 &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ GOF &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ where \ n &= the \ number \ of \ reflections \ and \ p = the \ number \ of \ parameters \ refined. \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

X-ray Structure Determination of Compound 1361 (i.e., compound 20; CCDC 1428058)

Compound 1361, $C_{10}H_{10}N_2SO$, crystallizes in the monoclinic space group P2₁/c (systematic absences 0k0: k=odd and h0l: l=odd) with a=5.3809(3)Å, b=9.0367(5)Å, c=20.1528(10)Å, β =91.122(2)°, V=979.75(9)Å³, Z=4, and d_{calc}=1.398 g/cm³. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 2190 frames were collected with a crystal to detector distance of 37.5 mm, rotation widths of 0.5° and exposures of 5 seconds:

scan type	20	ω	φ	χ	frames
φ	19.50	59.55	355.29	-26.26	722
ω	-15.50	280.02	18.69	41.79	131
(I)	-20.50	332.84	178.64	-31.86	62
φ	-15.50	258.48	8.28	19.46	554
φ	-20.50	342.55	324.79	-73.06	721

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 18360 reflections were measured over the ranges $2.02 \le \theta \le 25.37^{\circ}$, $-6 \le h \le 6$, $-10 \le k \le 10$, $-24 \le l \le 24$ yielding 1795 unique reflections (Rint = 0.0203). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.6929, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting scheme used was $w=1/[\sigma^2(F_0^2) + (0.0579P)^2 + 0.3022P]$ where P = $(F_0^2 + 2F_c^2)/3$. Non-hydrogen atoms

were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0263 and wR2=0.0830 for 1744 observed reflections for which $F > 4\sigma(F)$ and R1=0.0302 and wR2=0.0976 and GOF =1.228 for all 1795 unique, non-zero reflections and 128 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.001 and the two most prominent peaks in the final difference Fourier were +0.448 and -0.477 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 1. is an ORTEP^{vii} representation of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of the title compound with 50% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1361

Empirical formula	$C_{10}H_{10}N_2SO$
Formula weight	206.26
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P2 ₁ /c
Cell constants:	
a	5.3809(3) Å
b	9.0367(5) Å
C	20.1528(10) Å
β	91.122(2)°
Volume	979.75(9) Å ³
Z	4
Density (calculated)	1.398 Mg/m ³
Absorption coefficient	0.296 mm ⁻¹
F(000)	432
Crystal size	0.42 x 0.28 x 0.20 mm ³
Theta range for data collection	2.02 to 25.37°
Index ranges	$-6 \leq h \leq 6, -10 \leq k \leq 10, -24 \leq l \leq 24$
Reflections collected	18360
Independent reflections	1795 [R(int) = 0.0203]
Completeness to theta = 25.37°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.6929
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	1795 / 0 / 128
Goodness-of-fit on F ²	1.228
Final R indices [I>2sigma(I)]	R1 = 0.0263, wR2 = 0.0830
R indices (all data)	R1 = 0.0302, wR2 = 0.0976
Largest diff. peak and hole	0.448 and -0.477 e.Å ⁻³

Table 2. Refine	d Positional F	Parameters for	Compound	1361
-----------------	----------------	----------------	----------	------

Atom	Х	У	Z	U _{eq} , A ^z
C1	0.6107(3)	0.54807(16)	0.70797(7)	0.0209(3)
C2	0.5640(3)	0.47615(17)	0.76743(8)	0.0286(4)
C3	0.7151(3)	0.50017(19)	0.82329(8)	0.0315(4)
C4	0.9111(3)	0.59840(19)	0.82067(7)	0.0280(4)
C5	0.9566(3)	0.6725(2)	0.76223(8)	0.0293(4)
C6	0.8073(3)	0.64687(18)	0.70629(7)	0.0245(3)
C7	0.4538(3)	0.51448(17)	0.64660(8)	0.0256(3)
C8	0.5395(3)	0.37144(16)	0.61371(7)	0.0200(3)
C9	0.3709(3)	0.32040(15)	0.55818(7)	0.0168(3)
C10	0.2397(3)	0.14688(16)	0.48157(7)	0.0180(3)
N1	0.4108(2)	0.18468(13)	0.52958(6)	0.0178(3)
N2	0.1832(2)	0.39609(13)	0.53555(6)	0.0188(3)
01	0.23233(19)	0.03232(11)	0.44894(5)	0.0246(3)
S1	0.03579(6)	0.29781(4)	0.475107(16)	0.01868(16)
$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2]$	+U ₂₂ (bb*) ² +U ₃₃ (cc*) ² +	2U ₁₂ aa*bb*cos γ+2U	13aa*cc*cos β+2U23bb'	*cc*cosα]

Table 3. Positional Parameters for Hydrogens in Compound 1361

Atom	Х	У	Z	U _{iso} , A ^z
H2	0.4303	0.4113	0.7699	0.038
H3	0.6838	0.4498	0.8625	0.042
H4	1.0117	0.6146	0.8580	0.037
H5	1.0873	0.7396	0.7603	0.039
H6	0.8401	0.6969	0.6671	0.033
H7a	0.4663	0.5957	0.6154	0.034
H7b	0.2810	0.5050	0.6587	0.034
H8a	0.7049	0.3864	0.5966	0.027
H8b	0.5504	0.2942	0.6471	0.027
H1	0.5331	0.1283	0.5409	0.024

Table 4. Refined Thermal Parameters (U's) for Compound 1361

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
C1	0.0218(7)	0.0188(7)	0.0218(7)	-0.0075(5)	-0.0033(5)	0.0084(5)	
C2	0.0336(8)	0.0224(8)	0.0299(8)	-0.0054(6)	0.0017(6)	-0.0037(6)	
C3	0.0476(10)	0.0275(8)	0.0194(8)	0.0007(6)	0.0017(7)	0.0042(7)	
C4	0.0292(8)	0.0353(9)	0.0190(7)	-0.0057(6)	-0.0075(6)	0.0069(7)	
C5	0.0206(8)	0.0407(9)	0.0266(8)	-0.0031(7)	-0.0017(6)	-0.0033(7)	
C6	0.0247(7)	0.0316(9)	0.0172(7)	-0.0004(6)	0.0001(6)	0.0023(6)	
C7	0.0257(7)	0.0228(8)	0.0279(8)	-0.0099(6)	-0.0092(6)	0.0086(6)	
C8	0.0198(7)	0.0186(7)	0.0214(7)	-0.0050(5)	-0.0053(5)	0.0047(5)	
C9	0.0181(7)	0.0158(7)	0.0165(7)	-0.0014(5)	0.0008(5)	0.0023(5)	
C10	0.0190(6)	0.0173(7)	0.0176(7)	-0.0007(5)	-0.0014(5)	0.0050(5)	
N1	0.0179(6)	0.0163(6)	0.0188(6)	-0.0037(4)	-0.0037(4)	0.0059(4)	
N2	0.0203(6)	0.0164(6)	0.0195(6)	-0.0036(4)	-0.0037(4)	0.0032(4)	
01	0.0268(6)	0.0201(6)	0.0265(6)	-0.0098(4)	-0.0092(4)	0.0090(4)	
S1	0.0198(2)	0.0162(2)	0.0199(2)	-0.00362(11)	-0.00536(15)	0.00589(12)	
The form of I	the anisotropic o	displacement p	arameter is:				
exp[-2π²(a*²l	exp[-2π(a ^{*2} U ₁₁ h ² +b ^{*2} U ₂₂ k ² +c ^{*2} U ₃₃ l ² +2b*c*U ₂₃ kl+2a*c*U ₁₃ hl+2a*b*U ₁₂ hk)]						

Table 5. Bond Distances in Compound 1361, Å

C1-C6	1.385(2)	C1-C2	1.390(2)	C1-C7	1.5144(19)
C2-C3	1.393(2)	C3-C4	1.380(3)	C4-C5	1.381(2)
C5-C6	1.391(2)	C7-C8	1.528Ò(19)	C8-C9	1.4995(18)
C9-N2	1.2954(19)	C9-N1	1.3738(18)	C10-O1	1.2267(18)
C10-N1	1.3659(18)	C10-S1	1.7537(14)	N2-S1	1.6923(12)

Table 6. Bond Angles in Compound 1361, °

C6-C1-C2	118.25(13)	C6-C1-C7	121.53(14)	C2-C1-C7	120.19(14)	
C1-C2-C3	120.75(15)	C4-C3-C2	120.23(15)	C3-C4-C5	119.55(14)	
C4-C5-C6	120.07(15)	C1-C6-C5	121.12(14)	C1-C7-C8	110.83(11)	
C9-C8-C7	113.61(11)	N2-C9-N1	116.79(13)	N2-C9-C8	123.82(13)	
N1-C9-C8	119.38(12)	O1-C10-N1	127.23(12)	O1-C10-S1	127.09(11)	
N1-C10-S1	105.67(10)	C10-N1-C9	114.32(12)	C9-N2-S1	109.12(10)	
N2-S1-C10	94.07(ô) ´		()			

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} R1 &= \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ wR2 &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ GOF &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ where \ n &= the \ number \ of \ reflections \ and \ p = the \ number \ of \ parameters \ refined. \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

X-ray Structure Determination of Compound 1362 (i.e., compound 22; CCDC 1428049)

Compound 1362, $C_{10}H_{12}N_2SO$, crystallizes in the triclinic space group $P\overline{1}$ (with a=7.1190(4)Å, b=7.2128(4)Å, c=11.7308(6)Å, α =107.377(2)°, β =99.388(2)°, γ =115.088(2)°, V=490.50(5)Å³, Z=2, and d_{calc}=1.410 g/cm³. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 3660 frames were collected with a crystal to detector distance of 53.9 mm, rotation widths of 0.5° and exposures of 10 seconds:

scan type	20	ω	φ	χ	frames
φ	19.50	84.50	348.71	-26.26	739
т ф	27.00	16.75	328.61	-63.64	739
Ψ (i)	22.00	322.79	12.71	75.13	148
φ	-23.00	74.75	342.59	-39.24	739
φ φ	17.00	73.39	337.93	-48.25	737
Ψ ω	19.50	131.49	240.29	-86.54	72
¢.	32.00	24.96	71.35	96.92	409
Ψ W	-18.00	121.69	109.45	-98.74	77

The crystal grew as a non-merohedral twin; the program CELL_NOWⁱ was used to index the diffraction images and to determine the twinning mechanism. The crystal was twinned by a rotation of 180° about the 010 reciprocal direction. Rotation frames were integrated using SAINTⁱⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱⁱ program package for further processing and structure solution. A total of 16670 reflections were measured over the ranges 1.93 $\leq \theta \leq 25.40^\circ$, -8 \leq h \leq 8, -8 \leq k \leq 8, 0 \leq l \leq 14 yielding 1803 unique reflections (Rint = 0.0167). The intensity data were corrected for Lorentz and polarization effects and for absorption using TWINABS^{iv}
(minimum and maximum transmission 0.6974, 0.7452).

The structure was solved by direct methods (SHELXS-97^v). Refinement was by full-matrix least squares based on F² using SHELXL-97.^{vi} All reflections were used during refinement. The weighting scheme used was w=1/[σ^2 (F₀²) + (0.0298P)² + 0.2040P] where P = (F₀² + 2F_c²)/3. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0238 and wR2=0.0629 for 1762 observed reflections for which F > 4 σ (F) and R1=0.0243 and wR2=0.0632 and GOF =1.055 for all 1803 unique, non-zero reflections and 129 variables.^{vii} The maximum Δ/σ in the final cycle of least squares was 0.001 and the two most prominent peaks in the final difference Fourier were +0.270 and -0.203 e/Å³. The twinning parameter refined to a value of 0.251(2).

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 1. is an ORTEP^{viii} representation of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of the title compound with 50% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1362

Empirical formula	$C_{10}H_{12}N_2SO$
Formula weight	208.28
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	triclinic
Space group	PĪ
Cell constants:	
a	7.1190(4) Å
b	7.2128(4) Å
с	11.7308(6) Å
α	107.377(2)°
β	99.388(2)°
γ	115.088(2)°
Volume	490.50(5) Å ³
Z	2
Density (calculated)	1.410 Mg/m ³
Absorption coefficient	0.296 mm ⁻¹
F(000)	220
Crystal size	0.25 x 0.20 x 0.12 mm ³
Theta range for data collection	1.93 to 25.40°
Index ranges	-8 ≤ h ≤ 8, -8 ≤ k ≤ 8, 0 ≤ l ≤ 14
Reflections collected	16670
Independent reflections	1803 [R(int) = 0.0167]
Completeness to theta = 25.40°	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.6974
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1803 / 0 / 129
Goodness-of-fit on F ²	1.055
Final R indices [I>2sigma(I)]	R1 = 0.0238, wR2 = 0.0629
R indices (all data)	R1 = 0.0243, wR2 = 0.0632
Largest diff. peak and hole	0.270 and -0.203 e.Å ⁻³

Table 2. Refined Positional Parameters	for Compound 1362
---	-------------------

Atom	Х	У	Z	U _{eq} , A²
C1	0.3683(2)	0.1379(2)	0.24912(12)	0.0153(3)
C2	0.1687(2)	0.0552(2)	0.15769(12)	0.0176(3)
C3	-0.0245(2)	-0.0084(2)	0.18682(13)	0.0189(3)
C4	-0.0199(2)	0.0116(2)	0.30831(13)	0.0181(3)
C5	0.1778(2)	0.0911(2)	0.39981(13)	0.0208(3)
C6	0.3700(2)	0.1528(2)	0.37021(12)	0.0202(3)
C7	0.5787(2)	0.2080(2)	0.21824(12)	0.0182(3)
C8	0.7506(2)	0.4564(2)	0.30123(12)	0.0172(3)
C9	0.9677(2)	0.5185(2)	0.28304(12)	0.0153(3)
C10	1.2171(2)	0.5727(2)	0.18857(12)	0.0157(3)
N1	1.00505(17)	0.51265(17)	0.17128(10)	0.0153(2)
N2	1.14366(18)	0.57817(19)	0.37029(10)	0.0189(2)
01	1.30882(14)	0.61502(15)	0.30933(8)	0.0182(2)
S1	1.35690(5)	0.59155(5)	0.08852(3)	0.01800(11)
$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2]$	² +U ₂₂ (bb*) ² +U ₃₃ (cc*) ² +	2U ₁₂ aa*bb [*] cos γ+2U	13aa*cc*cos β+2U23bb	*cc*cosα]

 Table 3. Positional Parameters for Hydrogens in Compound 1362

Atom	Х	У	Z	U _{iso} , A ²
H2	0.1642	0.0421	0.0759	0.023
H3	-0.1572	-0.0644	0.1245	0.025
H4	-0.1485	-0.0282	0.3284	0.024
H5	0.1817	0.1033	0.4815	0.028
H6	0.5017	0.2047	0.4322	0.027
H7a	0.5464	0.1836	0.1297	0.024
H7b	0.6394	0.1151	0.2308	0.024
H8a	0.6977	0.5501	0.2805	0.023
H8b	0.7685	0.4852	0.3896	0.023
H1	0.9089	0.4766	0.1019	0.020

 Table 4. Refined Thermal Parameters (U's) for Compound 1362

Atom	U ₁₁	U_{22}	U ₃₃	U_{23}	U ₁₃	U ₁₂
C1	0.0136(6)	0.0138(6)	0.0175(6)	0.0057(5)	0.0050(5)	0.0067(5)
C2	0.0175(6)	0.0210(6)	0.0143(6)	0.0083(5)	0.0054(5)	0.0090(5)
C3	0.0134(6)	0.0213(6)	0.0207(7)	0.0094(5)	0.0033(5)	0.0081(5)
C4	0.0164(6)	0.0181(6)	0.0231(7)	0.0102(5)	0.0107(5)	0.0089(5)
C5	0.0224(7)	0.0226(7)	0.0160(6)	0.0093(5)	0.0079(5)	0.0088(6)
C6	0.0155(6)	0.0226(7)	0.0174(6)	0.0082(5)	0.0017(5)	0.0065(5)
C7	0.0134(6)	0.0191(6)	0.0186(6)	0.0055(5)	0.0052(5)	0.0071(5)
C8	0.0144(6)	0.0179(6)	0.0188(6)	0.0073(5)	0.0068(5)	0.0072(5)
C9	0.0146(6)	0.0126(6)	0.0168(6)	0.0056(5)	0.0044(5)	0.0057(5)
C10	0.0142(6)	0.0135(6)	0.0172(6)	0.0054(5)	0.0033(5)	0.0064(5)
N1	0.0107(5)	0.0184(5)	0.0147(5)	0.0069(4)	0.0028(4)	0.0061(4)
N2	0.0152(5)	0.0231(6)	0.0180(6)	0.0093(5)	0.0075(4)	0.0082(5)
01	0.0127(4)	0.0242(5)	0.0157(4)	0.0077(4)	0.0031(3)	0.0084(4)
S1	0.01257(16)	0.02210(18)	0.01823(18)	0.00789(13)	0.00591(12)	0.00781(13)
The form of the anisotropic displacement parameter is:						
exp[-2π²(a*²L	J ₁₁ h ² +b* ² U ₂₂ k ² +c	* ² U ₃₃ l ² +2b*c*U ₂	₃kl+2a*c*U₁₃hl+	2a*b*U ₁₂ hk)]		

Table 5. Bond Distances in Compound 1362, Å

C1-C2	1.3884(18)	C1-C6	1.3899(18)	C1-C7	1.5081(17)
C2-C3	1.3896(18)	C3-C4	1.3824(19)	C4-C5	1.3842(19)
C5-C6	1.3862(19)	C7-C8	1.5381(18)	C8-C9	1.4876(17)
C9-N2	1.2898(17)	C9-N1	1.3716(16)	C10-O1	1.3406(16)
C10-N1	1.3419(16)	C10-S1	1.6577(13)	N2-O1	1.4447(13)

Table 6. Bond Angles in Compound 1362, °

C2-C1-C6	118.41(12)	C2-C1-C7	121.14(12)	C6-C1-C7	120.45(12)
C1-C2-C3	120.88(12)	C4-C3-C2	120.13(12)	C3-C4-C5	119.48(12)
C4-C5-C6	120.26(12)	C5-C6-C1	120.83(12)	C1-C7-C8	111.95(10)
C9-C8-C7	112.09(10)	N2-C9-N1	111.49(11)	N2-C9-C8	123.77(12)
N1-C9-C8	124.70(11)	O1-C10-N1	106.72(11)	O1-C10-S1	122.47(9)
N1-C10-S1	130.78(10)	C10-N1-C9	108.42(11)	C9-N2-O1	104.29(10)
C10-O1-N2	109.07(9)				

ⁱ Sheldrick, G.M. (2008) CELL_NOW. University of Gottingen, Germany.

ⁱⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

^{iv}Sheldrick, G.M. (2007) TWINABS. University of Gottingen, Germany.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^{vi}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

viii"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

X-ray Structure Determination of Compound 1422 (i.e., compound 26; CCDC 1427564)

Compound 1422, $C_{13}H_{14}O_2$, crystallizes in the monoclinic space group P2₁/c (systematic absences 0k0: k=odd and h0l: l=odd) with a=6.4318(2)Å, b=7.3862(2)Å, c=22.7380(7)Å, β =96.924(2)°, V=1072.33(6)Å³, Z=4, and d_{calc}=1.253 g/cm³ . X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 2348 frames were collected with a crystal to detector distance of 37.4 mm, rotation widths of 0.5° and exposures of 10 seconds:

scan type	20	ω	φ	χ	frames
φ	-23.00	315.83	12.48	28.88	739
φ	19.50	59.55	348.71	-26.26	161
ω	-15.50	242.98	18.69	41.79	212
ω	17.00	321.50	184.44	82.07	116

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 11418 reflections were measured over the ranges 2.90 $\leq \theta \leq 25.39^{\circ}$, -7 $\leq h \leq$ 7, -8 $\leq k \leq$ 8, -27 $\leq I \leq$ 24 yielding 1966 unique reflections (Rint = 0.0276). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.7019, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting scheme used was $w=1/[\sigma^2(F_0^2) + (0.0400P)^2 + 0.5474P]$ where P = $(F_0^2 + 2F_c^2)/3$. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement

converged to R1=0.0363 and wR2=0.0870 for 1627 observed reflections for which F > $4\sigma(F)$ and R1=0.0473 and wR2=0.0929 and GOF =1.029 for all 1966 unique, non-zero reflections and 139 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.000 and the two most prominent peaks in the final difference Fourier were +0.235 and -0.171 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 1. is an ORTEP^{vii} representation of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of the title compound with 50% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1422

Empirical formula	$C_{13}H_{14}O_2$
Formula weight	202.24
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P21/c
Cell constants:	
а	6.4318(2) Å
b	7.3862(2) Å
С	22.7380(7) Å
β	96.924(2)°
Volume	1072.33(6) Å ³
Z	4
Density (calculated)	1.253 Mg/m ³
Absorption coefficient	0.083 mm ⁻¹
F(000)	432
Crystal size	0.28 x 0.12 x 0.03 mm ³
Theta range for data collection	2.90 to 25.39°
Index ranges	$-7 \le h \le 7, -8 \le k \le 8, -27 \le l \le 24$
Reflections collected	11418
Independent reflections	1966 [R(int) = 0.0276]
Completeness to theta = 25.39°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.7019
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1966 / 0 / 139
Goodness-of-fit on F ²	1.029
Final R indices [I>2sigma(I)]	R1 = 0.0363, wR2 = 0.0870
R indices (all data)	R1 = 0.0473, wR2 = 0.0929
Largest diff. peak and hole	0.235 and -0.171 e.Å ⁻³

Table 2. Refined Positional Parameters for Compound 1422
--

Atom	Х	у	Z	U _{eq} , A ²
01	-0.07936(15)	0.44577(15)	0.41160(5)	0.0269(3)
02	0.62543(14)	0.28564(14)	0.46054(4)	0.0184(2)
C1	0.2302(2)	0.5683(2)	0.37514(6)	0.0189(3)
C2	0.1143(2)	0.4414(2)	0.41265(6)	0.0193(3)
C3	0.2569(2)	0.32292(19)	0.44668(6)	0.0159(3)
C4	0.4533(2)	0.36874(19)	0.43611(6)	0.0153(3)
C5	0.4610(2)	0.5228(2)	0.39380(7)	0.0203(3)
C6	0.1915(2)	0.1762(2)	0.48542(6)	0.0200(3)
C7	0.1703(2)	0.7665(2)	0.38387(7)	0.0216(3)
C8	0.2629(2)	0.8938(2)	0.34196(6)	0.0192(3)
C9	0.4546(2)	0.9770(2)	0.35806(6)	0.0222(3)
C10	0.5432(2)	1.0898(2)	0.31926(7)	0.0247(4)
C11	0.4396(2)	1.1216(2)	0.26319(7)	0.0237(3)
C12	0.2497(2)	1.0390(2)	0.24631(7)	0.0240(4)
C13	0.1610(2)	0.9267(2)	0.28537(7)	0.0228(3)
U _{eq} = ¹ / ₃ [U ₁₁ (aa*) ²	+U ₂₂ (bb*) ² +U ₃₃ (cc*) ² +	2U ₁₂ aa*bb*cos γ+2U ₁	13aa*cc*cos β+2U ₂₃ bb	o*cc*cosα]

 Table 3. Positional Parameters for Hydrogens in Compound 1422

Atom	Х	У	Z	U _{iso} , A ²
H2	0.7278	0.3290	0.4474	0.025
H1	0.1945	0.5364	0.3333	0.025
H5a	0.5296	0.4871	0.3599	0.027
H5b	0.5348	0.6255	0.4130	0.027
H6a	0.3073	0.0960	0.4961	0.030
H6b	0.0774	0.1096	0.4645	0.030
H6c	0.1475	0.2283	0.5206	0.030
H7a	0.0189	0.7775	0.3780	0.029
H7b	0.2179	0.8021	0.4243	0.029
H9	0.5251	0.9567	0.3957	0.029
H10	0.6721	1.1441	0.3308	0.033
H11	0.4979	1.1982	0.2371	0.032
H12	0.1806	1.0586	0.2085	0.032
H13	0.0320	0.8728	0.2737	0.030

Atom	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
01	0.0121(5)	0.0307(6)	0.0388(7)	0.0117(5)	0.0064(4)	0.0009(4)	
02	0.0118(5)	0.0204(6)	0.0234(5)	0.0046(4)	0.0033(4)	0.0001(4)	
C1	0.0153(7)	0.0207(8)	0.0212(7)	0.0032(6)	0.0037(6)	0.0005(6)	
C2	0.0154(7)	0.0202(8)	0.0228(8)	0.0006(6)	0.0045(6)	-0.0003(6)	
C3	0.0150(7)	0.0148(7)	0.0184(7)	-0.0004(6)	0.0035(5)	-0.0016(5)	
C4	0.0155(7)	0.0142(7)	0.0163(7)	-0.0020(6)	0.0023(5)	0.0009(5)	
C5	0.0149(7)	0.0193(8)	0.0275(8)	0.0052(6)	0.0053(6)	-0.0002(6)	
C6	0.0172(7)	0.0202(8)	0.0234(8)	0.0041(6)	0.0056(6)	-0.0019(6)	
C7	0.0198(7)	0.0221(8)	0.0236(8)	0.0027(6)	0.0061(6)	0.0024(6)	
C8	0.0203(7)	0.0154(8)	0.0232(8)	0.0016(6)	0.0083(6)	0.0046(6)	
C9	0.0288(8)	0.0194(8)	0.0184(7)	-0.0008(6)	0.0035(6)	0.0008(6)	
C10	0.0270(8)	0.0194(8)	0.0281(8)	-0.0034(7)	0.0047(6)	-0.0073(7)	
C11	0.0310(9)	0.0182(8)	0.0238(8)	0.0030(6)	0.0109(6)	-0.0009(6)	
C12	0.0264(8)	0.0251(8)	0.0207(8)	0.0049(6)	0.0032(6)	0.0044(6)	
C13	0.0170(7)	0.0222(8)	0.0295(8)	0.0034(7)	0.0035(6)	0.0012(6)	
The form of	he form of the anisotropic displacement parameter is:						
exp[-2π²(a*²l	$J_{11}h^2 + b^{*2}U_{22}k^2 +$	-c* ² U ₃₃ l ² +2b*c*L	J ₂₃ kl+2a*c*U ₁₃ h	I+2a*b*U ₁₂ hk)]			

Table 4. Refined Thermal Parameters (U's) for Compound 1422

Table 5. Bond Distances in Compound 1422, Å

01-C2	1.2435(17)	O2-C4	1.3274(17)	C1-C2	1.521(2)
C1-C5	1.5311(19)	C1-C7	1.533(2)	C2-C3	1.426(2)
C3-C4	1.3573(19)	C3-C6	1.489(2)	C4-C5	1.495(2)
C7-C8	1.511(2)	C8-C9	1.387(2)	C8-C13	1.393(2)
C9-C10	1.385(2)	C10-C11	1.386(2)	C11-C12	1.378(2)
C12-C13	1.387(2)				

Table 6. Bond Angles in Compound 1422, °

C2-C1-C5	103.51(11)	C2-C1-C7	111.58(12)	C5-C1-C7	115.11(12)
01-02-03	127 10(13)	01-02-01	122 06(13)	C3-C2-C1	110 84(12)
01 02 00	127.10(10)	010201	122.00(10)	00 02 01	110.04(12)
C4-C3-C2	107.59(12)	C4-C3-C6	128.44(13)	C2-C3-C6	123.96(12)
02-04-03	123 91/13)	02-04-05	122 06(12)	C3-C4-C5	114 04(12)
02 04 00	120.01(10)	02 04 00	122.00(12)	00 04 00	114.04(12)
C4-C5-C1	103.86(11)	C8-C7-C1	112.83(12)	C9-C8-C13	118.07(13)
CO CO C7	120 00(12)	C12 C9 C7	120 01/12		101 20(14)
09-00-07	120.99(13)	013-06-07	120.91(13)	010-09-00	121.29(14)
C9-C10-C11	119 95(14)	C12-C11-C10	119 52(14)	C11-C12-C13	120 37(14)
	110.00(11)	012 011 010	110.02(11)	011 012 010	120.07(11)
C12-C13-C8	120.79(14)				

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} R1 &= \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ wR2 &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ GOF &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ where \ n &= the \ number \ of \ reflections \ and \ p = the \ number \ of \ parameters \ refined. \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

Compound 1394, $C_{12}H_{12}O_2$, crystallizes in the orthorhombic space group Pca2₁ (systematic absences h0l: h=odd and 0kl: k=odd) with a=15.4887(10)Å, b=6.0483(4)Å, c=20.5214(13)Å, V=1922.5(2)Å³, Z=8, and d_{calc}=1.301 g/cm³. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 2596 frames were collected with a crystal to detector distance of 69.8 mm, rotation widths of 0.5° and exposures of 20 seconds:

scan type	20	ω	φ	χ	frames
φ	-30.50	202.72	17.77	39.97	739
ω	7.00	347.95	171.84	64.29	87
ω	29.50	119.96	49.05	-73.06	117
ω	-10.50	271.25	32.59	34.46	226
ω	-30.50	204.76	161.19	41.79	289
φ	-30.50	310.69	71.63	54.21	646
φ	32.00	181.94	25.04	-99.10	382
ω	-25.50	315.40	157.20	-88.81	110

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 15142 reflections were measured over the ranges $1.98 \le \theta \le 25.37^{\circ}$, $-18 \le h \le 18$, $-7 \le k \le 7$, $-24 \le l \le 24$ yielding 3522 unique reflections (Rint = 0.0574). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.5981, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting

scheme used was w=1/[$\sigma^2(F_0^2)$ + (0.1296P)² + 2.0542P] where P = (F₀² + 2F_c²)/3. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0780 and wR2=0.2046 for 3246 observed reflections for which F > 4 σ (F) and R1=0.0826 and wR2=0.2094 and GOF =1.134 for all 3522 unique, non-zero reflections and 256 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.000 and the two most prominent peaks in the final difference Fourier were +0.862 and -0.442 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figures 1. and 2. are ORTEP^{vii} representations of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of molecule no. 1 of the asymmetric unit with 50% probability thermal ellipsoids.

Figure 2. ORTEP drawing of molecule no. 2 of the asymmetric unit with 50% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1394

Empirical formula	$C_{12}H_{12}O_2$
Formula weight	188.22
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	orthorhombic
Space group	Pca2 ₁
Cell constants:	
a	15.4887(10) Å
b	6.0483(4) Å
С	20.5214(13) Å
Volume	1922.5(2) Å ³
Z	8
Density (calculated)	1.301 Mg/m ³
Absorption coefficient	0.088 mm ⁻¹
F(000)	800
Crystal size	0.40 x 0.12 x 0.10 mm ³
Theta range for data collection	1.98 to 25.37°
Index ranges	-18 ≤ h ≤ 18, -7 ≤ k ≤ 7, -24 ≤ l ≤ 24
Reflections collected	15142
Independent reflections	3522 [R(int) = 0.0574]
Completeness to theta = 25.37°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.5981
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3522 / 1 / 256
Goodness-of-fit on F ²	1.134
Final R indices [I>2sigma(I)]	R1 = 0.0780, wR2 = 0.2046
R indices (all data)	R1 = 0.0826, wR2 = 0.2094
Absolute structure parameter	-2(2)
Largest diff. peak and hole	0.862 and -0.442 e.Å ⁻³

Table 2. Refined	Positional Parameters	s for Compound 1394
------------------	-----------------------	---------------------

Atom	Х	У	Z	U _{eq} , A ²
01	0.51208(17)	0.5666(4)	0.52018(15)	0.0160(6)
02	0.69337(18)	0.6114(5)	0.55554(14)	0.0169(6)
C1	0.5578(2)	0.4209(6)	0.55543(17)	0.0102(7)
C2	0.6484(3)	0.4558(6)	0.57241(17)	0.0117(8)
C3	0.6762(2)	0.2657(6)	0.6154(2)	0.0143(8)
C4	0.5980(2)	0.1081(6)	0.61684(19)	0.0134(8)
C5	0.5296(3)	0.2258(6)	0.57886(17)	0.0110(8)
C6	0.4412(3)	0.1303(7)	0.56704(19)	0.0158(8)
C7	0.3938(2)	0.0792(6)	0.62976(19)	0.0124(8)
C8	0.3430(3)	0.2394(7)	0.6591(2)	0.0184(9)
C9	0.3011(3)	0.1945(7)	0.7171(2)	0.0211(9)
C10	0.3088(3)	-0.0127(8)	0.7463(2)	0.0217(9)
C11	0.3595(3)	-0.1706(7)	0.7172(2)	0.0182(9)
C12	0.4014(3)	-0.1262(7)	0.6601(2)	0.0174(9)
01'	0.75431(18)	0.9619(4)	0.48658(14)	0.0178(6)
02'	0.57357(18)	0.9129(4)	0.45099(15)	0.0146(6)
C1'	0.7084(2)	1.1030(6)	0.45061(18)	0.0122(8)
C2'	0.6174(2)	1.0704(6)	0.43412(17)	0.0101(8)
C3'	0.5890(3)	1.2612(6)	0.39332(19)	0.0132(8)
C4'	0.6676(2)	1.4158(6)	0.38930(19)	0.0136(8)
C5'	0.7371(3)	1.2967(6)	0.42658(17)	0.0125(8)
C6'	0.8246(2)	1.3924(7)	0.43651(19)	0.0151(8)
C7'	0.8727(2)	1.4232(6)	0.37292(19)	0.0129(8)
C8'	0.9243(3)	1.2516(7)	0.3482(2)	0.0192(9)
C9'	0.9672(3)	1.2777(8)	0.2895(2)	0.0264(10)
C10'	0.9582(3)	1.4716(8)	0.2539(2)	0.0254(10)
C11'	0.9089(3)	1.6424(8)	0.2776(2)	0.0271(11)
C12'	0.8659(3)	1.6167(7)	0.3378(2)	0.0191(9)
$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2 -$	+U ₂₂ (bb*) ² +U ₃₃ (cc*) ² +	2U12aa*bb*cos y+20	J ₁₃ aa*cc*cos β+2U ₂₃ bb	*cc*cosα]

Atom	Х	у	Z	U _{iso} , A ^z
H1	0.5444	0.6630	0.5062	0.024
H3a	0.6899	0.3175	0.6590	0.019
H3b	0.7265	0.1922	0.5974	0.019
H4a	0.6122	-0.0324	0.5967	0.018
H4b	0.5791	0.0817	0.6612	0.018
H6a	0.4467	-0.0044	0.5417	0.021
H6b	0.4074	0.2345	0.5417	0.021
H8	0.3370	0.3775	0.6397	0.024
H9	0.2677	0.3033	0.7368	0.028
H10	0.2799	-0.0435	0.7850	0.029
H11	0.3653	-0.3089	0.7365	0.024
H12	0.4357	-0.2348	0.6412	0.023
H1'	0.7229	0.8618	0.4994	0.027
H3a'	0.5404	1.3362	0.4134	0.018
H3b'	0.5721	1.2117	0.3502	0.018
H4a'	0.6847	1.4391	0.3444	0.018
H4b'	0.6549	1.5578	0.4091	0.018
H6a'	0.8578	1.2955	0.4647	0.020
H6b'	0.8192	1.5343	0.4582	0.020
H8'	0.9297	1.1202	0.3714	0.026
H9'	1.0022	1.1647	0.2739	0.035
H10'	0.9858	1.4859	0.2139	0.034
H11'	0.9038	1.7734	0.2542	0.036
H12'	0.8326	1.7322	0.3540	0.025

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	0.0046(12)	0.0139(13)	0.0296(15)	0.0067(12)	-0.0015(12)	-0.0004(10)
02	0.0129(13)	0.0191(14)	0.0188(14)	-0.0015(12)	-0.0020(12)	-0.0011(11)
C1	0.0116(18)	0.0115(16)	0.0077(16)	-0.0045(13)	-0.0018(15)	0.0021(14)
C2	0.0149(19)	0.0094(16)	0.0110(18)	0.0013(14)	-0.0023(15)	-0.0067(16)
C3	0.013(2)	0.0147(18)	0.0152(19)	0.0006(15)	0.0029(15)	0.0014(15)
C4	0.012(2)	0.0118(18)	0.0160(19)	0.0001(14)	-0.0010(15)	0.0016(15)
C5	0.0122(19)	0.0132(18)	0.0075(16)	-0.0028(14)	0.0018(14)	-0.0006(15)
C6	0.017(2)	0.0183(19)	0.0117(18)	0.0034(15)	-0.0030(15)	-0.0026(16)
C7	0.0059(18)	0.0141(19)	0.017(2)	0.0065(15)	-0.0024(15)	-0.0028(14)
C8	0.013(2)	0.0200(19)	0.022(2)	0.0014(17)	-0.0002(18)	-0.0001(16)
C9	0.016(2)	0.025(2)	0.022(2)	-0.0063(18)	-0.0016(17)	-0.0022(17)
C10	0.020(2)	0.029(2)	0.017(2)	0.0009(17)	-0.0013(17)	0.0007(19)
C11	0.018(2)	0.020(2)	0.0173(18)	0.0090(18)	-0.0048(16)	-0.0017(17)
C12	0.0115(19)	0.019(2)	0.022(2)	0.0026(17)	-0.0023(17)	-0.0009(16)
01'	0.0150(14)	0.0204(15)	0.0180(14)	0.0086(13)	-0.0035(12)	-0.0053(12)
02'	0.0134(14)	0.0075(12)	0.0230(15)	0.0016(12)	-0.0066(12)	-0.0029(11)
C1'	0.0119(19)	0.0128(17)	0.0118(18)	-0.0021(15)	0.0005(16)	-0.0020(15)
C2'	0.0079(17)	0.0155(18)	0.0070(16)	-0.0056(14)	-0.0016(14)	0.0025(14)
C3'	0.012(2)	0.0116(18)	0.0161(19)	0.0008(15)	-0.0046(15)	0.0019(15)
C4'	0.015(2)	0.0112(18)	0.0143(18)	0.0023(14)	-0.0014(16)	-0.0012(15)
C5'	0.0109(18)	0.0171(19)	0.0095(18)	0.0009(15)	0.0012(14)	-0.0052(16)
C6'	0.0048(18)	0.025(2)	0.0154(19)	0.0007(16)	-0.0025(15)	-0.0038(15)
C7'	0.0066(18)	0.0182(19)	0.0138(19)	0.0011(15)	-0.0025(16)	-0.0030(15)
C8'	0.018(2)	0.0144(19)	0.026(2)	-0.0001(17)	-0.0036(17)	-0.0036(17)
C9'	0.016(2)	0.034(2)	0.030(2)	-0.007(2)	0.0057(19)	-0.0024(19)
C10'	0.029(2)	0.037(3)	0.011(2)	-0.0002(18)	-0.0037(18)	-0.014(2)
C11'	0.026(2)	0.031(2)	0.024(2)	0.0203(19)	-0.0025(19)	-0.011(2)
C12'	0.011(2)	0.015(2)	0.032(2)	0.0052(17)	-0.0023(18)	0.0007(16)
I he form of t	ine anisotropic o	isplacement pa	irameter is:			
exp[-2π²(a*²L	J ₁₁ h ² +b* ² U ₂₂ k ² +0	c* ⁻ U ₃₃ l ⁻ +2b*c*U	₂₃ kl+2a*c*U₁₃hl	+2a*b*U ₁₂ hk)]		

Table 4. Refined Thermal Parameters (U's) for Compound 1394

Table 5. Bond Distances in Compound 1394, Å

01-C1	1.342(5)	O2-C2	1.221(5)	C1-C5	1.347(5)
C1-C2	1.461(5)	C2-C3	1.512(5)	C3-C4	1.542(5)
C4-C5	1.495(5)	C5-C6	1.507(6)	C6-C7	1.513(5)
C7-C8	1.387(6)	C7-C12	1.394(5)	C8-C9	1.382(6)
C9-C10	1.394(6)	C10-C11	1.373(6)	C11-C12	1.366(6)
01'-C1'	1.334(5)	O2'-C2'	1.220(5)	C1'-C5'	1.346(5)
C1'-C2'	1.463(5)	C2'-C3'	1.492(5)	C3'-C4'	1.537(5)
C4'-C5'	1.505(5)	C5'-C6'	1.488(5)	C6'-C7'	1.514(6)
C7'-C12'	1.379(6)	C7'-C8'	1.405(6)	C8'-C9'	1.384(6)
C9'-C10'	1.389(7)	C10'-C11'	1.373(7)	C11'-C12'	1.412(7)

Table 6. Bond Angles in Compound 1394, °

01-C1-C5	126.7(4)	01-C1-C2	122.7(3)	C5-C1-C2	110.7(3)
02-C2-C1	126.3(3)	O2-C2-C3	126.1(4)	C1-C2-C3	107.6(3)
C2-C3-C4	104.9(3)	C5-C4-C3	104.6(3)	C1-C5-C4	112.0(3)
C1-C5-C6	125.0(4)	C4-C5-C6	123.0(3)	C5-C6-C7	112.5(3)
C8-C7-C12	118.4(4)	C8-C7-C6	120.1(3)	C12-C7-C6	121.4(4)
C9-C8-C7	120.2(4)	C8-C9-C10	120.4(4)	C11-C10-C9	119.2(4)
C12-C11-C10	120.5(4)	C11-C12-C7	121.2(4)	O1'-C1'-C5'	125.7(4)
01'-C1'-C2'	123.7(3)	C5'-C1'-C2'	110.6(3)	O2'-C2'-C1'	125.2(3)
O2'-C2'-C3'	126.8(3)	C1'-C2'-C3'	108.0(3)	C2'-C3'-C4'	105.5(3)
C5'-C4'-C3'	104.4(3)	C1'-C5'-C6'	126.1(4)	C1'-C5'-C4'	111.5(3)
C6'-C5'-C4'	122.4(3)	C5'-C6'-C7'	112.2(3)	C12'-C7'-C8'	118.8(4)
C12'-C7'-C6'	121.2(4)	C8'-C7'-C6'	120.0(4)	C9'-C8'-C7'	120.2(4)
C8'-C9'-C10'	120.4(4)	C11'-C10'-C9'	120.3(4)	C10'-C11'-C12'	119.3(4)
C7'-C12'-C11'	121.0(4)		. ,		

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} R1 &= \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ wR2 &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ GOF &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ where \ n &= the \ number \ of \ reflections \ and \ p = the \ number \ of \ parameters \ refined. \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

Compound 1418, $C_{13}H_{10}OF_2$, crystallizes in the rhombohedral space group $R\overline{3}$ (systematic absences hkl: -h+k+l≠3n) with a=31.0373(10)Å, c=5.6946(2)Å, V=4750.7(3)Å³, Z=18, and d_{calc}=1.385 g/cm³. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 1985 frames were collected with a crystal to detector distance of 37.4 mm, rotation widths of 0.5° and exposures of 5 seconds:

scan type	20	ω	φ	χ	frames
φ	-23.00	315.83	12.48	28.88	739
ω	14.50	282.56	54.11	21.36	202
φ	-13.00	335.42	45.31	64.29	83
() ()	4.50	257.23	231.94	52.47	222
φ	-10.50	335.77	25.44	54.21	739

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 27180 reflections were measured over the ranges 2.27 $\leq \theta \leq 25.37^{\circ}$, -37 $\leq h \leq 37$, -37 $\leq k \leq 37$, -6 $\leq l \leq 6$ yielding 1926 unique reflections (Rint = 0.0556). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.6449, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting scheme used was $w=1/[\sigma^2(F_0^2) + (0.0412P)^2 + 2.5297P]$ where P = $(F_0^2 + 2F_c^2)/3$. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement

converged to R1=0.0326 and wR2=0.0742 for 1449 observed reflections for which $F > 4\sigma(F)$ and R1=0.0529 and wR2=0.0816 and GOF =1.024 for all 1926 unique, non-zero reflections and 147 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.000 and the two most prominent peaks in the final difference Fourier were +0.180 and -0.202 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 1. is an ORTEP^{vii} representation of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of the title compound with 50% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1418

Empirical formula	$C_{13}H_{10}OF_2$
Formula weight	220.21
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	rhombohedral
Space group	R3
Cell constants:	
a	31.0373(10) Å
C	5.6946(2) Å
Volume	4750.7(3) Å ³
Z	18
Density (calculated)	1.385 Mg/m ³
Absorption coefficient	0.110 mm ⁻¹
F(000)	2052
Crystal size	0.38 x 0.05 x 0.02 mm ³
Theta range for data collection	2.27 to 25.37°
Index ranges	$-37 \le h \le 37, -37 \le k \le 37, -6 \le l \le 6$
Reflections collected	27180
Independent reflections	1926 [R(int) = 0.0556]
Completeness to theta = 25.37°	99.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.6449
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1926 / 0 / 147
Goodness-of-fit on F ²	1.024
Final R indices [I>2sigma(I)]	R1 = 0.0326, wR2 = 0.0742
R indices (all data)	R1 = 0.0529, wR2 = 0.0816
Largest diff. peak and hole	0.180 and -0.202 e.Å ⁻³

Table 2. Refined Positional Parameters for Compound 1418

Atom	Х	у	Z	U _{eq} , A ²
F1	0.07707(3)	0.41425(3)	0.69256(16)	0.0302(3)
F2	0.00296(3)	0.43097(3)	0.01192(15)	0.0269(2)
01	0.02721(4)	0.37474(3)	0.27531(17)	0.0201(3)
C1	0.06892(5)	0.51997(5)	0.4770(3)	0.0211(3)
C2	0.08062(6)	0.49094(6)	0.6199(3)	0.0225(4)
C3	0.06645(5)	0.44305(5)	0.5522(3)	0.0202(3)
C4	0.04108(5)	0.42182(5)	0.3475(3)	0.0174(3)
C5	0.02992(5)	0.45175(6)	0.2099(2)	0.0190(3)
C6	0.04327(5)	0.49965(5)	0.2692(3)	0.0218(3)
C7	0.08309(6)	0.57261(6)	0.5445(3)	0.0269(4)
C8	0.13307(6)	0.61154(5)	0.4492(3)	0.0201(3)
C9	0.17642(6)	0.62353(5)	0.5693(3)	0.0255(4)
C10	0.22217(6)	0.65953(6)	0.4842(3)	0.0309(4)
C11	0.22533(6)	0.68411(6)	0.2774(3)	0.0299(4)
C12	0.18244(6)	0.67225(6)	0.1561(3)	0.0284(4)
C13	0.13676(6)	0.63631(6)	0.2409(3)	0.0250(4)
$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2]$	² +U ₂₂ (bb*) ² +U ₃₃ (cc*) ² +	-2U ₁₂ aa*bb*cos γ+2U	J ₁₃ aa*cc*cos β+2U ₂₃ bb	*cc*cosα]

Table 3. Positional Parameters for Hydrogens in Compound 1418

Atom	Х	У	Z	U _{iso} , Å ²
H1	0.0281	0.3586	0.3870	0.027
H2	0.0978	0.5037	0.7597	0.030
H6	0.0352	0.5185	0.1707	0.029
H7a	0.0578	0.5795	0.4869	0.036
H7b	0.0837	0.5751	0.7144	0.036
H9	0.1748	0.6072	0.7088	0.034
H10	0.2510	0.6672	0.5670	0.041
H11	0.2561	0.7084	0.2205	0.040
H12	0.1842	0.6885	0.0163	0.038
H13	0.1081	0.6286	0.1572	0.033

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F1	0.0339(5)	0.0214(5)	0.0346(5)	0.0003(4)	-0.0159(4)	0.0134(4)
F2	0.0312(5)	0.0239(5)	0.0248(5)	0.0013(4)	-0.0077(4)	0.0132(4)
01	0.0209(6)	0.0150(5)	0.0244(6)	0.0013(4)	-0.0026(4)	0.0089(5)
C1	0.0156(8)	0.0180(8)	0.0280(8)	0.0029(6)	0.0082(7)	0.0071(6)
C2	0.0194(8)	0.0208(8)	0.0229(9)	-0.0015(7)	0.0007(6)	0.0068(7)
C3	0.0170(8)	0.0198(8)	0.0246(8)	0.0050(6)	-0.0009(6)	0.0098(7)
C4	0.0129(7)	0.0146(7)	0.0241(8)	0.0013(6)	0.0034(6)	0.0065(6)
C5	0.0151(8)	0.0220(8)	0.0185(8)	0.0022(6)	0.0012(6)	0.0082(6)
C6	0.0199(8)	0.0199(8)	0.0276(9)	0.0068(7)	0.0042(7)	0.0114(7)
C7	0.0279(9)	0.0197(8)	0.0334(9)	0.0000(7)	0.0075(7)	0.0121(7)
C8	0.0245(8)	0.0151(8)	0.0230(8)	-0.0030(6)	0.0027(6)	0.0117(7)
C9	0.0330(9)	0.0198(8)	0.0221(8)	0.0017(7)	-0.0032(7)	0.0119(7)
C10	0.0248(9)	0.0258(9)	0.0395(10)	-0.0041(8)	-0.0078(8)	0.0108(8)
C11	0.0292(9)	0.0164(8)	0.0375(10)	-0.0005(7)	0.0094(8)	0.0064(7)
C12	0.0406(10)	0.0216(9)	0.0230(9)	0.0026(7)	0.0039(7)	0.0156(8)
C13	0.0290(9)	0.0219(8)	0.0262(9)	-0.0019(7)	-0.0048(7)	0.0143(7)
The form of the anisotropic displacement parameter is:						
exp[-2π²(a* ² l	$J_{11}h^2 + b^{*2}U_{22}k^2 + d^{*2}U_{22}k^{*2}$	c* ² U ₃₃ l ² +2b*c*l	J₂₃kl+2a*c*U₁₃hl	+2a*b*U₁₂hk)]		
	02211					

Table 4. Refined Thermal Parameters (U's) for Compound 1418

Table 5. Bond Distances in Compound 1418, Å

F1-C3	1.3569(16)	F2-C5	1.3593(17)	01-C4	1.3640(17)
C1-C6	1.389(2) ´	C1-C2	1.390(2) ´	C1-C7	1.514(2) ′
C2-C3	1.377(2)	C3-C4	1.376(2)	C4-C5	1.385(2)
C5-C6	1.371(2)	C7-C8	1.512(2)	C8-C9	1.384(2)
C8-C13	1.387(2)	C9-C10	1.383(2)	C10-C11	1.380(2)
C11-C12	1.376(2)	C12-C13	1.381(2)		

Table 6. Bond Angles in Compound 1418, °

C6-C1-C2	118.71(14)	C6-C1-C7	119.84(14)	C2-C1-C7	121.46(14)
C3-C2-C1	119.32(14)	F1-C3-C4	116.93(13)	F1-C3-C2	119.64(13)
C4-C3-C2	123.43(14)	O1-C4-C3	124.51(13)	O1-C4-C5	119.82(13)
C3-C4-C5	115.67(13)	F2-C5-C6	119.95(13)	F2-C5-C4	116.87(13)
C6-C5-C4	123.13(14)	C5-C6-C1	119.74(14)	C8-C7-C1	113.55(12)
C9-C8-C13	118 28(14)	C9-C8-C7	120 57(14)	C13-C8-C7	121 14(14)
C10-C9-C8	120 78(15)	C11-C10-C9	120 39(15)	C12-C11-C10	119 24(15)
C11-C12-C13	120.39(15)	C12-C13-C8	120 92(15)	012 011 010	110121(10)
C11-C12-C13	120.39(15)	C12-C13-C8	120.92(15)		

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} R1 &= \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ wR2 &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ GOF &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ where \ n &= the \ number \ of \ reflections \ and \ p = the \ number \ of \ parameters \ refined. \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

Compound 1402, $C_{13}H_{12}SO_2$, crystallizes in the triclinic space group $P\overline{1}$ with a=8.0531(3)Å, b=11.5643(4)Å, c=12.4184(5)Å, α =78.745(2)°, β =88.129(2)°, γ =85.001(2)°, V=1129.81(7)Å³, Z=4, and d_{calc}=1.366 g/cm³. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 3074 frames were collected with a crystal to detector distance of 37.4 mm, rotation widths of 0.5° and exposures of 15 seconds:

scan type	20	ω	φ	χ	frames
φ	-23.00	315.83	12.48	28.88	739
ω	-23.00	333.49	158.99	-70.01	69
φ	-15.50	258.48	38.15	19.46	646
φ	-23.00	334.21	38.95	73.66	739
φ	19.50	59.55	348.71	-26.26	739
φ	12.00	23.21	59.30	-99.82	142

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 22708 reflections were measured over the ranges $1.67 \le \theta \le 25.47^\circ$, $-9 \le h \le 9$, $-13 \le k \le 13$, $-15 \le l \le 14$ yielding 3976 unique reflections (Rint = 0.0222). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.7070, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting

scheme used was w=1/[$\sigma^2(F_0^2)$ + (0.0480P)² + 0.5872P] where P = ($F_0^2 + 2F_c^2$)/3. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0287 and wR2=0.0779 for 3520 observed reflections for which F > 4 σ (F) and R1=0.0349 and wR2=0.0916 and GOF =1.125 for all 3976 unique, non-zero reflections and 292 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.000 and the two most prominent peaks in the final difference Fourier were +0.453 and -0.285 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figures 1. and 2. are ORTEP^{vii} representations of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of molecule no. 1 of the asymmetric unit with 50% probability thermal ellipsoids.

Figure 2. ORTEP drawing of molecule no. 2 of the asymmetric unit with 50% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1402

Empirical formula	C ₁₃ H ₁₂ SO ₂
Formula weight	232.29
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	triclinic
Space group	Pī
Cell constants:	
a	8.0531(3) Å
b	11.5643(4) Å
c	12.4184(5) Å
α	78.745(2)°
β	88.129(2)°
γ	85.001(2)°
Volume	1129.81(7) Å ³
Z	4
Density (calculated)	1.366 Mg/m ³
Absorption coefficient	0.267 mm ⁻¹
F(000)	488
Crystal size	0.32 x 0.18 x 0.04 mm ³
Theta range for data collection	1.67 to 25.47°
Index ranges	-9 ≤ h ≤ 9, -13 ≤ k ≤ 13, -15 ≤ l ≤ 14
Reflections collected	22708
Independent reflections	3976 [R(int) = 0.0222]
Completeness to theta = 25.47°	94.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.7070
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3976 / 0 / 292
Goodness-of-fit on F ²	1.125
Final R indices [I>2sigma(I)]	R1 = 0.0287, wR2 = 0.0779
R indices (all data)	R1 = 0.0349, wR2 = 0.0916
Largest diff. peak and hole	0.453 and -0.285 e.Å ⁻³

Atom	Х	У	Z	U _{eq} , A ²
C1	0.2110(2)	0.39951(15)	0.50171(14)	0.0136(4)
C2	0.1651(2)	0.38328(15)	0.61258(15)	0.0147(4)
C3	0.1848(2)	0.47441(16)	0.66878(15)	0.0183(4)
C4	0.2478(2)	0.57718(16)	0.61433(16)	0.0196(4)
C5	0.2930(2)	0.59263(16)	0.50397(16)	0.0206(4)
C6	0.2727(2)	0.50259(15)	0.44717(15)	0.0183(4)
C7	0.3475(2)	0.18013(15)	0.47531(15)	0.0171(4)
C8	0.3375(2)	0.07571(15)	0.42089(14)	0.0149(4)
C9	0.2221(2)	-0.00642(15)	0.45790(15)	0.0175(4)
C10	0.2023(2)	-0.09771(15)	0.40274(16)	0.0200(4)
C11	0.2987(2)	-0.10740(16)	0.30937(16)	0.0210(4)
C12	0.4154(2)	-0.02772(16)	0.27370(15)	0.0213(4)
C13	0.4358(2)	0.06351(15)	0.32901(15)	0.0182(4)
01	0.10710(15)	0.27789(10)	0.65948(10)	0.0179(3)
02	0.21160(15)	0.33615(11)	0.30988(10)	0.0181(3)
S1	0.17175(5)	0.28697(4)	0.42857(3)	0.01379(12)
C1'	0.90795(19)	0.23026(15)	0.04019(14)	0.0129(3)
C2'	0.9485(2)	0.24599(15)	0.14452(15)	0.0137(4)
C3'	0.9366(2)	0.15296(16)	0.23320(15)	0.0185(4)
C4'	0.8836(2)	0.04699(16)	0.21725(16)	0.0199(4)
C5'	0.8404(2)	0.03265(16)	0.11388(16)	0.0203(4)
C6'	0.8526(2)	0.12413(15)	0.02488(15)	0.0161(4)
C7'	0.7455(2)	0.44069(15)	-0.06025(15)	0.0163(4)
C8'	0.5954(2)	0.37084(14)	-0.04379(15)	0.0139(4)
C9'	0.5313(2)	0.33321(15)	0.06106(15)	0.0159(4)
C10'	0.4006(2)	0.26052(16)	0.07796(16)	0.0186(4)
C11'	0.3353(2)	0.22388(16)	-0.01040(17)	0.0207(4)
C12'	0.3966(2)	0.26287(16)	-0.11567(16)	0.0201(4)
C13'	0.5253(2)	0.33658(16)	-0.13246(15)	0.0172(4)
01'	0.99540(15)	0.35390(10)	0.15281(10)	0.0181(3)
O2'	0.90922(15)	0.29307(11)	-0.17353(10)	0.0194(3)
S1'	0.93626(5)	0.34641(4)	-0.07409(3)	0.01409(12)
$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2]$	+U ₂₂ (bb*) ² +U ₃₃ (cc*) ² +	2U12aa*bb*cos y+2U	13aa*cc*cos β+2U23bb	*cc*cosα]

Table 2. Refined Positional Parameters for Compound 1402

Atom	Х	У	Z	U _{iso} , A ²
H3	0.1553	0.4658	0.7428	0.024
H4	0.2604	0.6375	0.6524	0.026
H5	0.3362	0.6623	0.4685	0.027
H6	0.3006	0.5120	0.3729	0.024
H7a	0.4518	0.2156	0.4556	0.023
H7b	0.3422	0.1552	0.5545	0.023
H9	0.1575	-0.0002	0.5203	0.023
H10	0.1247	-0.1522	0.4281	0.027
H11	0.2842	-0.1674	0.2713	0.028
H12	0.4813	-0.0350	0.2121	0.028
H13	0.5155	0.1166	0.3044	0.024
H1	0.0553	0.2848	0.7161	0.027
H3'	0.9641	0.1619	0.3031	0.025
H4'	0.8770	-0.0154	0.2767	0.026
H5'	0.8031	-0.0386	0.1045	0.027
H6'	0.8241	0.1149	-0.0447	0.021
H7a'	0.7551	0.4791	0.0018	0.022
H7b'	0.7317	0.5018	-0.1258	0.022
H9'	0.5762	0.3569	0.1205	0.021
H10'	0.3571	0.2366	0.1483	0.025
H11'	0.2503	0.1731	0.0009	0.028
H12'	0.3511	0.2395	-0.1751	0.027
H13'	0.5651	0.3633	-0.2033	0.023
H1'	1.0523	0.3475	0.2076	0.027

Atom	U ₁₁	U_{22}	U ₃₃	U_{23}	U ₁₃	U ₁₂
C1	0.0143(8)	0.0130(8)	0.0141(9)	-0.0037(7)	-0.0017(7)	-0.0011(6)
C2	0.0127(8)	0.0146(8)	0.0170(9)	-0.0036(7)	-0.0014(7)	-0.0004(6)
C3	0.0193(9)	0.0208(9)	0.0167(9)	-0.0084(8)	-0.0014(7)	-0.0003(7)
C4	0.0218(9)	0.0140(8)	0.0252(10)	-0.0089(8)	-0.0042(8)	-0.0011(7)
C5	0.0214(9)	0.0129(8)	0.0275(11)	-0.0029(8)	-0.0021(8)	-0.0037(7)
C6	0.0206(9)	0.0172(9)	0.0167(9)	-0.0021(8)	-0.0004(7)	-0.0017(7)
C7	0.0155(8)	0.0177(9)	0.0187(9)	-0.0047(8)	-0.0047(7)	0.0003(7)
C8	0.0151(8)	0.0132(8)	0.0160(9)	-0.0025(7)	-0.0053(7)	0.0019(7)
C9	0.0168(8)	0.0177(9)	0.0169(9)	-0.0020(8)	0.0006(7)	0.0005(7)
C10	0.0186(9)	0.0131(8)	0.0280(11)	-0.0028(8)	-0.0037(8)	-0.0012(7)
C11	0.0274(10)	0.0131(8)	0.0233(10)	-0.0065(8)	-0.0057(8)	0.0018(7)
C12	0.0266(10)	0.0199(9)	0.0166(10)	-0.0043(8)	0.0020(8)	0.0030(8)
C13	0.0176(8)	0.0161(9)	0.0200(10)	-0.0012(8)	-0.0006(7)	-0.0016(7)
01	0.0249(7)	0.0167(6)	0.0129(6)	-0.0034(5)	0.0066(5)	-0.0076(5)
02	0.0219(6)	0.0207(6)	0.0121(6)	-0.0033(5)	-0.0004(5)	-0.0047(5)
S1	0.0159(2)	0.0138(2)	0.0125(2)	-0.00386(17)	-0.00119(16)	-0.00247(16)
C1'	0.0100(7)	0.0143(8)	0.0138(9)	-0.0019(7)	0.0020(6)	-0.0008(6)
C2'	0.0110(7)	0.0131(8)	0.0175(9)	-0.0039(7)	0.0006(7)	-0.0011(6)
C3'	0.0196(9)	0.0197(9)	0.0164(9)	-0.0032(8)	-0.0027(7)	-0.0026(7)
C4'	0.0218(9)	0.0160(9)	0.0196(10)	0.0032(8)	0.0014(8)	-0.0045(7)
C5'	0.0231(9)	0.0143(9)	0.0251(11)	-0.0053(8)	0.0016(8)	-0.0070(7)
C6'	0.0160(8)	0.0171(9)	0.0169(9)	-0.0063(8)	0.0016(7)	-0.0038(7)
C7'	0.0154(8)	0.0132(8)	0.0198(9)	-0.0024(7)	-0.0011(7)	-0.0010(7)
C8'	0.0115(8)	0.0112(8)	0.0184(9)	-0.0023(7)	-0.0005(7)	0.0015(6)
C9'	0.0158(8)	0.0165(8)	0.0156(9)	-0.0049(7)	-0.0019(7)	0.0026(7)
C10'	0.0157(8)	0.0177(9)	0.0201(10)	-0.0001(8)	0.0054(7)	0.0022(7)
C11'	0.0116(8)	0.0169(9)	0.0347(12)	-0.0079(8)	0.0015(8)	-0.0014(7)
C12'	0.0147(8)	0.0234(9)	0.0249(10)	-0.0106(8)	-0.0039(7)	-0.0008(7)
C13'	0.0161(8)	0.0197(9)	0.0146(9)	-0.0015(8)	-0.0002(7)	0.0003(7)
01'	0.0242(7)	0.0140(6)	0.0174(7)	-0.0033(5)	-0.0056(5)	-0.0055(5)
02'	0.0206(6)	0.0247(7)	0.0143(7)	-0.0061(6)	0.0030(5)	-0.0049(5)
S1'	0.0128(2)	0.0155(2)	0.0141(2)	-0.00243(18)	0.00136(16)	-0.00349(16)
The form of the anisotropic displacement parameter is:						
$exp[-2\pi(a^{*2}U_{11}h^{2}+b^{*2}U_{22}k^{2}+c^{*2}U_{33}l^{2}+2b^{*}c^{*}U_{23}kl+2a^{*}c^{*}U_{13}hl+2a^{*}b^{*}U_{12}hk)]$						

Table 4. Refined Thermal Parameters (U's) for Compound 1402

Table 5. Bond Distances in Compound 1402, Å

C1-C6 C2-O1 C4-C5 C7-S1 C9-C10 C12-C13 C1'-C2'	1.376(3) 1.359(2) 1.388(3) 1.8265(17) 1.389(2) 1.390(2) 1.396(2)	C1-C2 C2-C3 C5-C6 C8-C9 C10-C11 O2-S1 C1'-S1'	1.395(2) 1.395(2) 1.390(2) 1.390(3) 1.392(3) 1.5076(13) 1.7772(18)	C1-S1 C3-C4 C7-C8 C8-C13 C11-C12 C1'-C6' C2'-O1'	1.7805(16) 1.377(3) 1.504(2) 1.390(3) 1.376(3) 1.390(2) 1.358(2)
C12-C13	1.390(2)	O2-S1	1.5076(13)	C1'-C6'	1.390(2)
C1'-C2'	1.396(2)	C1'-S1'	1.7772(18)	C2'-O1'	1.358(2)
C2'-C3'	1.389(3)	C3'-C4'	1.384(2) ´	C4'-C5'	1.385(3)
C5'-C6'	1.380(3)	C7'-C8'	1.498(2)	C7'-S1'	1.8283(17)
C8'-C9'	1.388(3)	C8'-C13'	1.392(2)	C9'-C10'	1.389(3)
C10'-C11'	1.385(3)	C11'-C12'	1.386(3)	C12'-C13'	1.384(3)
02'-S1'	1.5138(12)				

Table 6. Bond Angles in Compound 1402, °

C6-C1-C2	121.78(15)	C6-C1-S1	120.12(13)	C2-C1-S1	117.91(13)
01-C2-C1	117.43(14)	O1-C2-C3	124.18(16)	C1-C2-C3	118.37(16)
C4-C3-C2	119.80(17)	C3-C4-C5	121.45(16)	C4-C5-C6	119.12(18)
C1-C6-C5	119.48(17)	C8-C7-S1	107.78(11)	C9-C8-C13	118.93(15)
C9-C8-C7	120.22(16)	C13-C8-C7	120.74(16)	C10-C9-C8	120.71(17)
C9-C10-C11	119.83(17)	C12-C11-C10	119.67(16)	C11-C12-C13	120.56(17)
C12-C13-C8	120.28(17)	02-S1-C1	105.66(8)	O2-S1-C7	104.95(8)
C1-S1-C7	99.40(7)	C6'-C1'-C2'	120.85(17)	C6'-C1'-S1'	120.33(13)
C2'-C1'-S1'	118.77(13)	O1'-C2'-C3'	123.88(15)	O1'-C2'-C1'	117.03(16)
C3'-C2'-C1'	119.09(15)	C4'-C3'-C2'	119.80(16)	C3'-C4'-C5'	120.86(18)
C6'-C5'-C4'	119.95(16)	C5'-C6'-C1'	119.43(16)	C8'-C7'-S1'	111.51(11)
C9'-C8'-C13'	119.22(16)	C9'-C8'-C7'	120.22(15)	C13'-C8'-C7'	120.44(16)
C8'-C9'-C10'	120.57(16)	C11'-C10'-C9'	119.70(18)	C10'-C11'-C12'	120.06(17)
C13'-C12'-C11'	120.09(16)	C12'-C13'-C8'	120.30(18)	02'-S1'-C1'	104.74(8)
O2'-S1'-C7'	104.89(7)	C1'-S1'-C7'	99.34(8)	_	(-)

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

$$\begin{split} ^{vi} R1 &= \Sigma IIF_oI - IF_cII \ / \ \Sigma \ IF_oI \\ wR2 &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / \Sigma w(F_o{}^2)^2]^{\frac{1}{2}} \\ GOF &= [\Sigma w(F_o{}^2 - F_c{}^2)^2 / (n - p)]^{\frac{1}{2}} \\ where \ n &= the \ number \ of \ reflections \ and \ p = the \ number \ of \ parameters \ refined. \end{split}$$

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

X-ray Structure Determination of Compound 1399 (i.e., compound 36; CCDC 1427787)

Compound 1399, $C_{13}H_{12}SO_3$, crystallizes in the orthorhombic space group Pna2₁ (systematic absences h0l: h=odd and 0kl: k+l=odd) with a=16.3047(8)Å, b=12.4349(7)Å, c=5.5879(3)Å, V=1132.93(10)Å³, Z=4, and d_{calc}=1.456 g/cm³. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation (λ =0.71073 Å) at a temperature of 100(1)K. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 1150 frames were collected with a crystal to detector distance of 37.5 mm, rotation widths of 0.5° and exposures of 10 seconds:

scan type	20	ω	φ	χ	frames
φ	-23.00	315.83	12.48	28.88	739
(I)	-20.50	356.88	178.64	-31.86	139
φ	-23.00	334.21	38.95	73.66	272

Rotation frames were integrated using SAINTⁱ, producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTLⁱⁱ program package for further processing and structure solution. A total of 1156 reflections were measured over the ranges 2.06 $\leq \theta \leq 25.38^{\circ}$, -19 $\leq h \leq 17$, -14 $\leq k \leq 14$, -6 $\leq l \leq 6$ yielding 1156 unique reflections (Rint = 0.0000). The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABSⁱⁱⁱ (minimum and maximum transmission 0.6760, 0.7452).

The structure was solved by direct methods (SHELXS-97^{iv}). Refinement was by full-matrix least squares based on F² using SHELXL-97.^v All reflections were used during refinement. The weighting scheme used was $w=1/[\sigma^2(F_0^2) + (0.0276P)^2 + 0.3561P]$ where P = $(F_0^2 + 2F_c^2)/3$. Non-hydrogen atoms
were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to R1=0.0293 and wR2=0.0675 for 1052 observed reflections for which F > $4\sigma(F)$ and R1=0.0353 and wR2=0.0702 and GOF =1.076 for all 1156 unique, non-zero reflections and 166 variables.^{vi} The maximum Δ/σ in the final cycle of least squares was 0.001 and the two most prominent peaks in the final difference Fourier were +0.174 and -0.239 e/Å³.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Tables 2. and 3. Anisotropic thermal parameters are in Table 4. Tables 5. and 6. list bond distances and bond angles. Figure 1. is an ORTEP^{vii} representation of the molecule with 50% probability thermal ellipsoids displayed.

Figure 1. ORTEP drawing of the title compound with 50% probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Compound 1399

Empirical formula	$C_{13}H_{12}SO_3$
Formula weight	248.29
Temperature	100(1) K
Wavelength	0.71073 Å
Crystal system	orthorhombic
Space group	Pna2₁
Cell constants:	
a	16.3047(8) Å
b	12.4349(7) Å
С	5.5879(3) Å
Volume	1132.93(10) Å ³
Z	4
Density (calculated)	1.456 Mg/m ³
Absorption coefficient	0.278 mm ⁻¹
F(000)	520
Crystal size	0.38 x 0.10 x 0.04 mm ³
Theta range for data collection	2.06 to 25.38°
Index ranges	-19 ≤ h ≤ 17, -14 ≤ k ≤ 14, -6 ≤ l ≤ 6
Reflections collected	1156
Independent reflections	1156 [R(int) = 0.0000]
Completeness to theta = 25.38°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.6760
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1156 / 1 / 166
Goodness-of-fit on F ²	1.076
Final R indices [I>2sigma(I)]	R1 = 0.0293, wR2 = 0.0675
R indices (all data)	R1 = 0.0353, wR2 = 0.0702
Absolute structure parameter	0.12(12)
Largest diff. peak and hole	0.174 and -0.239 e.Å ⁻³

Atom	Х	У	Z	U _{eq} , A ²	
C1	0.53526(16)	0.2451(2)	0.3362(6)	0.0168(6)	
C2	0.58303(16)	0.2509(2)	0.1304(7)	0.0213(7)	
C3	0.61930(18)	0.3466(3)	0.0654(6)	0.0230(7)	
C4	0.60801(17)	0.4378(3)	0.2034(6)	0.0243(8)	
C5	0.56044(17)	0.4331(3)	0.4066(7)	0.0244(8)	
C6	0.52378(16)	0.3369(2)	0.4726(6)	0.0191(6)	
C7	0.49639(16)	0.1405(2)	0.4120(6)	0.0210(7)	
C8	0.33789(16)	0.2207(2)	0.3062(6)	0.0176(7)	
C9	0.28756(17)	0.2222(2)	0.5085(6)	0.0198(7)	
C10	0.23828(17)	0.3115(3)	0.5492(6)	0.0248(7)	
C11	0.23861(17)	0.3958(2)	0.3896(6)	0.0227(7)	
C12	0.28695(18)	0.3936(2)	0.1871(6)	0.0232(8)	
C13	0.33773(16)	0.3055(2)	0.1442(7)	0.0188(6)	
01	0.42185(13)	0.10467(17)	0.0041(4)	0.0255(6)	
02	0.36871(12)	0.01591(16)	0.3698(5)	0.0284(6)	
O3	0.2818(2)	0.1438(3)	0.6618(9)	0.0199(9)	
O3'	0.3844(2)	0.3086(3)	-0.0466(9)	0.0243(10)	
S1	0.40365(4)	0.11020(6)	0.25772(16)	0.02043(19)	
$U_{eq} = \frac{1}{3} [U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}aa^*bb^*\cos\gamma + 2U_{13}aa^*cc^*\cos\beta + 2U_{23}bb^*cc^*\cos\alpha]$					

Table 3. Positional Parameters for Hydrogens in Compound 1399

Atom	Х	У	Z	U _{iso} , A ²
H2	0.5905	0.1899	0.0364	0.028
H3	0.6515	0.3499	-0.0718	0.031
H4	0.6326	0.5022	0.1588	0.032
H5	0.5529	0.4944	0.4995	0.032
H6	0.4913	0.3340	0.6092	0.025
H7a	0.4851	0.1434	0.5824	0.028
H7b	0.5352	0.0826	0.3852	0.028
H9	0.2870	0.1644	0.6142	0.026
H10	0.2051	0.3143	0.6844	0.033
H11	0.2056	0.4553	0.4188	0.030
H12	0.2857	0.4507	0.0797	0.031
H13	0.3710	0.3035	0.0091	0.025
H3a	0.3034	0.0898	0.6063	0.030
H3a'	0.4081	0.2508	-0.0620	0.036

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0112(12)	0.0193(14)	0.0199(17)	0.0021(13)	-0.0042(12)	0.0015(11)
C2	0.0149(13)	0.0248(15)	0.0242(17)	-0.0080(18)	0.0005(15)	0.0025(12)
C3	0.0179(14)	0.0317(17)	0.0194(18)	0.0011(15)	0.0036(13)	0.0019(13)
C4	0.0206(15)	0.0230(15)	0.029(2)	0.0057(14)	-0.0014(13)	-0.0027(12)
C5	0.0239(14)	0.0181(15)	0.031(2)	-0.0052(15)	0.0017(15)	-0.0011(13)
C6	0.0167(12)	0.0253(15)	0.0153(15)	-0.0018(14)	-0.0005(14)	-0.0008(12)
C7	0.0165(13)	0.0215(15)	0.0251(19)	0.0004(14)	-0.0029(13)	0.0017(11)
C8	0.0152(13)	0.0139(13)	0.024(2)	-0.0038(13)	-0.0017(12)	-0.0026(11)
C9	0.0178(13)	0.0190(15)	0.0227(18)	-0.0027(14)	0.0004(14)	-0.0055(12)
C10	0.0158(13)	0.0341(17)	0.0247(18)	-0.0071(15)	0.0039(14)	-0.0010(13)
C11	0.0144(14)	0.0205(15)	0.033(2)	-0.0067(16)	0.0013(15)	0.0014(12)
C12	0.0187(14)	0.0190(14)	0.032(2)	0.0009(15)	-0.0001(13)	-0.0004(12)
C13	0.0154(13)	0.0201(14)	0.0208(16)	-0.0002(15)	0.0002(15)	-0.0028(11)
01	0.0277(11)	0.0225(12)	0.0264(14)	-0.0109(11)	0.0000(11)	0.0008(9)
02	0.0281(10)	0.0158(10)	0.0412(15)	-0.0013(11)	0.0011(12)	-0.0037(9)
O3	0.023(2)	0.0150(19)	0.021(2)	0.0087(19)	0.003(2)	0.0033(16)
O3'	0.027(2)	0.021(2)	0.024(3)	0.004(2)	0.008(2)	0.0062(18)
S1	0.0183(3)	0.0144(3)	0.0286(4)	-0.0051(4)	-0.0005(4)	-0.0009(3)
The form of the anisotropic displacement parameter is:						
$exp[-2\pi(a^{*2}U_{11}h^{2}+b^{*2}U_{22}k^{2}+c^{*2}U_{33}l^{2}+2b^{*}c^{*}U_{23}kl+2a^{*}c^{*}U_{13}hl+2a^{*}b^{*}U_{12}hk)]$						

Table 4. Refined Thermal Parameters (U's) for Compound 1399

Table 5. Bond Distances in Compound 1399, Å

C1-C6	1.385(4)	C1-C2	1.391(5)	C1-C7	1.508(4)
C2-C3	1.378(4)	C3-C4	1.384(4)	C4-C5	1.376(4)
C5-C6	1.388(4)	C7-S1	1.781(3)	C8-C13	1.390(4)
C8-C9	1.397(4)	C8-S1	1.763(3)	C9-O3	1.301(5)
C9-C10	1.389(4)	C10-C11	1.376(4)	C11-C12	1.379(4)
C12-C13	1.394(4)	C13-O3'	1.311(6)	01-S1	1.450(3)
02-S1	1.446(2)				

Table 6. Bond Angles in Compound 1399, °

C6-C1-C2	119.2(3)	C6-C1-C7	120.0(3)	C2-C1-C7	120.8(3)
C3-C2-C1	120.2(3)	C2-C3-C4	120.3(3)	C5-C4-C3	120.0(3)
C4-C5-C6	119.9(3)	C1-C6-C5	120.4(3)	C1-C7-S1	113.8(2)
C13-C8-C9	121.0(3)	C13-C8-S1	119.5(2)	C9-C8-S1	119.5(2)
O3-C9-C10	116.7(3)	O3-C9-C8	124.4(3)	C10-C9-C8	118.9(3)
C11-C10-C9	120.0(3)	C10-C11-C12	121.3(3)	C11-C12-C13	119.7(3)
O3'-C13-C8	123.4(3)	O3'-C13-C12	117.5(3)	C8-C13-C12	119.0(3)
02-S1-O1	117.75(15)	O2-S1-C8	108.98(13)	O1-S1-C8	108.16(15)
O2-S1-C7	107.22(15)	01-S1-C7	108.04(15)	C8-S1-C7	106.09(14)

ⁱBruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱBruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

ⁱⁱⁱSheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.

^{iv}Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^vSheldrick, G.M. (2008) Acta Cryst. A64,112-122.

^{vii}"ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.