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Appendix: Proofs

The following technical conditions are needed.

(A1) The time points t1, t2, . . . , tT are a random sample from a probability density f and t is
a continuous point of f in the interior of the support of f .

(A2) The function βr(t) is (p+ 1)-times continuously differentiable for some p.

(A3) The kernel function K is a bounded symmetric probability density function with a
bounded support.

(A4) The covariates Xi(tj), i = 1, . . . , n are independently and identically distributed as X1(tj)
with E{X1(tj)X1(tj)

T} positive definite for j = 1, . . . , T .

(A5) h→ 0 and Th→∞ as T →∞.

(A6) min{nj} → ∞ as n, T →∞.

(A7) The covariates Xi(tj) satisfy condition (A4) and they are time-invariant. That is,
Xi(tj) = Xi(t1) for all j = 1, . . . , T .

(A8) All the true coefficient functions are time-invariant. That is, βr(t) = βr for all r = 1, . . . , d
and t ∈ [0, D].

We define further notations. Let Cj = {1, tj − t, . . . , (tj − t)p}T, j = 1, 2, . . . , T and
Kh(t) = K(t/h)/h be a kernel function with a bandwidth h. Let C = (C1, C2, . . . , CT )
and W = diag(W1, . . . ,WT ) with Wj = Kh(tj − t). Then the weights in (3) are defined
as ωq,p+1(tj, t) = q!eTq+1,p+1(C

TWC)−1CjWj, j = 1, 2, . . . , T , where eq+1,p+1 denotes a (p + 1)-
dimensional unit vector with one at its (q+1)th entry, and zero elsewhere. More specifically, the
local linear weights are given by ω0,2(tj, t), j = 1, 2, . . . , T with q = 0 and p = 1. Let Kq,p+1 be
the equivalent kernel of ωq,p+1, which is defined by Kq,p+1(t) = eTq+1,p+1S

−1(1, t, . . . , tp)TK(t),
where S = (sij), i, j = 0, 1, . . . , p, and sij =

∫
K(u)ui+jdu. Recall that K(t) is the original

kernel function. Furthermore, define Bp+1(K) =
∫
K(u)up+1du, and V (K) =

∫
K2(u)du.

Proof of Lemma 1: For tj ∈ A, let βj = β(tj) and bj = b(tj). Let l(θ) be the log-likelihood
defined for the logistic regression at tj. Refer to McCullagh and Nelder (1989) for details.
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Here θ is the parameter vector of interest in the logistic model. Therefore, the true value of θ
is βj, and it is estimated by bj. The first part of the Lemma on asymptotic bias follows from
equation (4.18) of McCullagh and Nelder (1989). Refer to Ferguson (1996) (page 119) for part

of the deduction below. First, expand l̇(θ) at βj as l̇(θ) = l̇(βj)+
∫ 1

0
l̈{βj+λ(θ−βj)}dλ(θ−βj).

Now let θ = bj. Because bj is the MLE of βj, it is a strongly consistent sequence satisfying

l̇(bj) = 0. Hence l̇(βj) = njBnj(bj − βj), where Bnj = −
∫ 1

0
(1/nj)l̈{βj + λ(bj − βj)}dλ. Recall

the Fisher information for this logistic regression is Ij = X̃T
j WjX̃j and note that l̇(βj)−Ij(bj−

βj)− (njBnj − Ij)(bj − βj) = 0. This implies that

bj−βj = I−1
j {l̇(βj)−(njBnj−Ij)(bj−βj)} =

√
njI

−1
j

{
1
√
nj
l̇(βj)− (Bnj −

1

nj
Ij)
√
nj(bj − βj)

}
.

(A.1)

Note that under condition (A4), Ij = X̃jW
T
j X̃j =

∑nj
i=1 πij(1 − πij)Xi(tj)

TXi(tj) ∼ O(nj).
Conditional on D, and under assumptions (N1) and (N2), the normed bj is asymptotically

normal, i.e. I
1/2
j (bj − βj)

d−→ N(0, I) as nj → ∞. We refer readers to Gourieroux and
Monfort (1981), where the result is shown in the proof of Proposition 4. Define the first term
in equation (A.1) as Anj . By condition (A4) and the Strong Law of Large Numbers (SLLN),

we have Anj = l̇(βj)/
√
nj = Op(1). Also E(Anj) = E{l̇(βj)}/

√
nj = 0. Define the second term

in equation (A.1) as Cnj . From the part (3) of the proof for Theorem (4) given below, we have

Cnj |D
d−→ 0, or Cnj = op(1). Then bj − βj =

√
njI

−1
j

(
Anj − Cnj

)
, and

Cov(bj|D) = E[{bj − E(bj)}{bj − E(bj)}T]

= E {(bj − βj)− E(bj − βj)} {(bj − βj)− E(bj − βj)}T

= E
{

(bj − βj)(bj − βj)T
}
− E(bj − βj)E(bj − βj)T

= E
{
njI

−1
j (Anj − Cnj)(Anj − Cnj)TI−1

j

}
+ o

(
1

nj

)
o

(
1

nj

)T

= njI
−1
j E(AnjA

T
nj

)I−1
j − njI−1

j E(AnjC
T
nj

+ CnjA
T
nj

)I−1
j

+njI
−1
j E(CnjC

T
nj

)I−1
j + o

(
1

n2
j

)
.

This, combined with Anj = Op(1), Cnj = op(1) and the following result from McCullagh and

Nelder (1989), Anj = l̇(βj)/
√
nj = X̃T

j {Ỹj − E(Ỹj)}/
√
nj, implies that

Cov(bj|D) = I−1
j X̃T

j E[{Ỹj − E(Ỹj)}{Ỹj − E(Ỹj)}T]X̃jI
−1
j {1 + o(1)}

= I−1
j X̃T

j WjX̃jI
−1
j {1 + o(1)} = I−1

j {1 + o(1)},
and Cov(bj, bk|D) = E[{(bj − βj)− E(bj − βj)}{(bk − βk)− E(bk − βk)}T]

= E(bj − βj)(bk − βk)T − E(bj − βj)E(bk − βk)T

= E
{√

nj
√
nkI

−1
j (Anj − Cnj)(Ank − Cnk)TI−1

k

}
− o(n−1

j )o(n−1
k )

=
√
nj
√
nkI

−1
j E(AnjA

T
nk

)I−1
k −

√
nj
√
nkI

−1
j E(AnjC

T
nk

+ CnjA
T
nk

)I−1
k
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+
√
nj
√
nkI

−1
j E(CnjC

T
nk

)I−1
k − o{(njnk)

−1}

= I−1
j X̃T

j E
[
{Ỹj − E(Ỹj)}{Ỹk − E(Ỹj)}T

]
X̃kI

−1
k −

√
nj
√
nkI

−1
j E{Op(1)op(1)}I−1

k

+
√
nj
√
nkI

−1
j E{op(1)op(1)}I−1

k − o{(njnk)
−1}

= I−1
j X̃T

j W
1
2
j MjkW

1
2
k X̃kI

−1
k γ(tj, tk) + o{(njnk)−1} = I−1

j IjkI
−1
k γ(tj, tk){1 + o(1)}.

This completes the proof.

Proof of Theorem 1: Suppose the conditions of the theorem hold. Then

E
{
β̂(q)
r (t)|D

}
=

T∑
j=1

ωq,p+1(tj, t)E {br(tj)} =
T∑
j=1

ωq,p+1(tj, t) {βr(tj) +O(1/nj)}

=
T∑
j=1

ωq,p+1(tj, t)βr(tj) +

{
T∑
j=1

ωq,p+1(tj, t)

}
O(1/n∧)

=
T∑
j=1

ωq,p+1(tj, t)

[
p+1∑
k=0

β(k)
r (t)

(tj − t)k

k!
+ o

{
(tj − t)p+1

}]
+O(1/n∧)

=

p+1∑
k=0

{
β

(k)
r (t)

k!

T∑
j=1

ωq,p+1(tj, t)(tj − t)k
}

+
T∑
j=1

ωq,p+1(tj, t)o
{

(tj − t)p+1
}

+O(1/n∧)

=β(q)
r (t) +

{
1

(p+ 1)!
β(p+1)
r (t) + op(1)

} T∑
j=1

ωq,p+1(tj, t)(tj − t)p+1 +O(1/n∧)

=β(q)
r (t) +

q!β
(p+1)
r (t)hp−q+1

(p+ 1)!
Bp+1(Kq,p+1) {1 + op(1)}+O(1/n∧),

where we used Lemma 2 of Fan and Zhang (2000) in the third and the last two equalities. The
conclusion of the Theorem follows immediately.

Proof of Theorem 4: Under mild conditions, the MLE bj of βj exists and is strongly
consistent. We will show the asymptotic normality of the vector (b− β) as n∧ →∞. Without
loss of generality, let’s consider a simple case: nj = n, j = 1, . . . , T . From the proof of Lemma
1, we have bj − βj =

√
njI

−1
j

(
Anj − Cnj

)
. Then we can write the vector (b− β) as


b1−β1

b2−β2
...

bT−βT

=Diag
(√

nI−1
1 , . . . ,

√
nI−1

T

)

An1−Cn1

An2−Cn2

...
AnT−CnT

=B(n)(A(n)−C(n)),

where A(n) = (An1 , . . . , AnT )T, B(n) = Diag
(√

nI−1
1 , . . . ,

√
nI−1

T

)
and C(n) = (Cn1 , . . . , CnT )T.

In the following, we would like to prove that, conditional on D,
√
n(b−β) =

√
nB(n)(A(n)−C(n))

is asymptotically normal when n→∞ and T is fixed.
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1. From the notations above, we have
√
nB(n) = n Diag

(
I−1
1 , . . . , I−1

T

)
and its inverse

(
√
nB(n))

−1 = Diag {I1, . . . , IT} /n. Under the condition (A4) and by SLLN,

1

n
Ij =

1

n
X̃T
j WjX̃j =

1

n

n∑
i=1

πij(1− πij)Xi(tj)
TXi(tj)

a.s.−→ E
{
π1j(1− π1j)X1(tj)

TX1(tj)
}

= I0(βj).

Therefore, with probability one, n−1Ij|D → I0(βj). And with probability one,
√
nB(n)|D →

B̄, a constant matrix.

2.

A(n) =


An1

An2

...
AnT

=
1√
n


l̇(β1)

l̇(β2)
...

l̇(βT )

=
1√
n

n∑
i=1


Xi(t1){Yi(t1)−πi1}
Xi(t2){Yi(t2)−πi2}

...
Xi(tT ){Yi(tT )−πiT}

=
n∑
i=1

Zi.

To prove that A(n)|D
d−→ N(0,Σ), we need to show that the following Lindeberg con-

ditions hold. Conditional on D,
∑n

i=1 E‖Zi‖21{‖Zi‖ > ε} → 0, every ε > 0, and∑n
i=1 Cov(Zi)→ Σ.

Proof: ‖Zi‖ = [
∑T

j=1 ‖Xi(tj)‖2{Yi(tj)−πij}2]1/2/
√
n. Conditional on D, and for all ε > 0,

n∑
i=1

E‖Zi‖21{‖Zi‖ > ε} 6
n∑
i=1

E
‖Zi‖2+δ

εδ
=

1

n1+ δ
2 εδ

n∑
i=1

E

[
T∑
j=1

‖Xi(tj)‖2{Yi(tj)− πij}2
] 2+δ

2

.

Now let h{Xi(t1), . . . , Xi(tT )} = E[
∑T

j=1 ‖Xi(tj)‖2{Yi(tj)−πij}2|D](2+δ)/2. Since |Yi(tj)−
πij| ≤ 1, and by the assumption (N1),

Eh{Xi(t1), . . . , Xi(tT )} ≤ E

(
T∑
j=1

‖Xi(tj)‖2
) 2+δ

2

≤
(
T × d×M2

0

) 2+δ
2 <∞.

By the condition (A4) and SLLN, [
∑n

i=1 h{Xi(t1), . . . , Xi(tT )}]/n a.s.−→ Eh{Xi(t1), . . . , Xi(tT )}.
That is, with probability one and conditional on D,

1

n

n∑
i=1

h{Xi(t1), . . . , Xi(tT )} → Eh{Xi(t1), . . . , Xi(tT )},

n∑
i=1

E‖Zi‖21{‖Zi‖ > ε} =
1

n
δ
2 εδ
∗ 1

n

n∑
i=1

h{Xi(t1), . . . , Xi(tT )} → 0,

and CovZi =
1

n
Cov


Xi(t1){Yi(t1)− πi1}
Xi(t2){Yi(t2)− πi2}

...
Xi(tT )(Yi(tT )− πiT}

 =
1

n
Σi.
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By the condition (A4) and SLLN,
∑n

i=1 CovZi = (
∑n

i=1 Σi)/n
a.s.−→ Σ. With probability

one and conditional on D,
∑n

i=1 CovZi → Σ. It is obvious that E(Zi|D) = 0. Therefore,
the multivariate Lindeberg-Feller Central Limit Theorem from Van der Vaart (1989)
applies. We have shown that A(n)|D is asymptotically normal with distribution N(0,Σ).

3. In this part, we want to prove C(n)|D
d−→ 0, where

C(n) =


(Bn1 − I1/n1)

√
n1(b1 − β1)

(Bn2 − I2/n2)
√
n2(b2 − β2)

...
(BnT − IT/nT )

√
nT (bT − βT )

 .
Let Cnj = (Bnj − Ij/nj)

√
nj(bj − βj).

(a) By Ferguson (1996), Bnj
a.s.−→ I0(βj). This is also the same matrix as in part 1 of

this proof: I0(βj) = E
{
π1j(1− π1j)X1(tj)

TX1(tj)
}

. Therefore, Bnj
a.s.−→ I0(βj) and

Ij/n
a.s.−→ I0(βj) together imply that Bnj − Ij/n

a.s.−→ 0 and Bnj − n−1Ij|D
a.s.−→ 0.

(b)
√
nj(bj − βj) =

√
njI

−1/2
j I

1/2
j (bj − βj). We have I

1/2
j (bj − βj)|D

d−→ N(0, I)
from the proof of Lemma 1. Also we have n−1Ij|D → I0(βj) from (a). Therefore,
√
nj(bj − βj)|D

d−→ N{0, I0(βj)}.

Combined the results above, we have C(n)|D
d−→ 0.

Therefore A(n)−C(n)|D
d−→ N(0,Σ). Conditional on D,

√
n(b−β) =

√
nB(n) (A(n)−C(n))

d−→
B̄ N(0,Σ) as n→∞. This means b is asymptotic multivariate normal as n→∞. Note that
the smoothing coefficients {ωq,p+1(tj, t), j = 1, 2, . . . , T} only depend on t, {t1, . . . , tT} and
the specification of kernel function K and bandwidth h. When T and {t1, . . . , tT} are fixed,
they don’t change as n → ∞. Therefore, our linear smoother (linear combination of the raw
estimates b1r, . . . , bTr for the rth component of βt) is asymptotically normal. Explicitly,

√
n
{
β̂

(q)
r (t)− ωT (t)P (r)β

}
= ωT (t)P (r)

√
n(b− β)

d−→ ωT (t)P (r)B̄ N(0,Σ),

as n→∞. This completes the proof.

Proof of Proposition 1: To prove the proposition, we first need to study the order of VT .
Define I0(tj, tk) = E{

√
π1j(1− π1j)

√
π1k(1− π1k)X1(tj)

TX1(tk)}, where the expected value
is taken with respected to the predictors Xi(tj)

′s. More specifically, I0(tj, tj) = E{π1j(1 −
π1j)X1(tj)

TX1(tj)} is the Fisher information matrix I0(βj) defined in (7). Also, I0(tj, tk) =
I0(tk, tj). With these notations, the matrix Σ can be written as

Σ =


I0(β1) I0(t1, t2) · · · · · ·
I0(t2, t1) I0(β2) · · · · · ·

...
...

. . .
...

I0(tT , t1) I0(tT , t2) · · · I0(βT )

 .
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Thus

B̄ΣB̄T =


I0(β1)

−1 I0(β1)
−1I0(t1, t2)I0(β2)

−1 · · · · · ·
I0(β2)

−1I0(t2, t1)I0(β1)
−1 I0(β2)

−1 · · · ...
...

...
. . .

...
I0(βT )−1I0(tT , t1)I0(β1)

−1 I0(βT )−1I0(tT , t2)I0(β2)
−1 · · · I0(βT )

 ,

P (r)B̄ΣB̄TP (r)T =


{I0(β1)

−1}(rr) · · · · · · · · ·
{I0(β2)

−1I0(t2, t1)I0(β1)
−1}(rr) {I0(β2)

−1}(rr) · · · ...
...

...
. . .

...
{I0(βT )−1I0(tT , t1)I0(β1)

−1}(rr) · · · · · · {I0(βT )}(rr)

 .
Therefore VT = ωT (t)P (r)B̄ΣB̄TP (r)TωT (t)T =

∑
j 6=k ωq,p+1(tj, t)ωq,p+1(tk, t){I0(βj)−1I0(tj, tk)

I0(βk)
−1}(rr) +

∑T
j=1 ω

2
q,p+1(tj, t){I0(βj)−1}(rr) = VT (1) + VT (2). Let Φ(tj, tk) = ωq,p+1(tj, t)

ωq,p+1(tk, t){I0(βj)−1I0(tj, tk)I0(βk)
−1}(rr). Recall that t1, t2, . . . , tT are i.i.d. from a probabil-

ity density f under condition (A1). We hereby assume the following regularity conditions:
E{I0(βj)−1}(rr) < ∞, θ = EΦ(tj, tk) < ∞ and ζ = E{Φ(tj, tk)}2 < ∞. Notice that Φ(tj, tk)
is symmetric in its arguments (tj, tk). In the notation of Hoeffding (1948), VT (1) is propor-
tional to a U-Statistic satisfying all conditions in Theorem 7.1. By this theorem, we have√
T [VT (1)/{T (T − 1)} − θ]

d−→ N(0, 4ζ). Thus VT (1) = Op(T
2) since θ > 0 and ζ > 0 in

general. As a direct result from SLLN, VT (2) =
∑T

j=1 ω
2
q,p+1(tj, t){I0(tj, tj)−1}(rr) = Op(T ).

Therefore, VT = VT (1) +VT (2) = Op(T
2). Furthermore, from the proof of Theorem 1, we have∑T

j=1 ωq,p+1(tj, t)βr(tj) = β
(q)
r (t)+Op(h

p−q+1)+Op(1/n). Or equivalently, ωT (t)P (r)β−β(q)
r (t) =

Op(h
p−q+1)+Op(1/n). Therefore, we have V

−1/2
T

√
n{ωT (t)P (r)β−β(q)

r (t)} = Op(
√
nhp−q+1/T )+

Op{1/(
√
nT )}. This completes the proof.
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