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Section A: Proofs of Technical Results

We assume throughout that for each k, nkṼ k →p Σ(k) and nk/n → νk as n → ∞. Let νmin =

min16k6K{νk} and νmax = max16k6K{νk}. Assume that all the nonzero β0
jk’s are bounded by

some constants r1 and r2.

Proof for the equivalence of equations (2.1) and (2.5)

By the Cauchy-Schwartz inequality,
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where the equality holds if and only if γj = (1/λ1)
1

2

(

∑

k∈Sj
wjk|βjk|

)
1

2

for all j. Let λ1 = (λ/2)2.

Then, the proof is completed.

Proof for the consistency of the proposed MIC criterion

Let M denote an arbitrary model, Mλ denote the model under λ, and MT denote the true

model. We say that M is an under-fitted model if M 6⊃ MT and an over-fitted model if M ⊃ MT

and M 6= MT . Define

β̂k,M = argmin{βk∈Rp:βk,j=0,∀j 6∈M}(βk − β̃k)
T(βk − β̃k). (E.1)

Generally, β̂k,M 6= β̃k because of the constraint that βk,j = 0, ∀j 6∈ M.

Suppose that λ0 yields the true model, λL yields an under-fitted model, and λH yields an

over-fitted model. We wish to prove that, with high probability,MICλL
> MICλ0

andMICλH
>

MICλ0
. We first prove the former.

Because both β̂k,λ0
and β̃k are consistent for β0

k and qλ0,k log(nk)/nk → 0, it is easy to verify
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that MICλ0
= op(1). For λL,

MICλL
=

K
∑

k=1

(β̂k,λL
− β̃k)

T(β̂k,λL
− β̃k) +

K
∑

k=1

qλL,k × log(nk)/nk
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>

K
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K
∑
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T(β̂k,M − β̃k)

→
K
∑
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(β0
k,M − β0

k)
T(β0

k,M − β0
k) > 0.

The first inequality holds trivially. The second inequality follows from the definition of β̂k,MλL
;

see (E.1). The third inequality holds trivially. The remaining part holds because β̂k,M → β0
k,M,

β̃k → β0
k, and M represents an underfitted model.

Next, we prove that MICλH
> MICλ0

. Note that

n(MICλH
−MICλ0

) > ν−1
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max
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log(nk)
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K
∑

k=1

nk(β̂k,M − β̃k)
T(β̂k,M − β̃k)−
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The second inequality follows from the definition of β̂k,MλH
. The third inequality holds because

the considered model is an overfitted model. In (E.2), the first term is Op(1) because for any

M ⊃ MT , β̂k,M is
√
nk consistent; the second term is also Op(1); and the third term goes to

infinity. Hence, MICλH
> MICλ0

with probability tending to 1.

Theoretical properties of SMA

We focus on the heterogeneous structure because it is more general than the homogeneous

structure. Without loss of generality, we assume that the first p0 covariates are active or partly

active, i.e., I = {1, . . . , p0} and U = {p0 + 1, . . . , p}. For j = 1, . . . , p0, define Mj = {k : β0
jk 6=

0, k ∈ Sj} and Mc
j = Sj\Mj . Also, define N = {(j, k) : β0

jk = 0, j = 1, . . . , p; k ∈ Sj}. For the

penalty weights, define t1n = max{wjk : 1 6 j 6 p0, k ∈ Mj}, t2n = min{wjk : 1 6 j 6 p0, k ∈

Mj}, g1n = max16j6p,k∈Sj
wjk, and g2n = min{wjk : (j, k) ∈ N}. Let Xk = (x1k, . . . ,xnkk)

T,

n =
∑K

k=1 nk, and β0 be the vector stacked from β0
1, . . . ,β

0
K . For k = 1, . . . ,K, define Ak = {j :

β0
jk 6= 0} and Ac

k = {j : β0
jk = 0}; let Dk = {r = 1, . . . , p : k ∈ Sr}, and assume that Ak ⊆ Dk.

For k = 1, . . . ,K, let Σ
(k)
k be the limiting covariance matrix of

√
nkβ̃k. Let β

0
Ak

be the subvector

of β0
k corresponding to Ak, and let Σ

(k)
Ak

be the submatrix of Σ
(k)
k corresponding to Ak. Let

Σ
(k)
AkAc

k
denote the submatrix of Σ(k), with the row indices corresponding to Ak and the column

indices corresponding to Ac
k. Write Σ

(k)
Ac

k
Ak

=(Σ
(k)
AkAc

k
)T. Other subvectors and submatrices are to

be understood in the same fashion. Let IAk be the oracle Fisher information matrix, i.e., the one

when Ak is known beforehand. Let A(k) = (IAk)−1.
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We first consider p to be fixed. Let an = t1nt
− 1

2

2n and bn = t21nt
− 3

2

2n . We show that if λn−
1

2 an =

Op(1), λn
−1bn = op(1), and λn

−1 = op(1), then β̂ is
√
n consistent. In addition, if λn−

1

2 g2ng
− 1

2

1n →

∞, then P (β̂jk,λ = 0) → 1 for any (j, k) ∈ N , where β̂jk,λ denotes the estimator of β0
jk for a

given λ. Then, we show the asymptotic normality of the SMA estimator.

In the sequel, we consider

Qn(β1, ...,βK) ≡
K
∑

k=1

(β̃k − βk)
TR−1

k (β̃k − βk) + λ

p
∑

j=1





∑

k∈Sj

wjk|βjk|





1

2

,

where Rk is an arbitrary covariance matrix.

Proof of the consistency for β̂ when p is fixed

Following Fan and Li (2001) and by the definition of Qn,

Qn(β
0 + n−

1

2u)−Qn(β
0)

>

K
∑

k=1

uk
T(nRk)

−1uk +
K
∑

k=1

2uk
T(nRk)

−1[
√
n(β0

k − β̃k)]

+λ

p0
∑

j=1















∑

k∈Mj

wjk|β0
jk + n−

1

2ujk|





1

2

−





∑

k∈Mj

wjk|β0
jk|





1

2











≡ A1 +A2 +B,

where u = (uT
1 , . . . ,u

T
K)T. Assume that the eigenvalues of (nkRk)

−1 are bounded by b and

b′. Then, A1 > 0.5
∑K

k=1 νku
T
k (nkRk)

−1uk > 0.5b
∑K

k=1 νk‖uk‖2 > 0.5bνminC
2 and |A2| 6

2
∑K

k=1 ‖uk‖ · ‖(nRk)
−1[

√
n(β0

k − β̃k)]‖ = Op(1)C. Therefore, A1 dominates A2. The remaining

proof regarding B follows from Wang et al. (2009) and Zhou and Zhu (2010) and is omitted.

Proof of the selection consistency when p is fixed

For k = 1, . . . ,K, let β̂k,λ = (β̂jk,λ)
T for j ∈ Dk. Write β̂λ = (β̂

T

1,λ, . . . , β̂
T

K,λ)
T. For any

(j, k) ∈ N , if β̂jk,λ 6= 0, then it follows from the KarushKuhnTucker (KKT) conditions that

0 = n−
1

2

∂Qn

∂βjk

∣

∣

∣

β̂λ

= 2(n−1R−1
k )j.

√
n(β̂k,λ − β̃k) + n−

1

2λ
1

2







∑

k′∈Sj

wjk′ |β̂jk′,λ|







− 1

2

wjksgn(β̂jk,λ),
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where (R−1
k )j. represents the jth row of R−1

k . It is straightforward to show that the first term

on the right side of the above equation is Op(1). The remaining proof regarding the penalty part

follows from Wang et al. (2009) and Zhou and Zhu (2010).

Proof of the asymptotic normality when p is fixed

Assume that λn−
1

2 an = op(1), λn
−1bn = op(1), n

− 1

2λg2ng
− 1

2

1n → ∞, and λn−1 = op(1). Let

mk be the cardinality of Ak. By the KKT conditions, ∂Qn(β)
∂βA

∣

∣

∣

β=β̂
= 0, where A =

⋃K
k=1 Ak.

This implies that, for k = 1, ...,K,

0 = {(nkRk)
−1}AkAk

(β̂Ak
− β̃Ak

)− {(nkRk)
−1}AkAc

k
β̃Ac

k
+ n−1

k ek, (E.3)

where ek is a vector of lengthmk, with its sth component being 1
2λ
(

∑

j∈Ak
wsk|β̂sj |

)− 1

2

wsksgn(β̂sk).

Since λn−
1

2 an = op(1), each component of
√
nk(n

−1
k ek) is bounded by op(1).

Define F̃
(k)

= (nkRk)
−1, F̃

(k)

AkAk
= {(nkRk)

−1}AkAk
, and F̃

(k)

AkAc
k
= {(nkRk)

−1}AkAc
k
. Then,

(E.3) implies that
√
nk(β̂Ak

− β0
Ak

) =
√
nk(β̃Ak

− β0
Ak

) + (F̃
(k)

AkAk
)−1F̃

(k)

AkAc
k
(
√
nkβ̃Ac

k
) + op(1).

Note that Cov(
√
nkβ̃Ak

) →p Σ
(k)
Ak
,Cov(

√
nkβ̃Ac

k
) →p Σ

(k)
Ac

k
Ac

k
, and Cov(

√
nkβ̃Ak

,
√
nβ̃Ac

k
) →p

Σ
(k)
AkAc

k
. Therefore, we have the following results:

(1) For an arbitrary positive definite matrix Rk,

√
nk(β̂Ak

− β0
Ak

) → N(0,Gk),

where Gk = Σ
(k)
Ak

+ 2(F̃
(k)

AkAk
)−1F̃

(k)

AkAc
k
Σ

(k)
Ac

k
Ak

+ (F̃
(k)

AkAk
)−1F̃

(k)

AkAc
k
Σ

(k)
Ac

k
F̃

(k)

Ac
k
Ak

(F̃
(k)

AkAk
)−1.

(2) IfRk = Ṽ k, then because nkṼ k → Σ(k), we have (F̃
(k)

AkAk
)−1F̃

(k)

AkAc
k
→p −Σ

(k)
AkAc

k
(Σ

(k)
Ac

k
)−1.

Consequently, the asymptotic covariance matrix can be simplified toΣ
(k)
Ak

−Σ
(k)
AkAc

k
(Σ

(k)
Ac

k
)−1Σ

(k)
Ac

k
Ak

,

which can be shown to be equal to A(k), the oracle covariance matrix.

Proof of the consistency for β̂ when p is diverging

Now, we consider the situation in which the dimension pn (indexed by n to emphasize its growth

with n) tends to infinity (under the condition that p2n/n→ 0). By the definition of β̂k, it can be
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shown that

K
∑

k=1

nk

{

(β̂k − β0
k)

T(nkRk)
−1(β̂k − β0

k)− 2(β̂k − β0
k)

T(nkRk)
−1(β̃k − β0

k)
}

6 λ

pn
∑

j=1





∑

k∈Sj

wjk|β0
jk|





1

2

.

Decompose (nkRk)
−1 as QT

kQk and define Sk = Qk(β̂k − β0
k) and T k = Qk(β̃k − β0

k). Also,

define ψn = λ
∑pn

j=1

(

∑

k∈Sj
wjk|β0

jk|
)

1

2

. Then,

2
K
∑

k=1

nk
n

(

ST
kSk − 2ST

k T k

)

+
K
∑

k=1

4
nk
n
TT

k T k 6

K
∑

k=1

4
nk
n
TT

k T k +
2

n
ψn. (E.4)

The left side of (E.4) equals
∑K

k=1 nk/n
{

||Sk||2 + ||Sk − 2T k||2
}

>
∑K

k=1 nk/n||Sk||2. Since
∑K

k=1 nk/n||Sk||2 > bνmin

∑K
k=1 ||β̂k−β0

k||2 and
∑K

k=1 4nk/nT
T
k T k 6 4b′νmax

∑K
k=1 ||β̃k−β0

k||2,

it follows that bνmin

∑K
k=1 ||β̂k−β0

k||2 6 4b′νmax

∑K
k=1 ||β̃k−β0

k||2+2/nψn. For the M-estimators

of exponential families, if p2n/n→ 0, then ||β̃k − β0
k||2 = Op(pn/n) (Portnoy, 1988). Thus,

||β̂ − β0||2 =

K
∑

k=1

||β̂k − β0
k||2 = Op

(

4Kpnb
′νmax

nbνmin
+

2ψn

nbνmin

)

,

which can be further shown to be

Op

(

{

pn + λ
√
t1n

n

}1/2
)

.

Consequently, if λ
√
t1n = Op(pn), then β̂ is root-(n/pn) consistent.

Next, we prove that, even if pn grows large, we can still estimate the zero coefficients exactly

at zero.

Proof of the selection consistency when p is diverging

Assume that λ
√
t1n = Op(pn), λ/

√
n → 0, and λ(npn)

−1/2g2ng
− 1

2

1n → ∞. We wish to prove that

P (β̂jk,λ = 0) → 1 for any (j, k) ∈ N .
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For any (j, k) ∈ N , if β̂jk,λ 6= 0, then by the KKT conditions,

0 =
∂Qn(β)

∂βjk

∣

∣

∣

β=β̂λ

= 2nk
[

(nkRk)
−1
]

j. (β̂k,λ − β̃k) + λ
1

2







∑

k′∈Sj

wjk′ |β̂jk′,λ|







− 1

2

wjksgn(β̂jk,λ)

≡ E1 + E2,

where [H]j. represents the jth row of H. Because ||β̂k,λ − β0
k|| = Op(

√

pn/n) and ||β̃k − β0
k|| =

Op(
√

pn/n), we have ||β̂k,λ− β̃k|| = Op(
√

pn/n). Define T = (nkRk)
−1. Because the eigenvalues

of T are bounded,

|E1| 6 2nOp(
√

pn/n)

{

pn
∑

i=1

T 2
ij

}1/2

= Op(
√
npn).

The remaining proof regarding E2 follows from Wang et al. (2009) and Zhou and Zhu (2010).

Finally, we investigate the asymptotic normality of the SMA estimator, which indicates that

the SMA (with the full estimated covariance matrix) has the oracle property.

Proof of asymptotic normality when p is diverging

Assume that λ
√
t1n = Op(pn), λ/

√
n → 0, λ(npn)

−1/2g2ng
− 1

2

1n → ∞, and p2n/n → 0. Assume

also that Rk = Ṽ k. Let γn be a vector of length p0 with norm 1, and define s2n,k = γT
nA

(k)γn

(k = 1, . . . ,K). We wish to prove that
√
nks

−1
n,kγ

T
n (β̂Ak

− β0
Ak

) → N(0, 1).

The treatment of the penalty part in this proof is similar to Zhou and Zhu (2010). Because we

have shown that, with an arbitrarily large probability, the estimator of {β0
jk : (j, k) ∈ N} must

be 0, we can decompose β̂ into {β̂A,0}. By the KKT conditions, β̂ should satisfy

∂Qn(β)

∂βAk

∣

∣

∣

β=β̂
= 0.

We first consider linear models. By the definition of Qn and the fact that Ṽ
−1

k = σ̂−2
k XT

kXk,
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where σ̂2
k is the estimated error variance,

Qn(β) =

K
∑

k=1

[(βAk
− β̃Ak

)T(XT
Ak

XAk
)(βAk

− β̃Ak
) + 2(βAk

− β̃Ak
)T(XT

Ak
XAc

k
)(βAc

k
− β̃Ac

k
)

+(βAc
k
− β̃Ac

k
)T(XT

Ac
k
XAc

k
)(βAc

k
− β̃Ac

k
)]/σ̂2

k + λ

p
∑

j=1





∑

k∈Sj

wjk|βjk|





1

2

.

Define yk = (y1k, . . . , ynkk)
T. Then, for each k = 1, . . . ,K, we have

0 =
σ̂2
k

2

∂Qn(β)

∂βAk

∣

∣

∣

(β̂Ak
,0)

= (XT
Ak

XAk
)(β̂Ak

− β̃Ak
) + (XT

Ak
XAc

k
)(β̂Ac

k
− β̃Ac

k
) + êk,

where êk is a vector with its sth component being λσ̂2
k{
∑

l∈Ss
wsl|β̂sl|}−

1

2wsksgn(β̂sk)/4. It can

be shown that the last equation is equivalent to

0 = (XT
Ak

XAk
)(β̂Ak

− β0
Ak

) +XT
Ak

XAc
k
β̂Ac

k
−XT

Ak
εk + êk,

where εk = (ε1k, . . . , εnkk) is the random error. Because P (β̂Ac
k
= 0) → 1 (by the selection

consistency), we have

(XT
Ak

XAk
)(β̂Ak

− β0
Ak

) =

nk
∑

i=1

xiAk
εik − êk,

where xiAk
represents the subvector corresponding to the Ak part of xik. Thus,

√
nkγ

T
n (β̂Ak

− β0
Ak

) =
1√
nk

nk
∑

i=1

εikγ
T
n

(

XT
Ak

XAk

nk

)−1

xiAk
− 1√

nk
γT
n

(

XT
Ak

XAk

nk

)−1

êk.

Note that

∣

∣

∣

∣

∣

∣

1√
nk

γT
n

(

XT
Ak

XAk

nk

)−1

êk

∣

∣

∣

∣

∣

∣

6
1√
nk

||γn|| × b−1 × ||êk|| = Op(n
−1/2
k λ),

where b is the lower bound of the eigenvalues of n−1
k X ′

kXk(k = 1, . . . ,K). The equality holds

because ||γn|| = 1 and ||êk|| = Op(λ). Since n
−1/2
k λ = op(1), we have

1√
nk

γT
n

(

XT
Ak

XAk

nk

)−1

êk = op(1).
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Therefore,

√
nks

−1
n,kγ

T
n (β̂Ak

− β0
Ak

) =
s−1
n,k√
nk

nk
∑

i=1

εikγ
T
n

(

XT
Ak

XAk

nk

)−1

xiAk
+ op(1).

This equation is equivalent to equation (14) in the proof of Theorem 2 in Huang et al. (2008).

Following their arguments, we can show that
√
nks

−1
n,kγ

T(β̂Ak
−β0

Ak
) → N(0, 1). For generalized

linear models, we can use Theorem 3.1 of Portnoy (1988) to obtain the asymptotic distribution

of β̃k and then show a similar asymptotic normality of β̂Ak
.
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Section B: Results of Additional Simulation Studies

B.1 Performance of the SMA under the heterogeneous structure

Five studies were simulated under the heterogeneous structure, as shown in the lower panel of

Figure 1 in the main text. The effect sizes of the covariates are described in Sections 3.1 and

3.2. To demonstrate the differences between our heterogeneous structure and separate variable

selection in individual studies, we included an approach that conducts the adaptive-LASSO for

each individual study and called it Indv-aLASSO. The results are shown in Tables S1a and S1b.

We conclude that 1) the SMA performs similarly to the Raw method and better than the other

methods; and 2) the Indv-aLASSO tends to select a model considerably larger than the true

model, and its prediction error tends to be higher than the SMA.

B.2 Performance of the SMA under the subgroup structure

We have considered the homogeneous and heterogeneous structures. We now consider the sub-

group structure. We first provide a motivating example for the sub-group structure. Suppose that

we analyze 5 studies for a certain disease and that two of them belong to a subcategory of the

disease, whereas the other three belong to another subcategory. This is a particularly common

scenario in psychiatric research, where one major disease may include many subcategories. Thus,

the 5 studies can be treated as two subgroups based on their clinical information. For this situa-

tion, it is reasonable to assume that, in addition to the active covariates shared by all subgroups,

each subgroup has its own set of active covariates.

Next, we describe the simulation studies for the sub-group structure. We assume that there

are H subgroups in the K studies, and we let Sh denote the set of studies in the hth subgroup.

In our simulation studies, we let K = 5, H = 2, S1 = {1, 2} and S2 = {3, 4, 5}. That is, we let

the 5 studies contain 2 subgroups, where subgroup 1 consists of studies 1 and 2, and subgroup

2 consists of studies 3, 4, and 5. The set of covariates with nonzero coefficients in subgroup 1

was set to {1, 4, 6, 9, 11, 14, 16, 21, 26, 31}, and the set of covariates with nonzero coefficients in
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subgroup 2 was set to {1, 4, 6, 9, 11, 14, 16, 21}. In other words, covariates 1, 4, 6, 9, 11, 14, 16,

and 21 were active in both subgroups, whereas covariates 26 and 31 were active only in subgroup

1. We considered p = 200. The objective function for the subgroup structure was the same as

equation (1) in the main text, except that the penalty weights were chosen as follows

wjk =

{

H
∑

h=1

[

I(k ∈ Sh)|Sh|−1
∑

l∈Sh

|β̃jl|
]}−1

, j = 1, ..., p, and k = 1, ...,K,

where |Sh| is the cardinality of Sh. As shown in Table S2, our method has a high probability

of identifying the important covariates and tends to outperform the aLASSO-U and aLASSO-I

methods.

B.3 Comparison of the SMA with individual aLASSO on the capture rate

One of the underlying assumptions of meta-analysis is that analyzing multiple studies together

may lead to a better chance of capturing weak covariates than analyzing each study separately.

To investigate this issue, we revisited the model with the homogeneous structure in Section 3.1

of the main text and let all of the nonzero β0
jk equal to θ0 (for example, θ0=0.2, 0.25, or 0.3).

Then, we calculated the proportion of all nonzero β0
jks that were captured by a given variable

selection method, and we call this proportion the “capture rate”. We compared the SMA with

the method that applies the aLASSO to each study separately. The results are shown in Table

S3. The SMA tends to have a higher capture rate than the individual aLASSO for the considered

θ0.

B.4 The influence of sparsity p0 on regression analysis

We studied whether the sparsity p0/p has any influence on variable selection. Considering

p = 100 under the homogeneous structure, we let p0 = (10, 15, 25), which corresponds to the spar-

sity of (10%, 15%, 25%). The indices of the nonzero covariates for the three sparsity situations are

(1,2,4,5,6,7,9,10,11,12), (1,2,4,5,6,7,9,10,11,12,14,16,18,19,20), and (1,2,4,5,6,7,9,10,11,12,14,16,18,

19,20,21,22,23,26,28,30,31,33,34,35), respectively. The results in Table S4 show that the param-

eter estimation and prediction errors are both influenced by the ratio of p0/p, but the SMA
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performs always better than the aLASSO-U and aLASSO-I methods.

B.5 Performance of the SMA with different sets of covariates from different studies

In the main text, the dimensions of the K sets of summary statistics were assumed to be

the same. We now consider the situation in which the summary statistics were calculated from

different (but overlapping) sets of covariates. In this section, we require that each covariate is

present in at least one study. (We consider the situation in which some covariates are absent in

all of the K studies in Section B.6.) For illustration, we considered the homogeneous structure

with 100 covariates.

First, we let 10% of the noise covariates from each study be “missing” at different places

among the K studies. Because the Raw method is for the situation where all the raw data are

available, we omitted the Raw method for comparison. We let p0 be 10, 15, and 25. Table S5a

shows that the SMA handles this situation well.

Next, we allowed both the noise and the important covariates to be “missing” at a rate of

10%. The results are shown in Table S5b. Clearly, the missing of important covariates drives

up both the parameter estimation error and the prediction error. However, the SMA is still a

competitive method compared to the aLASSO-based methods.

B.6 The influence of p0 and unmeasured covariates on prediction errors

It is possible that some covariates that have influence on the trait of interest are not measured

in any of the K studies. For example, gene expression and DNA methylation can be important

genomic features for certain traits. Likewise, other non-genetic covariates, such as exercise, food

choice, and life style, may also contribute to the trait of interest. For various reasons, these

covariates may not be measured for the K studies. We conducted simulation studies to examine

the impact of unmeasured covariates on prediction errors. For demonstration, we considered

p = 50 and simulated two unmeasured covariates, each with an effect size of 0.8. Then we

ignored these two covariates in our analysis in order to assess their influence on the prediction
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accuracy. We also studied how the sparsity, p0, influences the regression analysis. We considered

p0 = (10, 15, 25).

The results in Table S6 show that when the trait involves some unmeasured covariates, using

only the measured covariates can lead to inflated prediction errors (for all of the considered

methods). In addition, p0 can also influence the prediction errors. In all of the situations, the

SMA has superior performance to the aLASSO-U and aLASSO-I.

B.7 The influence of screening procedures on the performance of variable selection

For p > n, a screening step is performed before the variable selection is conducted, as shown in

Section 3.3 of the main text. To study the impact of the screening step on the performance of

variable selection, we considered several screening procedures that are relevant to meta-analysis.

Consider K studies with sample sizes of nk(k = 1, . . . ,K) and assume that a marginal screening

is conducted for each study. Let n∗ = max16k6K{nk}. The first screening procedure (Screening

Procedure I) involved selecting the top candidate covariates based on the marginal screening of

the study that has the largest sample size, i.e., we select the top nk/(3 log(nk)) covariates from

the study with the largest nk. The second screening procedure (Screening Procedure II) involved

first using the summary statistics (from the marginal screening) of the K studies to conduct a

meta-analysis for each covariate and then picking the top n∗/(3 log(n∗)) covariates based on the

meta-analysis results. The third screening procedure (Screening Procedure III) involved picking

the top nk/(3 log(nk)) from each study and then taking a union of the K sets of top covariates

as the selected covariates. After the screening procedure is performed, we subjected the selected

candidate covariates to the considered variable selection methods to examine the influence of the

screening procedures. We considered p = 1000 and sample sizes of (600, 500, 600, 500, 400). We

first studied the screening procedures under the homogeneous structure. The results in Table

S7a show that for the SMA approach, Screening Procedure II yields quite similar estimation

error and prediction error as Screening Procedure III, and both procedures outperform Screening
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Procedure I. Next, we studied the screening procedures under the heterogeneous structure. The

results in Table S7b show that for the Raw and SMA approaches, both Screening Procedure

II and III are better than Screening Procedure I. Overall, these results demonstrate that using

information from multiple studies tends to be more powerful in retaining important covariates

than using information from only one study.

In the previous simulations, we assumed that the regression coefficients of a covariate across

the K studies have the same sign with large probability. To evaluate situations in which this

assumption is violated, we changed the sign for one of the K regression coefficients associated

with the first covariate (i.e., β0
15) and studied how the change of sign influences the screening

procedures and subsequent variable selection. The results are shown in Table S7c. The parameter

estimation error and prediction error with Screening Procedure II tend to be higher than those

with Screening Procedure III for the Raw and SMA methods. This is mainly because Screening

Procedure II tends to cancel out a covariate’s signal if that covariate has regression coefficients

with opposite signs (among the K studies). Overall, our simulation studies suggest that Screening

Procedure III is more robust than Screening Procedure II for reducing dimensions.

In the simulation studies reported in Section 3.3 of the main text, we reduced the dimension

to n/(3 log(n)). To keep a larger number of variables for downstream analysis, we reduced the

dimension to n/(2 log(n)) instead. The corresponding simulation results are shown in Table S7d.

We see that the Correct 0 rate and Incorrect 0 rate of SMA are still reasonable.

B.8 Sensitivity analysis

We conducted simulation studies to examine the sensitivity of our methods to data perturba-

tion. We perturbed the trait by adding additional noise, 0.5×Binomial(0,1), to the random error

N(0, 1). The results in Table S8 show that the SMA still performs well.

B.9 Weaker genetic effects

We examined the performance of the SMA with relatively weak genetic effects. We considered
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the set-up in Section 3.1 of the main text but simulated the non-zero values of the coefficients for

the jth variable from the (−1)j ×N(0.25, 0.1252) distribution, such that the variance explained

by individual SNPs fluctuates around 2.7% and is below 1% for 25% of the SNPs. As shown in

Table S9, the SMA still competes well with the other methods.

Section C: Additional Details about Real Data Analysis

The Atherosclerosis Risk in Communities Study (ARIC) is a population-based cohort study of

∼16,000 Caucasian and African-American subjects, who were recruited in 1987−1989 to investi-

gate the development of cardiovascular and pulmonary disease over time. The Coronary Artery

Risk Development in Young Adults (CARDIA), which was initiated in 1985−1986, is a longitudi-

nal study of ∼5,000 African American and Caucasian subjects on the evolution of coronary heart

disease risk. The Cardiovascular Health Study (CHS) is a prospective, longitudinal cohort study

of risk factors for cardiovascular disease. It was initiated in 1989, with ∼6,000 Caucasian and

African-American adults who were sampled from four United States communities. The Fram-

ingham Heart Study (FHS) was initiated in 1948 with randomly ascertained participants to

investigate cardiovascular disease and related risk factors. The Multi-Ethnic Study of Atheroscle-

rosis (MESA) was initiated in year 2000 to investigate subclinical cardiovascular disease and the

risk factors that predict progression to clinically overt cardiovascular disease.

The subjects from the five cohorts were genotyped on ∼230,000 SNPs. We conducted marginal

screening for each study and selected SNPs with p-value 6 5 × 10−4. We took the union of the

selected SNPs and identified the SNPs that have genotypes in all five cohorts. We removed highly

correlated SNPs both before and after the union procedure. The final set that was subject to

variable selection contained 276 SNPs.

The SNPs selected by the SMA are located in various regions of the corresponding genes. For

example, rs4420638 is located downstream of the APOC1 gene, while rs1367117 is located in an
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exon of the APOB gene; see Supplementary Figures S1 and S2. According to the GTEx portal,

rs4420638 is associated with the expression of APOE in spleen, with a p-value of 0.095, and APOE

sits next to APOC1 and is known to encode an important lipoprotein. SNP rs1367117 results in

a change of amino acid from Thr to Ile, which may potentially change its binding activity with

lipids. Most of the selected SNPs are located in non-coding regions, and their functions remain

to be elucidated. In Table S10, we show the models selected by the Raw method for the 7 studies

(i.e., FHS, MESA-A, MESA-E, CARDIA-A, CARDIA-E, CHS-A, and CHS-E). In Table S11, we

show the prediction errors for the compared methods under the heterogeneous structure, with

the prediction error divided by the trait variance.

We next explored the homogeneous structure for the 7 studies, and the results are shown in

Tables S12 and S13. It can be seen that the SMA still performs better than the aLASSO methods.

Finally, we included more SNPs for variable selection by relaxing the marginal screening p-

value to 6 8× 10−4. After the removal of highly correlated SNPs, the final set that was subject

to variable selection contained 379 SNPs. Applying the SMA to those 379 SNPs, we achieved the

prediction error of 2.63. Thus, including more candidate SNPs does not significantly improve the

prediction accuracy.
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Table S1a. Comparison of the SMA with other methods under the heterogeneous structure
for p = 50

Method
∑5

k=1 |M̂
(k)| Correct 0 (%) Incorrect 0 (%) ||β̂ − β0||2/5 Prediction error

Correlation structure: Auto-regressive (ρ = 0.3)
Raw 39.92 99.8 3.9 0.016 1.008
SMA 39.97 99.7 3.9 0.016 1.008

SMA-Diag 40.07 99.6 4.1 0.018 1.009
SMA-I 39.79 99.8 4.0 0.017 1.008
SMA-E 40.30 99.6 3.7 0.017 1.009

aLASSO-U 164.45 40.9 0.1 0.028 1.014
aLASSO-I 30.40 100.0 26.0 0.613 1.684
HT-U 88.85 77.1 0 0.033 1.016
HT-I 28.00 100.0 31.7 0.739 1.834

Indv-aLASSO 72.41 84.4 2.9 0.028 1.014
Correlation structure: Auto-regressive (ρ = 0.6)

Raw 40.14 99.6 4.0 0.016 1.008
SMA 40.14 99.6 3.9 0.016 1.008

SMA-Diag 42.56 98.5 3.8 0.025 1.012
SMA-I 40.08 99.7 3.9 0.017 1.008
SMA-E 40.38 99.5 3.9 0.018 1.008

aLASSO-U 164.90 40.7 0 0.033 1.014
aLASSO-I 30.30 100.0 26.2 0.629 1.726
HT-U 114.70 64.7 0 0.056 1.024
HT-I 28.30 100.0 31.0 0.722 1.850

Indv-aLASSO 72.79 84.2 3.0 0.033 1.014
Correlation structure: Compound symmetry (ρ = 0.3)

Raw 40.07 99.7 3.9 0.016 1.008
SMA 40.13 99.7 3.8 0.016 1.008

SMA-Diag 40.76 99.4 3.9 0.018 1.009
SMA-I 40.05 99.7 4.1 0.017 1.009
SMA-E 40.65 99.4 3.9 0.018 1.009

aLASSO-U 163.25 41.5 0.1 0.030 1.014
aLASSO-I 29.8 100.0 27.4 0.645 1.711
HT-U 94.10 74.6 0 0.036 1.017
HT-I 27.9 100.0 32.0 0.749 1.856

Indv-aLASSO 71.70 84.7 3.1 0.030 1.014
Correlation structure: Compound symmetry (ρ = 0.5)

Raw 39.65 99.8 4.5 0.019 1.008
SMA 39.72 99.7 4.5 0.019 1.008

SMA-Diag 41.66 98.9 4.1 0.024 1.012
SMA-I 39.96 99.6 4.4 0.020 1.009
SMA-E 40.13 99.5 4.5 0.021 1.009

aLASSO-U 165.65 40.36 0 0.035 1.014
aLASSO-I 29.45 1 28.2 0.659 1.741
HT-U 107.00 68.4 0 0.051 1.023
HT-I 27.45 100.0 33.0 0.767 1.896

Indv-aLASSO 72.61 84.2 3.2 0.035 1.014
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Table S1b. Comparison of the SMA with other methods under the heterogeneous structure
for p = 200

Method
∑5

k=1 |M̂
(k)| Correct 0 (%) Incorrect 0 (%) ||β̂ − β0||2/5 Prediction error

Correlation structure: Auto-regressive(ρ = 0.3)
Raw 40.74 99.9 2.9 0.011 1.006
SMA 40.69 99.9 3.0 0.011 1.006

SMA-Diag 42.53 99.7 3.0 0.014 1.008
SMA-I 41.93 99.8 2.9 0.013 1.007
SMA-E 45.29 99.4 2.5 0.016 1.009

aLASSO-U 528.75 49.1 0 0.038 1.019
aLASSO-I 31.50 100.0 23.4 0.562 1.670
HT-U 134.15 90.3 0.1 0.042 1.021
HT-I 28.20 100.0 31.2 0.722 1.893

Indv-aLASSO 164.38 87.0 2.0 0.038 1.019
Correlation structure: Auto-regressive (ρ = 0.6)

Raw 40.96 99.9 3.1 0.011 1.006
SMA 40.72 99.9 3.1 0.011 1.006

SMA-Diag 51.57 98.8 2.8 0.024 1.012
SMA-I 41.94 99.8 3.0 0.013 1.007
SMA-E 45.34 99.4 2.8 0.017 1.009

aLASSO-U 508.20 51.3 0 0.040 1.018
aLASSO-I 31.00 100.0 24.5 0.586 1.706
HT-U 216.45 81.7 0.1 0.085 1.038
HT-I 28.10 100.0 31.5 0.730 1.945

Indv-aLASSO 158.47 87.6 2.5 0.040 1.018
Correlation structure: Compound symmetry (ρ = 0.3)

Raw 40.88 99.9 2.9 0.011 1.006
SMA 40.75 99.9 2.9 0.011 1.006

SMA-Diag 43.1 99.7 2.7 0.015 1.008
SMA-I 41.96 99.8 2.8 0.014 1.007
SMA-E 45.83 99.4 2.3 0.017 1.009

aLASSO-U 532.35 48.8 0 0.040 1.019
aLASSO-I 31.40 100.0 23.6 0.549 1.627
HT-U 137.65 89.9 0.1 0.045 1.022
HT-I 28.20 100.0 31.2 0.718 1.896

Indv-aLASSO 166.66 86.8 2.1 0.040 1.019
Correlation structure: Compound symmetry (ρ = 0.5)

Raw 40.76 99.9 3.0 0.013 1.006
SMA 40.70 99.9 3.1 0.013 1.006

SMA-Diag 49.69 99.0 2.3 0.023 1.011
SMA-I 42.19 99.8 2.8 0.016 1.007
SMA-E 46.23 99.4 2.4 0.019 1.009

aLASSO-U 516.90 50.4 0 0.043 1.019
aLASSO-I 31.40 100.0 23.5 0.540 1.632
HT-U 196.40 83.8 0 0.076 1.035
HT-I 28.40 100.0 30.7 0.696 1.866

Indv-aLASSO 160.53 87.4 2.2 0.043 1.019
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Table S2. Comparison of the SMA with other methods under the subgroup structure for

p = 200

Method
∑5

k=1 |M̂(k)| Correct 0 (%) Incorrect 0 (%) ||β0 − β̂||2/5 Prediction error
Correlation structure: Auto-regressive (ρ = 0.3)

Raw 43.92 99.9 1.6 0.015 1.006
SMA 43.87 99.9 1.6 0.015 1.006

aLASSO-U 558.05 46.2 0 0.063 1.030
aLASSO-I 33.50 100.0 23.9 0.582 1.670

Correlation structure: Auto-regressive (ρ = 0.6)
Raw 43.84 99.9 1.5 0.016 1.006
SMA 43.88 99.9 1.5 0.016 1.006

aLASSO-U 522.15 50.0 0 0.064 1.027
aLASSO-I 33.35 100.0 24.2 0.596 1.697

Correlation structure: Compound symmetry (ρ = 0.3)
Raw 43.80 100.0 1.5 0.016 1.006
SMA 43.81 100.0 1.5 0.016 1.006

aLASSO-U 545.7 47.5 0 0.064 1.028
aLASSO-I 34.10 100.0 22.5 0.554 1.681

Correlation structure: Compound symmetry (ρ = 0.5)
Raw 43.81 99.9 1.8 0.018 1.006
SMA 43.74 99.9 1.8 0.018 1.006

aLASSO-U 545.95 47.5 0 0.071 1.029
aLASSO-I 32.85 100.0 25.3 0.624 1.736

Note: The sample sizes range from 1100 to 1500.

Table S3. Comparison of the SMA with the individual aLASSO on the capture rate

Method Capture Rate
θ0 = 0.2
SMA 0.979

Individual aLASSO 0.737
θ0 = 0.25

SMA 0.999
Individual aLASSO 0.921

θ0 = 0.3
SMA 1

Individual aLASSO 0.984
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Table S4. Influence of p0 on SMA and the compared methods (p = 100)

Method
∑5

k=1 |M̂
(k)| Correct 0 (%) Incorrect 0 (%) ||β̂ − β0||2/5 Prediction error

p0 = 10
Raw 49.66 99.9 0.9 0.023 1.009
SMA 49.67 99.9 1.0 0.023 1.009

SMA-Diag 50.93 99.3 0.8 0.026 1.011
aLASSO-U 169.00 40.5 0 0.043 1.016
aLASSO-I 42.00 100.0 16.0 0.419 1.552

p0 = 15
Raw 74.45 99.9 0.9 0.032 1.016
SMA 74.47 99.9 0.9 0.032 1.016

SMA-Diag 75.44 99.5 0.7 0.036 1.018
aLASSO-U 188.2 35.3 0 0.053 1.023
aLASSO-I 64.55 100.0 14.0 0.560 1.796

p0 = 25
Raw 124.38 99.9 0.6 0.056 1.025
SMA 124.35 99.9 0.6 0.056 1.025

SMA-Diag 125.12 99.4 0.6 0.063 1.029
aLASSO-U 216.35 26.9 0 0.079 1.033
aLASSO-I 109.25 99.9 12.7 0.855 2.246

Table S5a. Performance of the SMA when unequal sets of covariates are reported by different
studies but important covariates are not allowed to be missing (p = 100)

Method
∑5

k=1 |M̂
(k)| Correct 0 (%) Incorrect 0 (%) ||β̂ − β0||2/5 Prediction error

p0 = 10
SMA 49.97 99.9 0.9 0.018 1.013

SMA-Diag 50.10 99.9 1.0 0.019 1.014
aLASSO-U 272.75 50.5 0 0.041 1.024
aLASSO-I 43.2 100.0 13.6 0.372 1.536

p0 = 15
SMA 74.66 100.0 0.7 0.026 1.016

SMA-Diag 74.95 99.9 0.6 0.029 1.017
aLASSO-U 298.65 47.4 0 0.052 1.028
aLASSO-I 65.45 100.0 12.8 0.513 1.745

p0 = 25
SMA 124.64 99.9 0.7 0.044 1.020

SMA-Diag 124.59 99.9 0.7 0.048 1.022
aLASSO-U 334.20 44.2 0 0.070 1.032
aLASSO-I 109.05 100.0 12.8 0.818 2.087
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Table S5b. Comparison of the SMA with other methods when important covariates are allowed
to be missing (p = 100)

Method
∑5

k=1 |M̂
(k)| Correct 0 (%) Incorrect 0 (%) ||β̂ − β0||2/5 Prediction error

p0 = 10
SMA 45.46 99.8 11.0 0.374 1.166

SMA-Diag 46.50 99.6 10.9 0.376 1.167
aLASSO-U 285.2 47.7 0 0.406 1.178
aLASSO-I 24.3 100.0 51.6 1.617 2.535

p0 = 15
SMA 68.94 99.6 10.1 0.489 1.220

SMA-Diag 70.39 99.3 9.9 0.490 1.220
aLASSO-U 313.35 43.9 0 0.526 1.233
aLASSO-I 39.55 100.0 47.3 2.189 3.331

p0 = 25
SMA 113.66 99.3 11.2 0.897 1.390

SMA-Diag 117.68 98.3 10.9 0.902 1.391
aLASSO-U 358.45 37.7 0 0.946 1.403
aLASSO-I 61.10 100.0 51.2 3.915 5.120

Table S6. Comparison of the SMA with other methods when some covariates are unmeasured
in all of the studies (p = 50)

Method
∑5

k=1 |M̂
(k)| Correct 0 (%) Incorrect 0 (%) ||β̂ − β0||2/5 Prediction error

p0 = 10
Raw 49.29 99.9 1.8 0.041 2.296
SMA 49.29 99.9 1.8 0.041 2.296

SMA-Diag 57.21 96.2 0.9 0.051 2.300
aLASSO-U 174.80 37.6 0 0.081 2.314
aLASSO-I 39.30 100.0 21.4 0.586 3.000

p0 = 15
Raw 74.15 99.9 1.3 0.062 2.310
SMA 74.10 99.9 1.4 0.062 2.310

SMA-Diag 81.48 96.0 0.6 0.071 2.315
aLASSO-U 192.90 32.6 0 0.102 2.328
aLASSO-I 61.10 99.9 18.7 0.795 3.448

p0 = 25
Raw 123.59 99.9 1.2 0.102 2.324
SMA 123.55 99.9 1.2 0.102 2.324

SMA-Diag 130.21 95.3 0.6 0.109 2.328
aLASSO-U 217.00 26.4 0 0.140 2.341
aLASSO-I 102.95 99.8 17.8 1.261 3.879

Note: Correct 0(%), Incorrect 0(%), and ||β̂ − β0||2/5 are based on the measured covariates.
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Table S7a. Influence of screening procedure on the performance of variable selection (under

the homogeneous structure)

Method
∑5

k=1 |M̂(k)| Correct 0 (%) Incorrect 0 (%) ||β̂ − β0||2/5 Prediction error
Screening Procedure I

Raw 42.30 98.2 19.2 0.517 1.235
SMA 42.41 98.0 19.4 0.518 1.236

aLASSO-U 139.25 6.5 17.9 0.587 1.264
aLASSO-I 32.55 99.4 36.1 1.012 1.893

Screening Procedure II
Raw 49.92 99.3 1.6 0.049 1.024
SMA 50.07 99.2 1.6 0.049 1.024

aLASSO-U 134.4 19.6 0.1 0.100 1.044
aLASSO-I 39.85 99.9 20.5 0.592 1.738

Screening Procedure III
Raw 51.25 99.5 1.3 0.049 1.024
SMA 52.46 99.2 1.3 0.052 1.025

aLASSO-U 396.70 14.1 0.0 0.235 1.112
aLASSO-I 40.05 99.9 20.8 0.621 1.882

Note: The Correct 0 (%) and Incorrect 0 (%) were based on the dimensions after the screening

procedure. The three screening procedures are described in Section B.7.
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Table S7b. Influence of screening procedures on the performance of variable selection (under

the heterogeneous structure)

Method
∑5

k=1 |M̂(k)| Correct 0 (%) Incorrect 0 (%) ||β̂ − β0||2/5 Prediction error
Screening Procedure I

Raw 34.33 97.2 24.0 0.483 1.217
SMA 34.67 96.9 24.1 0.483 1.218

aLASSO-U 137.10 8.7 19.4 0.533 1.238
aLASSO-I 22.00 99.6 47.6 1.167 1.973

Screening Procedure II
Raw 40.18 98.2 7.1 0.069 1.035
SMA 40.01 98.3 7.2 0.069 1.036

aLASSO-U 135.6 16.3 1.9 0.114 1.053
aLASSO-I 28.05 99.8 32.1 0.794 1.859

Screening Procedure III
Raw 46.73 98.2 5.7 0.065 1.033
SMA 48.78 97.8 5.4 0.069 1.035

aLASSO-U 435.30 12.9 0.4 0.249 1.119
aLASSO-I 28.55 99.8 32.4 0.814 1.927

Note: The Correct 0 (%) and Incorrect 0 (%) were based on the dimensions after the screening

procedure. The three screening procedures are described in Section B.7.
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Table S7c. Evaluation of screening procedures under the sign-change situation

Method
∑5

k=1 |M̂(k)| Correct 0 (%) Incorrect 0 (%) ||β̂ − β0||2/5 Prediction error
Screening Procedure I

Raw 34.41 97.1 24.0 0.479 1.216
SMA 34.79 96.8 24.0 0.479 1.216

aLASSO-U 136.50 9.2 19.4 0.530 1.237
aLASSO-I 21.75 99.5 48.3 1.179 2.025

Screening Procedure II
Raw 39.59 98.1 8.7 0.097 1.047
SMA 39.67 98.1 8.5 0.097 1.047

aLASSO-U 135.8 15.7 3.3 0.143 1.065
aLASSO-I 27.25 99.7 34.5 0.850 1.914

Screening Procedure III
Raw 47.24 98.1 5.7 0.066 1.033
SMA 48.61 97.8 5.6 0.067 1.034

aLASSO-U 429.20 13.1 0.4 0.244 1.116
aLASSO-I 28.40 99.8 33.2 0.835 1.947

Note: The heterogeneous structure is considered. The Correct 0 (%) and Incorrect 0 (%) were

based on the dimensions after the screening procedure. The three screening procedures are

described in Section B.7.

Table S7d. Comparison of different methods when p is screened down to n/(2 log(n))

Method
∑5

k=1 |M̂
(k)| Correct 0 (%) Incorrect 0 (%) ||β̂ − β0||2/5 Prediction error

Correlation structure: Auto-regressive (ρ = 0.3)
Raw 57.26 99.1 1.0 0.059 1.034
SMA 68.20 97.7 1.0 0.079 1.044

aLASSO-U 811.45 7.4 0 0.548 1.274
aLASSO-I 43.15 99.6 20.9 0.633 2.048

Correlation structure: Auto-regressive (ρ = 0.6)
Raw 57.89 98.9 1.3 0.066 1.038
SMA 67.54 97.8 0.8 0.083 1.046

aLASSO-U 778.05 8.8 0.1 0.535 1.261
aLASSO-I 40.45 99.7 23.9 0.735 2.152

Note: p = 10, 000 and the sample sizes range from 400 to 600. The Correct 0 (%) and Incorrect 0 (%)
were based on the dimensions after the SIS procedure.



26

Table S8. Sensitivity analysis (p = 200 under the homogeneous structure)

Method
∑5

k=1 |M̂(k)| Correct 0 (%) Incorrect 0 (%) ||β̂ − β0||2/5 Prediction error
Correlation structure: Compound symmetry (ρ = 0.3)

Raw 49.84 100.0 0.8 0.012 1.068
SMA 49.85 100.0 0.8 0.012 1.068

SMA-Diag 51.00 99.9 0.7 0.015 1.070
aLASSO-U 526.7 49.8 0 0.044 1.083
aLASSO-I 43.70 100.0 12.6 0.338 1.515

Correlation structure: Compound-symmetry (ρ = 0.5)
Raw 49.89 100.0 0.8 0.014 1.068
SMA 49.90 100.0 0.8 0.014 1.068

SMA-Diag 52.98 99.7 0.5 0.021 1.071
aLASSO-U 540.25 48.4 0 0.051 1.083
aLASSO-I 43.9 100.0 12.2 0.330 1.521

Table S9. Comparison of the SMA with other methods under smaller effects

Method
∑5

k=1 |M̂(k)| Correct 0 (%) Incorrect 0 (%) ||β̂ − β0||2/5 Prediction error
Correlation structure: Auto-regressive (ρ = 0.6)

Raw 49.05 99.8 2.5 0.018 1.009
SMA 49.04 99.9 2.5 0.018 1.009

SMA-Diag 49.95 99.4 2.6 0.025 1.013
SMA-S 50.26 99.3 2.4 0.025 1.013

aLASSO-U 182.15 33.9 0 0.042 1.018
aLASSO-I 35.35 100.0 29.3 0.205 1.269

Correlation structure: Compound symmetry (ρ = 0.5)
Raw 48.98 99.9 2.5 0.020 1.009
SMA 48.91 99.9 2.6 0.020 1.009

SMA-Diag 49.83 99.5 2.5 0.025 1.012
SMA-S 49.99 99.4 2.4 0.025 1.012

aLASSO-U 178.55 35.7 0 0.044 1.017
aLASSO-I 34.7 100.0 30.6 0.212 1.250
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Table S10. The models selected by the Raw method for the 7 studies (i.e., FHS, MESA-A,

MESA-E, CARDIA-A, CARDIA-E, CHS-A, and CHS-E)

Study Model size Selected SNPs
MESA-A 29 rs660240, rs6511720, rs964184, rs9534262, rs520861, rs6669785

rs4148817, rs11869143, rs262669, rs13911, rs4243233, rs7739248,
rs6601431,...(remaining ones omitted)

CARDIA-A 37 rs445925, rs6511720, rs9302635, rs7254892, rs9534262, rs405509,
rs520861, rs4803770, rs6902897, rs1470641, rs262669, rs312,

...(remaining ones omitted)
CHS-A 16 rs445925, rs520861, rs2360546, rs7961290, rs651028, rs2442623,

rs9579604, rs2953168, rs7747551, rs759163, rs12439189, rs7335275,
rs2304482, rs11207307, rs14868, rs3738702

MESA-E 33 rs660240, rs445925 , rs6511720 , rs2954021 , rs9302635 , rs520861,
rs4803770, rs1367117, rs1544410 , rs4384362 , rs10983319, rs1470641

...(remaining ones omitted)
CARDIA-E 32 rs4420638, rs660240 , rs445925 , rs6511720 , rs157582 , rs964184,

rs2954021, rs9302635, rs520861, rs4803770, rs1367117, rs1513251,
...(remaining ones omitted)

CHS-E 26 rs4420638 , rs660240 , rs445925 , rs6511720 , rs964184 , rs2954021 ,
rs520861 , rs4803770, rs2867314 , rs1367117, rs3817588 , rs1470641 ,

rs7099478 , rs3846662 , rs1995775 , rs2859369 , rs12982656 , rs2442623 ,
rs12027341 , rs10037737 , rs17627064 ,rs8044769 , rs9321358 , rs9893040 ,

rs13214952 , rs701831
FHS 31 rs4420638, rs660240 , rs445925 , rs6511720 , rs157582 , rs964184 ,

rs2954021 , rs9302635 , rs9939224 , rs12357364, rs11869143, rs136335 ,
...(remaining ones omitted)

Table S11. Prediction errors divided by the trait variance

Raw SMA SMA-Diag SMA-S SMA-I SMA-E aLASSO-U HT-U

Ratio 95.1% 95.4% 97.6% 95.8% 95.1% 95.1% 103.0% 100.9%

Note: The heterogeneous structure is adopted.
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Table S12. Variable selection in seven studies (i.e., FHS, MESA-A, MESA-E, CARDIA-A,
CARDIA-E, CHS-A, and CHS-E) under the homogeneous structure

Model sizes
Method MESA-A CARDIA-A CHS-A MESA-E CARDIA-E CHS-E FHS Pred-error

Raw 3 3 1 5 5 6 4 2.63
SMA 32 22 24 36 21 40 35 2.62

SMA-Diag 51 45 31 66 36 71 61 2.69
SMA-S 50 55 23 71 55 67 63 2.65
SMA-I 16 13 8 17 9 23 14 2.61
SMA-E 45 32 24 58 32 66 52 2.65

aLASSO-U 258 258 258 258 258 258 258 2.84
HT-U 241 241 241 241 241 241 241 2.68

Table S13. Prediction errors divided by the trait variance for the homogeneous structure

Raw SMA SMA-Diag SMA-S SMA-I SMA-E aLASSO-U HT-U

Ratio 95.4% 95.1% 97.6% 96.1% 94.7% 96.1% 103.0% 97.2%
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Fig. S1. Regional LD plot of SNP rs4420638 of the APOC1 gene
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Fig. S2. Regional LD plot of SNP rs1367117 of the APOB gene


