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Supplementary Information for ‘A

Decision-Theoretic Phase I-II Design for Ordinal

Outcomes in Two Cycles’

1. Practical Guidelines for a Design Using Utility Functions

Getting a design accepted for an actual protocol: In explaining the proposed design to

the physicians planning a two-cycle dose-finding trial, and possibly later to reviewers on Insti-

tutional Review Boards or members of federal regulatory agencies such as the US FDA or NIH,

several key advantages of using a utility function can be emphasized. These include design fea-

tures discussed in detail in the simulations of the main text. We reiterate them in non-technical

language that can be understood easily by non-statisticians.

1. The advantage of using efficacy as well as toxicity, summarized by their joint utility, rather

than toxicity alone to characterize patient outcome. A simple example is given in Table 1,

where doses 1 and 2 have nearly identical marginal toxicity probabilities, but dose 2 is

greatly superior in efficacy, therefore boosting the utility of dose 2. In the example, as-

suming the utility in Table 1 of the main text, the expected utilities for doses 1 and 2 are

28.94 and 40.95, respectively, and dose 2 will be selected for patients. This advantage is

already quite large with the more common single-cycle phase I-II designs when compared

to phase I designs (Thall and Cook, 2004; Houede and others, 2010). For the two-cycle set-

ting, Lee and others (2015) showed that a design using toxicity and efficacy based on their
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Table 1. Example for the joint utility

Efficacy
Toxicity

Total
Mild Moderate Severe

PD 0.224 0.28 0.196 0.7
SD 0.032 0.04 0.028 0.1

PR/CR 0.064 0.08 0.056 0.2
Total 0.32 0.40 0.28 1.00

(a) Dose 1

Efficacy
Toxicity

Total
Mild Moderate Severe

PD 0.084 0.126 0.09 0.3
SD 0.056 0.084 0.06 0.2

PR/CR 0.14 0.21 0.15 0.5
Total 0.28 0.42 0.30 1.00

(b) Dose 2

joint utility performs better than methods using toxicity only.

2. The advantage of using ordinal efficacy and toxicity, rather than binary variables obtained

by dichotomization. Dichotomization of ordinal outcome results in loss of information and

efficiency, which is clearly seen in Figure 2 of the main text.

3. The ability to optimally tailor the choice of a patient’s cycle 2 dose based on both the

patient’s own cycle 1 data, as well as data from other patients. This is reflected in the

superior performance of the design, compared to existing methods, in terms of summary

statistics such as those in Figure 3 of the main text.

Trial Conduct: Given the necessary computer program calculating outcome-adaptive decisions,

the only additional practical requirements for implementing the proposed design in a real-life trial

over existing adaptive single-cycle phase I designs, such as the CRM (Continuous Reassessment

Method), are that (i) both toxicity and efficacy must be recorded, and (ii) two decisions must be

made for each patient, that is, a decision for each of the two cycles.

Eliciting numerical utilities: Recall that ucycle(yc, zc) is the utility assigned to outcome

(yc, zc) in each cycle c = 1, 2. To guide the physician(s) in the utility elicitation process, one first

should establish the limiting utilities for the best and worst outcomes. In the example illustrated

in the main text, we used 100 and 0 for the best and worst outcomes, respectively. It then should
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be explained that ucycle(yc, zc) must decrease as the level of toxicity, yc, becomes more severe

and must increase as the level of efficacy, zc, becomes more desirable. Once an initial numerical

utility table has been established, using Table 1 of the main text for illustration, the physician(s)

should be shown (i) numerical differences such as ucycle(Mild, PR/CR) − ucycle(Mild, SD) =

100 − 70 = 30 and ucycle(Moderate, PR/CR) − ucycle(Moderate, SD) = 80 − 50 = 30, or (ii)

different outcomes with identical utilities such as ucycle(Severe, SD) = ucycle(Mild, PD) = 25,

and asked if this is the intention. The physician(s) then may wish to modify their initial utilities

on this basis.

2. Simulation Design

Recall that J = K = 3 and m = 5, and that d̃, Ỹ and Z̃ are rescaled versions of d, y and z,

respectively. From §4.2, we determine joint probabilities by specifying the following conditional

probabilities :

P (Y1 = y1, Z1 = z1, Y2 = y2, Z2 = z2 | d1, d2) = P (Y1 = y1 | d1)P (Z1 = z1 | d1, y1)

P (Y2 = y2 | d1, y1, z1, d2)

P (Z2 = z2 | d1, y1, z1, d2, y2).

In the simulations, we use the following parametric models to generate the outcomes:

• P (Y1 6 y1 | d1) = Φ(ξ̃1,y1
(d1)), where ξ̃1,y1

(d1) = ξ̄y1
(d1).

• P (Z1 6 z1 | d1, y1) = Φ(η̃1,z1
(d1, y1)), where η̃1,z1

(d1, y1) = η̄z1
(d1) + w1,1ỹ1.

• P (Y2 6 y2 | d1, y1, z1, d2) = Φ(ξ̃2,u2
(d1, y1, z1, d2)), where ξ̃2,j2(d1, y1, z1, d2) = ξ̄y2

(d2) +

w2,1d̃1 + w2,2r
T (d1, y1) + w2,3z̃1.

• P (Z2 6 z2 | d1, y1, z1, d2, y2) = Φ(η̃2,z2
(d1, y1, z1, d2, y2), where η̃2,z2

(d1, y1, z1, d2, y2) =

η̄z2
(d2) + w3,1d̃1 + w3,2ỹ1 + w3,3r

E(d1, z1) + w3,4ỹ2.
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ξ̄j(d) = Φ−1(pd,j) and η̄k(d) = Φ−1(qd,k) are defined in the main text where pd,j = P (Y 6 j | d)

and qd,k = P (Z 6 k | d) are specified in Table 4 of the main text. Specification of the sce-

narios is completed by specifying numerical values of coefficients, w = (w1,1, w2,1, w2,2, w2,3,

w3,1, w3,2, w3,3, w3,4), rT and rE , which induce associations among the four outcomes (Y1, Z1, Y2, Z2).

Association of d1 with cycle 2 outcomes is induced through w2,1 and w3,1. For example, a positive

value of w1,1 implies that given that the most unfavorable toxicity outcome is observed in cycle

1, a favorable efficacy outcome in cycle 1 is less likely to be observed, where ỹ1 ∈ {−1, 0, 1} for

J = 3. Table 2 shows the assumed coefficients, w, for the five scenarios. rT (d1, y1) defines the joint

effect of d1 and Y1 on Y2. To explain how rT (d1, y1) affects P (Y2 = j | d1, Y1, Z1) through (d1, Y1),

we first observe that d1 affects P (Y2 = j | d1, Y1, Z1) in three different ways: directly through

w2,1 and indirectly through w2,2 and w2,3. We assume that the outcome Y1 = 2 with d1 = 1

increases P (Y2 = 2 | d1, Y ) more than the outcome Y1 = 2 at d1 = 5 by letting rT (1, 2) = 1.0

and rT (5, 2) = 0.1. Similarly, rE(d1, z1) describes how d1 and Z1 jointly affect Z2. Table 3 shows

the assumed numerical rT (d1, y1) values. The same values are assumed for rE(d1, z1).

Table 2. Assumed coefficients (w) for the simulation scenarios

Scenario
Z1 Y2 Z2

w1,1 w2,1 w2,2 w2,3 w3,1 w3,2 w3,3 w3,4

1 0.70 -0.20 -1.50 0.01 -0.03 1.80 -0.10 0.50
2 0.20 -0.03 -1.20 1.30 -0.13 1.50 -1.80 0.30
3 1.30 -0.20 -1.50 1.30 -0.03 1.80 -1.40 0.90
4 0.20 -0.03 -0.10 2.00 -0.13 0.20 -2.40 0.30
5 0.60 -0.08 -0.30 0.30 -0.10 0.30 -2.30 0.60
6 0.20 -0.25 -0.13 0.10 -0.12 0.10 -0.30 0.40
7 0.40 -0.10 -0.20 0.30 -0.10 0.50 -0.30 0.30
8 1.40 -0.20 -1.20 0.80 -0.40 0.50 -0.90 1.30
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Table 3. rT (d1, y1), parameters which determine the joint effect of d1 and y1 on Y2

d1
Y1

Mild (0) Moderate (1) Severe (2)
1 -0.1 0.2 1.0
2 -0.3 0.1 0.7
3 -0.5 0.0 0.5
4 -0.7 -0.1 0.3
5 -1.0 -0.2 0.1

3. Prior Calibration

We calibrate the hyperparameters θ̃ = (σ2
Y , σ2

Z , τ2, ρ, β̄x,c,Ωx,c), x = u, v and c = 1, 2 using

the notion of effective sample size (ESS) (Morita and others, 2008, 2012). We first obtain prior

information about average behavior by eliciting mean values of P (Y 6 y | d) for a chosen value of

y at least three dose levels and P (Z 6 z | d) for a chosen value of z at at least three dose levels.

We the use these probabilities to determine values of the hyperparameters, τ2, ρ, σ2
Y , σ2

Z and β̄x,c

with γ1 and γ2. We then specify Ωx,c and generate pseudo samples of βx,c, for x = u, v, using the

methodology described in Thall and Nguyen (2012, Section 4.3). We use the pseudo samples to

generate samples of probabilities of interest using the specified hyperparameters, in particular, τ2,

ρ, σ2
Y , σ2

Z , γ1 and γ2. For example, we generate samples of P (Y1 = y1 | d1) for y1 = 0, . . . , J − 1

implied by each of the pseudo samples of βx,c, x = u, v. We then approximate ESS with a

Dirichlet distribution. Using P (Y1 = y1 | d1) as an example, we use the generated samples of

(P (Y1 = 0), . . . , P (Y1 = J−1)) for a dose level d1 and approximate its distribution with a Dirichlet

distribution. Specifically, we assume (P (Y1 = 0), . . . , P (Y1 = J − 1)) | d1 ∼ Dir(α0, . . . , αJ−1)

with s =
∑J−1

j=0 αj and estimate αj and s. A Newton-Raphson method can be used to estimate α’s

and s Minka (2000). θ̃ can be calibrated such that the estimated s is not large and the estimated

α’s are close to each other. Continuing the example, we search for θ̃ such that the estimated

values of αj , j = 0, . . . , J − 1 are close while yielding a small value of s for any d1. Any other

probabilities can be used similarly for prior calibration, such as P (Z1 = z1, Z2 = z2 | d1, d2) or
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P (Yc = yc, Zc = zc | dc), c = 1, 2.

For the simulation studies given in the main text, the hyperparameter values were calibrated

such that the ESSs are close to 1 for most of the quantities of interest, such as P (Yc), P (Y1, Y2),

P (Yc, Zc). We first specified γy, γz, σ2
Y , σ2

Z and τ2. Assumed probabilities of Y = 0 and of

Z = 0 or 1 at three dose levels d = 1, 3, 5 were utilized to set γy = (−∞,−2.0, 0.5,∞), γz =

(−∞,−2.0, 0.0,∞) and σ2
Y = σ2

Z = τ2 = 2. Those values were used to find ρ, βx,c and Ωx,c,

x = u, v and c = 1, 2. The particular choice used for the simulations is; ρ = −0.6, for uc,

βu,c = (−2.00,−0.58, 0.64)t, Ωu,c = diag(9.5, 3, 2) c = 1, 2; for vc, βv,c = (−1.35, 0.99,−1.06),

Ωv,c = diag(9, 3, 2), c = 1, 2.

4. Comparison to Designs Obtained by Dichotomizing the Two Ordinal Outcomes

to Obtain Two Binary Outcomes

To evaluate what may be gained by accounting for the ordinal outcomes, we consider four cases

in which each 3-level ordinal toxicity and efficacy outcome was reduced to a binary variable. This

mimics what is actually done in practice in order to use a design that requires binary efficacy

and binary toxicity, and in this case the comparator is the design of Lee et al.(2015).

Two of the three levels of each of Yc and Zc were combined to define binary outcomes, (Y ?
c , Z?

c ),

for Y ?
c , Z?

c ∈ {0, 1} in the following four different ways :

• Binary Case 1:

Y ?
c =

{

Not toxic if Yc = Mild or Moderate,

Toxic otherwise,

Z?
c =

{

Not efficacious if Zc = PD or SD,

Efficacious otherwise
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Table 4. Assumed utilities for binary outcomes.

Y ?
c \Z

?
c No Eff. Eff.

No Tox. 33.87 100
Tox. 0 48.39

Y ?
c \Z

?
c No Eff. Eff.

No Tox. 23.33 100
Tox. 0 50

(a) Case 1 (b) Case 2

Y ?
c \Z

?
c No Eff. Eff.

No Tox. 33.33 100
Tox. 0 55.56

Y ?
c \Z

?
c No Eff. Eff.

No Tox. 25.00 100
Tox. 0 57.81

(c) Case 3 (d) Case 4

• Binary Case 2:

Y ?
c =

{

Not toxic if Yc = Mild or Moderate,

Toxic otherwise,

Z?
c =

{

Not efficacious if Zc = PD,

Efficacious otherwise

• Binary Case 3:

Y ?
c =

{

Not toxic if Yc = Mild,

Toxic otherwise,

Z?
c =

{

Not efficacious if Zc = PD or SD,

Efficacious otherwise

• Binary Case 4:

Y ?
c =

{

Not toxic if Yc = Mild,

Toxic otherwise,

Z?
c =

{

Not efficacious if Zc = PD,

Efficacious otherwise

For each of the four binary cases, we find the utilities by taking an average of utilities associated

with their original trinary outcomes and rescaling to make the minimum and maximum to be 0

and 100, respectively. The utilities with the binary outcomes are shown in Table 4.

In addition to the comparison of DTD-O2 with the trinary outcomes to that with binary

outcomes in §4.4 of the main text, we illustrate empirical probabilities of observing the outcomes,

severe toxicity (pt) and PD (pe) in Figure 1. While pt and pe are close for DTD-O2 with the
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trinary outcomes and with binary outcomes, binary case 3 is the most unfavorable as observed

in Figure 2 of the main text. It is also due to many undesirable early terminations of trials.

Fig. 1. Plot of (pt, pe) for comparison to designs with binary outcomes where pt and pe are the probabilities
of having Yic = 2 and Zic = 0, respectively. Note that smaller values are more desirable.
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5. Additional Simulation Results for Comparison to the One-Cycle Designs

SCC1 and SCC2

Recall that the single cycle designs SCC1 assumes no association between cycles and optimzies

d1 and d2 separately, while SCC2 ignores cycle and treats cycle 1 and cycle 2 as if they were

the same. In addition to the criteria ū, Ūtrt and Usel, we evaluated the empirical toxicity and no

efficacy rates for the two cycles, defined as follows. Let δi,c = 1 if patient i was treated in cycle

c and δi,c = 0 otherwise. For each simulated trial with each method, we computed

pt =

∑2

c=1

∑n

i=1 δi,c1(Yi,c = J − 1)
∑2

c=1

∑n

i=1 δi,c

and

pe =

∑2

c=1

∑n

i=1 δi,c1(Zi,c = 0)
∑2

c=1

∑n

i=1 δi,c

.
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Given these empirical probabilities of Yi,c = 2(severe toxic) and Zi,c = 0(SD) in each trial, for

each scenario and method we computed the average of these values over the replicated trials.

Smaller values of pt and pe are more desirable.

Figure 2 illustrates empirical probabilities of observing the severe toxicity (pt) and the PD

(pe). In Scenarios 2 and 4, the proposed DTD-O2 yields smaller values for both pt and pe than

the two competitors. For Scenarios 1, 3, 5 and 6, DTD-O2 assigns patients to possibly higher

toxic but more efficacious treatments, eventually yielding more favorable results in ū, Ūtrt and

Usel, as described in §4.5 of the main text. The figure indicates the slightly poor performance of

DTD-O2 in Scenario 7 as observed in Figure 3 of the main text.

Fig. 2. Plot of (pt, pe) for comparison to SCC1 and SCC2 where pt and pe are the probabilities of having
Yic = 2(sever toxic) and Zic = 0 (PD), respectively. Note that smaller values are more desirable.
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6. Analysis of Sensitivity to λ

We studied the performance of the methods using different values of λ for Scenarios 2 and 5.

Recall that λ is a design parameter used to discount cycle 2 expected utilities in computing total
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utility to select d1. Figures 3 and 4 illustrate ū, Ūtrt, Usel(dsel), pt and pe for λ = 0.0, 0.4, 0.8, 1.0

under each of the two scenarios. Note that ū does not use λ but Ūtrt and Usel(dsel) use λ. Also,

SCC1 and SCC2 do not use λ to determine acceptable actions, their ū stays constant over λ and

their changes in Ūtrt and Ūsel are only due to the change in λ. Results with λ = 0.8 has been used

for comparisons. To show a complete comparison, the results with λ = 0.8 is included. Overall,

λ does not change the relative performance among the methods much as indicated by ū in the

figures. It is observed that a small value of λ results in more early terminated trials under binary

cases 1 and 3 (not shown). It may be because with a small value of λ, the decision of an early

termination less counts cycle 2 outcomes and more relies on cycle 1 outcomes only and a trial is

likely to be terminated even when unfavorable cycle 1 outcomes but favorable cycle 2 outcomes

are observed in its early stage. Interestingly, ū of binary case 3 improves as λ increases as shown

in panel (a) of the figures, but relative performance by Ūtrt and Ūsel becomes more inferior. This

implies that under binary case 3, a trial is less likely to be terminated with a larger value of λ,

leading to a larger ū but this does not necessarily imply that the design makes a better decision.
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Fig. 3. [Scenario 2] Plot of (ū, Ūtrt, Usel, pt, pe) with different values of λ = 0.0, 0.4, 0.8, 1.0.
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Fig. 4. [Scenario 5] Plot of (ū, Ūtrt, Usel, pt, pe) with different values of λ = 0.0, 0.4, 0.8, 1.0.
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