Supporting Information for 'Predicting the epidemic threshold of the susceptible-infected-recovered model'

Wei Wang,^{1,2,3} Quan-Hui Liu,^{1,2} Lin-Feng Zhong,^{1,2} Ming Tang,^{1,2} Hui Gao,^{1,2} and H. Eugene Stanley³

¹Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054, China

²Big data research center, University of Electronic Science and Technology of China, Chengdu 610054, China

³Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA

(Dated: March 11, 2016)

I. SYNCHRONOUS UPDATING METHOD FOR SIR MODEL

III. CORRELATED CONFIGURATION NETWORKS

We implement the synchronous updating method [1] to renew the states of nodes in the SIR model. Initially, a node u is randomly selected as seed (infected), while the remaining nodes are susceptible. Two queues Q_1 and Q_2 are used to store nodes which are infected in previous steps and current step, respectively. At time step t = 0, put the seed node u into the end of Q_1 . When $t \ge 1$, the updating processes at every time step are executed as follows: (1) Set $t \to t + 1$. (2) Every node in Q_1 tries to transmit the disease to each neighbor v. If node v is susceptible, v becomes infected with probability β , and node v is put into the end of queue Q_2 ; otherwise, nothing happens. (3) Every node u in Q_1 recovers with probability γ . If node u recovers, we move it from Q_1 . (4) Add all nodes of Q_2 at the rear of Q_1 , and delete all nodes in Q_2 . Repeat steps (1)-(4) until all infected nodes become recovered. Finally, we count the fraction of nodes being in the recovered state, which is denoted as the epidemic size r.

II. NUMERICAL IDENTIFYING EPIDEMIC THRESHOLD

We use the relative variance χ to numerically determine the sizedependent critical value [2]

$$\chi = \frac{\langle r - \langle r \rangle \rangle^2}{\langle r^2 \rangle},\tag{1}$$

where r denotes the final epidemic size and $\langle \cdots \rangle$ is the ensemble averaging. We use at least 10^5 independent dynamic realizations on a network to calculate the average value of χ , which exhibits a maximum value at the epidemic outbreak threshold λ_c . This numerical prediction λ_c by observing χ can be considered the accurate epidemic threshold.

Figure 1 shows how λ_c is located by observing χ in a scale-free network and a California network. In scale-free networks with degree exponent $\nu_D = 3.5$, we find that the MFL and DMP methods produce results close to the accurate epidemic threshold λ_c . In the California network, the epidemic threshold predicted by MFL method is closer to λ_c than the two other methods.

We generate the correlated configuration networks according to the method in Ref. [3]. As shown in Fig. 2, the DMP method performs better than MFL and QMF methods.

FIG. 1. (Color online) **Illustrations of the numerical identification** of epidemic threshold. The epidemic size r (a) and relative variance χ (c) versus the effective spreading probability λ on scale-free networks with degree exponent $\nu_D = 3.5$. The epidemic size r (b) and relative variance χ (d) versus λ for California network [22]. In (a) and (b), the solid black curves denote r and χ , respectively. The four vertical lines are the epidemic thresholds which are predicted by the numerical simulations λ_c (red solid lines), MFL method $\lambda_c^{\rm MFL}$ (blue dished lines), QMF method $\lambda_c^{\rm QMF}$ (green dish-dotted lines), and DMP method $\lambda_c^{\rm DMP}$ (purple dotted lines), respectively.

IV. REAL-WORLD NETWORKS

In this paper, we predict the SIR epidemic threshold for 56 realnetworks, which are downloaded from website [4]. The 56 include social networks, coauthorship networks, metabolic networks, infrastructure networks, and citation networks. Table I displays their statistical characteristics in detail.

FIG. 2. (Color online) **Predicting epidemic thresholds for correlated configuration networks.** Theoretical predictions of $\lambda_c^{\rm MFL}$ (black circles), $\lambda_c^{\rm QMF}$ (blue up triangles), $\lambda_c^{\rm DMP}$ (green left triangles) and numerical predictions (red squares) as a function of degree-degree correlations r for degree exponent $\nu_D = 2.1$ (a) and $\nu_D = 3.5$ (b). The networks size is set to be N = 8,000.

- [1] Schonfisch, B. & De Roos, A. Synchronous and asynchronous updating in cellular automata. Bio. Syst. **51**, 123 (1999).
- [2] Chen, W., Schroder, M., & D'Söuza, M. R. Microtransition Cascades to Percolation. *Phys. Rev. Lett.* **112**, 155701 (2014).
- [3] Van Mieghem, P., et al. Influence of assortativity and degreepreserving rewiring on the spectra of networks. Eur. Phys. J. B 76(4), 643-652 (2010).
- [4] http://konect.uni- koblenz.de/networks/
- [5] Leskovec, J., Kleinberg, J. & Faloutsos, C. Graph evolution: Densification and shrinking diameters. ACM Trans. Knowledge Discovery from Data. 1(1), 1-40 (2007).
- [6] Yang, J. & Leskovec, J. Defining and evaluating network communities based on ground-truth. *In Proc. ACM SIGKDD Workshop on Mining Data Semantics*. 3 (2012).
- [7] Massa, P., Salvetti, M., & Tomasoni, D. Bowling alone and trust decline in social network sites. *In Proc. Int. Conf. Dependable, Autonomic and Secure Computing*. 658-663 (2009).
- [8] McAuley, J. & Leskovec, J. Learning to discover social circles in ego networks. *In Advances in Neural Information Processing Systems.* 548-556 (2012).
- [9] Choudhury, M. D., *et al.* How does the data sampling strategy impact the discovery of information diffusion in social media? *In ICWSM*. 34-41 (2010).
- [10] McAuley, J. & Leskovec, J. Learning to discover social circles in ego networks. *In Advances in Neural Information Processing Systems*. 548-556 (2012).
- [11] Cho, E., Myers, S. A. & Leskovec, J. Friendship and mobility: User movement in location-based social networks. *In Proc. Int. Conf. on Knowledge Discovery and Data Mining*. 1082-1090 (2011).
- [12] Richardson, M., Agrawal, R. & Domingos, P. Trust management for the semantic web. *In The Semantic Web-ISWC*. 351-368 (2003).
- [13] Mislove, A., *et al.* Measurement and analysis of online social networks. *In Proc. Internet Measurement Conf.* (2007).
- [14] Viswanath, B., et al. On the evolution of user interaction in Facebook. In Proc. Workshop on Online Social Networks. 37-42 (2009).

- [15] Cho, E., Myers, S. A. & Leskovec, J. Friendship and mobility: User movement in location-based social networks. *In Proc. Int. Conf. on Knowledge Discovery and Data Mining*. 1082-1090 (2011).
- [16] Duch, J. & Arenas, A. Community detection in complex networks using extremal optimization. *Phys. Rev. E* 72(2), 027104 (2005).
- [17] Joshi-Tope, G., *et al.* Reactome: A knowledgebase of biological pathways. *Nucleic Acids Research.* 33, 428-432 (2005).
- [18] Ewing, R. M. *et al.* Large-scale mapping of human proteinprotein interactions by mass spectrometry. *Molecular Systems Biology*. 3 (2007).
- [19] Stelzl, U., et al. A human protein-protein interaction network: A resource for annotating the proteome. Cell. 122, 957-968 (2005).
- [20] Beuming, T., et al. PDZBase: A protein-protein interaction database for PDZ-domains. *Bioinformatics*. 21(6), 827-828 (2005).
- [21] Rual, J.-F., *et al.* Towards a proteome-scale map of the human protein-protein interaction network. *Nature*. **7062**, 1173-1178 (2005).
- [22] Leskovec, J., et al. Statistical properties of community structure in large social and information networks. In Proc. Int. World Wide Web Conf. 695-704 (2008).
- [23] Šubelj, L. & Bajec, M. Robust network community detection using balanced propagation. *Eur. Phys. J. B.* 81(3), 353-362 (2011).
- [24] Leskovec, J., *et al.* Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics. 6(1), 29-123 (2009).
- [25] Opsahl, T., Agneessens, F. & Skvoretz, J. Node centrality in weighted networks: Generalizing degree and shortest paths. *Social Networks*. 3(32), 245-251 (2010).
- [26] Bollacker, K., Lawrence, S. & Giles, C. L. CiteSeer: An autonomous Web agent for automatic retrieval and identification of interesting publications. *In Proc. Int. Conf. on Autonomous Agents.* 116-123 (1998).
- [27] Šubelj, L. & Bajec, M. Model of complex networks based on citation dynamics. In Proceedings of the WWW Workshop on

TABLE I. Statistical characteristics and the theoretical epidemic thresholds of the 56 real-world networks. The statistical characteristics including the network size (N), number of edges (E), minimum degree (k_{min}) , maximum degree (k_{max}) , first $(\langle k \rangle)$ and second moments $(\langle k^2 \rangle)$ of degree distribution, degree-degree correlations (c), clustering (c), modularity (Q), the inverse participation ratios of the adjacent matrix $IPR(\Lambda_A^1)$ and non-backtracking matrix $IPR(\Lambda_M^1)$). The theoretical epidemic thresholds are the MFL method (λ_c^{MFL}) , the QMF method (λ_c^{QMF}) and DMP method (λ_c^{DMP}) .

Category	Networks	Statistical Characteristics of Networks										Theoretical Epidemic Thresholds		
		N	E	kmar	$\langle k \rangle$	$\langle k^2 \rangle$	r	c	Q	$IPR(\Lambda^{1}_{A})$	$IPR(\Lambda^{1}_{M})$	$\lambda_{-}^{\rm MFL}$	λ_{-}^{QMF}	λ_{-}^{DMP}
Coauthorship	arXiv astro-ph [30]	17903	196972	504	22.004	1445.8	0.201	0.318	0.493	0.004	0.004	0.015	0.011	0.011
	arXiv hep-ph [30]	28045	3148414	4909	224 53	149810	0.033	0.28	0.408	0.0006	0.0006	0.002	0.001	0.001
	arXiv hep-th [30]	22721	2444642	8718	215 19	188080	-0.034	0.269	0.328	0.0008	0.0008	0.001	0.001	0.001
	DBLP co-authorship [6]	317080	1049866	343	6.622	144 01	0.267	0.306	0.734	0.008	0.008	0.048	0.009	0.009
	Advogato [7]	5042	30227	803	15 56	1284	_0.096	0.092	0.337	0.009	0.000	0.012	0.007	0.005
Social	Google+[8]	23613	30182	2761	3 310	1251.7	_0.389	0.002	0.725	0.005	0.015	0.003	0.014	0.015
	Twitter (ICWSM) [0]	465017	833540	677	3 585	812.11	-0.878	0.004	0.725	0.000	0.015	0.003	0.012	0.021
	Twitter lists [20]	22222	31873	238	2 851	112.05	_0.010	0.0000	0.005	0.001	0.022	0.004	0.012	0.015
	Eacobook (NIPS) [20]	22322	2021	760	2.051	528.12	0.45	0.022	0.808	0.040	0.022	0.020	0.042	0.030
	Gowelle [11]	106501	050227	14720	0.669	2064	-0.008	0.0004	0.609	0.244	0.012	0.004	0.030	0.134
	Eninions [12]	75977	405720	2044	9.008	1066.5	-0.029	0.025	0.021	0.018	0.003	0.005	0.000	0.000
	Lipinions [12]	1700	12476	272	12.055	625 61	-0.041	0.000	0.360	0.002	0.002	0.005	0.005	0.000
	Voutubo friendship [4]	1/00	12470	212	5 265	2602.7	-0.089	0.09	0.590	0.01	0.009	0.022	0.022	0.025
	Homotorotor full [4]	2000	16000	28734	3.203	2005.7	-0.037	0.000	0.052	0.048	0.003	0.002	0.005	0.003
	Hamsterster full [4]	2000	10098	275	10.098	/04./1	0.025	0.25	0.45	0.009	0.008	0.025	0.02	0.021
	Foutube links [15]	(2202	298/408	28/4/	3.203	2001.1	-0.037	0.000	0.057	0.048	0.005	0.002	0.005	0.005
	Facebook Friendships [14]	63392	810831	1098	25.771	2208.9	0.177	0.148	0.500	0.001	0.001	0.011	0.008	0.008
	Brightkite [15]	30/39	212945	007	7.506	480.01	0.01	0.111	0.591	0.006	0.006	0.016	0.010	0.010
Metabolic	Caenornabditis elegans [16]	455	2025	237	8.9404	558.49	-0.226	0.124	0.401	0.038	0.025	0.0256	0.038	0.043
	Reactome [1/]	59/3	145778	855	48.812	6995.1	0.241	0.606	0./19	0.004	0.004	0.007	0.005	0.005
	Human protein (Figeys) [18]	2217	6418	314	5.79	324.93	-0.332	0.008	0.472	0.027	0.017	0.018	0.032	0.036
	Human protein (Stelzi) [19]	1615	3106	95	3.846	65.648	-0.202	0.006	0.601	0.02	0.016	0.062	0.057	0.065
	PDZBase [20]	101	209	21	2.590	15.255	-0.400	0.003	0.755	0.1	0.05	0.205	0.171	0.248
	Human protein (Vidal) [21]	2783	6007	129	4.317	68.103	-0.137	0.035	0.615	0.029	0.012	0.068	0.063	0.076
Infrastructure	California [22]	195/02/	2/60388	12	2.821	8.9412	0.121	0.06	0.991	0.085	0.032	0.461	0.216	0.301
	Euroroad [23]	1039	1305	10	2.512	1.1536	0.09	0.035	0.862	0.0493	0.016	0.479	0.249	0.391
	Iexas [24]	1351137	18/9201	12	2.782	8.75	0.127	0.06	0.99	0.112	0.041	0.466	0.204	0.281
	Pennsylvania [24]	108/562	1541514	9	2.835	9.07	0.122	0.059	0.988	0.109	0.027	0.455	0.226	0.322
	Air trainc control [4]	1220	2408	34	3.928	28.899	-0.015	0.064	0.080	0.019	0.012	0.157	0.109	0.134
Citation	OpenFlights [25]	2905	13045	242	10.771	001.45	0.049	0.255	0.581	0.01	0.009	0.018	0.010	0.016
	arXiv nep-ph [50]	34401	420784	840	24.403	1555.4	-0.006	0.140	0.555	0.004	0.003	0.016	0.013	0.013
	arXiv nep-th [50]	2/400	352021	2408	25.095	2/33.8	-0.03	0.12	0.525	0.009	0.005	0.009	0.009	0.009
	Care sitution [27]	22166	20157	1739	9.452	430.97	-0.005	0.05	0.004	0.018	0.007	0.021	0.017	0.019
		12405	40562	700	7.097	247.29	-0.033	0.117	0.085	0.01	0.008	0.044	0.032	0.034
	DBLP [20]	12495	49303	5425	1.955	15204	-0.040	0.002	0.558	0.028	0.011	0.025	0.025	0.020
Misc	FIICKI [29]	103722	2310008	3423	45.820	270.15	0.247	0.402	0.054	0.001	0.001	0.005	0.002	0.002
	Anazon (TwEB) [50]	403304	2445511	100	27.07	1070.2	-0.018	0.100	0.74	0.089	0.003	0.034	0.017	0.025
HumanSocial	Jazz musicians [51]	198	2742	100	27.097	10/0.2	0.02	0.52	0.439	0.014	0.014	0.027	0.025	0.026
	Addrescent health [52]	2339	10455	27	8.230 7.040	80.414 70.162	0.231	0.142	0.397	0.022	0.017	0.105	0.070	0.084
	Payta views [20]	6474	12572	1459	2 001	640.09	-0.084	0.175	0.572	0.023	0.018	0.112	0.099	0.114
Computer Communication	CAIDA [20]	04/4	52201	1438	3.004	1120.1	-0.162	0.01	0.612	0.087	0.022	0.000	0.022	0.029
	CAIDA [50]	20473	147070	2028	4.055	54.96	-0.195	0.007	0.039	0.024	0.01	0.004	0.014	0.017
	U Dovino i Vingili [25]	1122	5451	95	4.728	170.82	-0.095	0.004	0.502	0.001	0.001	0.094	0.070	0.087
	U. Kovira i virgili [55]	224922	220025	7(2)	9.022	179.62	0.078	0.100	0.311	0.01	0.008	0.037	0.048	0.032
	EU Institution [50]	145145	559925	1000	5.024	502.2	-0.189	0.004	0.729	0.005	0.005	0.002	0.01	0.01
Lexical	WordiNet [50]	145145	0050	264	9.042	505.2	-0.063	0.090	0.704	0.028	0.024	0.018	0.014	0.015
	Ning Jailles [4]	112	425	304	7 5 80	441.65	-0.052	0.102	0.401	0.025	0.017	0.023	0.025	0.027
Hyperlink	David Coppenieid [57]	112	423	49	10.052	104.34	-0.129	0.137	0.293	0.047	0.034	0.078	0.076	0.087
	Google.com internal [38]	15/05	148383	10721	18.852	10998	-0.122	0.013	0.48	0.043	0.021	0.001	0.006	0.006
	Notre Dame [39]	323729	1041026	10/21	0.095	18/8./	-0.053	0.088	0.927	0.023	0.008	0.004	0.005	0.000
Trophic	Staniord [24]	255205	1941920	38023	13.213	30898	-0.110	0.009	0.892	0.024	0.022	0.0003	0.002	0.002
	Little Rock Lake [40]	183	2434	105	20.001	1140.9	-0.267	0.352	0.345	0.015	0.014	0.024	0.024	0.025
	Florida accessitem ary [41]	128	2100	110	32.906	1332./	-0.104	0.314	0.140	0.015	0.014	0.025	0.025	0.026
	Dolphing [42]	62	150	12	5 1 20	24.002	-0.112	0.312	0.157	0.013	0.014	0.020	0.023	0.020
Animai Animal	Dolphins [42]	02	139	12	3.129	34.903	-0.044	0.309	0.495	0.055	0.044	0.172	0.139	0.10/
ContineContact	Fretty Good Privacy [43]	10080	24510	205	4.554	85.976	0.238	0.378	0.84/	0.017	0.016	0.056	0.024	0.024
Sontware	Linux [4]	30817	213208	9338	15.857	11/98	-0.175	0.003	0.427	0.026	0.015	0.001	0.006	0.006

Large Scale Network Analysis. 527-530 (2013).

- [28] Ley, M. The DBLP computer science bibliography: Evolution, research issues, perspectives. In Proc. Int. Symposium on String Processing and Information Retrieval. 1-10 (2002).
- [29] McAuley, J. & Leskovec, J. Learning to discover social circles in ego networks. *In Advances in Neural Information Processing Systems*, 548-556 (2012).
- [30] Leskovec, J., Adamic, L. A. & Huberman, B. A. The dynamics of viral marketing. *ACM Trans. on the Web.* **1**(1) (2007).
- [31] Gleiser, P. M. & Danon, L. Community structure in jazz. Advances in Complex Systems. 6(4), 565-573 (2003).
- [32] Moody, J. Peer influence groups: Identifying dense clusters in large networks. *Social Networks*. 23(4), 261-283 (2001).
- [33] Coleman, J., Katz, E. & Menzel, H. The diffusion of an innovation among physicians. *Sociometry*. 253-270 (1957).
- [34] Ripeanu, M., Foster, I. & Iamnitchi, A. Mapping the Gnutella network: Properties of large-scale peer-to-peer systems and implications for system design. *IEEE Internet Computing J.* 6 (2002).

- [35] Guimerà, R., *et al.* Self-similar community structure in a network of human interactions. *Phys. Rev. E* 68(6), 065103 (2003).
- [36] Fellbaum, C. WordNet: an Electronic Lexical Database (MIT Press, 1998).
- [37] Newman, M. E. J. Finding community structure in networks using the eigenvectors of matrices. *Phys. Rev. E* 74(3), 036104 (2006).
- [38] Palla, G., et al. Directed network modules. New J. Phys. 9(6), 186 (2007).
- [39] Albert, R., Jeong, H. & Barabási, A.-L. Internet: Diameter of the world-wide web. *Nature*. **401**(6749), 130-131 (1999).
- [40] Martinez, N. D., *et al.* Artifacts or attributes? effects of resolution on the Little Rock Lake food web. *Ecological Monographs*. 61, 367-392 (1991).
- [41] Ulanowicz, R. E., *et al.* Annual Report to the United States Geological Service Biological Resources Division Ref. No.[UMCES] CBL 00-0176, Chesapeake Biological Laboratory, University of Maryland (2000).
- [42] Lusseau, D., et al. The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology. 54, 396-405 (2003).
- [43] Boguñá, M., et al. Models of social networks based on social distance attachment. Phys. Rev. E 70(5), 056122 (2004).