Supplemental Material

	Ouartiles of GlycA, umol/L			
	<364	364-404	404-449	>449
	(n=3,196)	(n=3,091)	(n=3,130)	(n=3,110)
Age, years	66 (60, 71)	65 (60, 71)	66 (60, 71)	66 (61, 71)
Women, %	24.0	33.7	40.5	47.1
Race/ethnicity, %				
White	86	85	84	73
Black	3.1	4.2	5.9	15
Asian	1.8	1.1	1.4	1.6
Hispanic	9.1	8.9	8.4	8.9
Other/unknown	0.4	0.7	0.9	1.2
BMI, kg/m^2	28 (25, 31)	29 (26, 32)	29 (26, 33)	28 (25, 33)
Hypertension	51.1	53.9	58.1	60.8
HbA1c, %	5.6 (5.3, 5.8)	5.6 (5.4, 5.9)	5.7 (5.5, 5.9)	5.8 (5.5, 6.0)
hsCRP, mg/L	3.0 (2.3, 4.4)	3.6 (2.6, 5.4)	4.4 (3.1, 6.9)	7.1 (4.3,13.2)
Family history CHD, %	12.6	12.5	12.7	12.7
LDL-c, mg/dL	109 (95, 119)	110 (97, 120)	110 (96, 120)	107 (92, 118)
HDL-c, mg/dL	50 (41, 61)	49 (41, 60)	49 (41, 60)	49 (40, 60)
Triglycerides, mg/dL	101 (74, 140)	114 (83, 162)	124 (91, 180)	129 (94, 186)
Smoker*, %	10.3	13.7	15.5	20.8
Alcohol [†] , %	23.9	23.7	21.9	18.1

Online Table I: Baseline clinical and biochemical variables by GlycA quartile in JUPITER.

Abbreviations: BMI = body-mass index, BP = blood pressure, CHD = coronary heart disease, hsCRP = high sensitivity C-reactive protein, LDL-c = low density cholesterol. Data presented as median (25^{th} , 75^{th} percentile) otherwise as percent where indicated. *Current or former. †Alcohol consumption ≥ 1 drink/day. By Wilcoxon rank sum or $\chi 2$ test, p ≤ 0.01 except for HDL (p=0.10) and family history of CHD (p=0.99). **Online Table II:** Hazard ratios per-standard deviation increment associated with GlycA and hsCRP and mortality in JUPITER based on 12-month (on-treatment) measurement of GlycA and hsCRP after 12 months' of rosuvastatin 20 mg (N= 4,926 participants with 52 deaths).

	HR (95% CI)	P-value
	GlycA	
All-Cause Mortality		
Unadjusted	1.85 (1.59, 2.15)	< 0.0001
Adjusted for clinical variables*	1.70 (1.42, 2.04)	< 0.0001
Adjusted for clinical variables*(and CRP**	1.67 (1.36, 2.06)	< 0.0001
	hsCRP	
All-Cause Mortality		
Unadjusted	1.37 (1.15, 1.64)	0.001
Adjusted for clinical variables*	1.31 (1.08, 1.58)	0.005
Adjusted for clinical variables* and GlycA	1.04 (0.85, 1.27)	0.728

Abbreviations: CI = confidence interval, HR = hazard ratio, hsCRP = high sensitivity C-reactive protein. *Models adjusted for age, race, family history of coronary heart disease, hypertension, smoking, alcohol use, body mass index, HbA1c, LDLc, HDLc, log-transformed triglycerides, and randomization arm. **Natural log-transformed.

01 02 03 **O4** P for trend HR (95% CI) for GlycA among individuals in the lowest quartile[†] of hsCRP (N=6,918) 326-369 µmol/L 369-416 µmol/L <326 µmol/L >416 µmol/L (n=3.832)(n=1,940)(n=888)(n=258)All-Cause Mortality (647 deaths) Unadjusted 1.19 (0.99, 1.44) 1.72 (1.38, 2.13) 2.76 (2.05, 3.73) < 0.0001 Ref. 0.96 (0.79, 1.17) 1.49 (1.05, 2.11) 0.013 Model 1 1.28 (1.01, 1.63) Ref. **CVD Mortality** (104 deaths) 0.70 (0.42, 1.16) 1.35 (0.79, 2.32) 2.89 (1.48, 5.66) 0.031 Unadjusted Ref. Model 1 Ref. 0.48 (0.28, 0.83) 0.74 (0.40, 1.37) 0.75 (0.32, 1.75) 0.220 **Cancer Mortality** (208 deaths) 1.51 (1.03, 2.21) 0.010 Unadjusted Ref. 1.09 (0.79, 1.50) 1.87 (1.03, 3.40) Model 1 0.99 (0.70, 1.39) 1.37 (0.90, 2.09) 1.52 (0.77, 3.00) Ref. 0.119 HR (95% CI) for hsCRP** among individuals in the lowest quartile⁺ of GlycA (N=6,996) <0.81 mg/L 0.81-2.1 mg/L 2.1-4.4 mg/L >4.4 mg/L (n=3,832)(n=2,013)(n=282) (n=869) All-Cause Mortality (664 deaths) Ref. Unadjusted < 0.0001 1.41 (1.18, 1.68) 1.63 (1.31, 2.03) 1.81 (1.28, 2.54) 1.01 (0.79, 1.29) 1.05 (0.72, 1.52) Model 1 1.08 (0.90, 1.31) Ref. 0.790 **CVD Mortality** (103 deaths) 0.82 (0.51, 1.32) 1.21 (0.68, 2.13) 1.79 (0.82, 3.93) Unadjusted 0.297 Ref. Model 1 Ref. 0.60(0.36, 1.01)0.69(0.37, 1.29)0.99(0.42, 2.34)0.378 **Cancer Mortality** (237 deaths) 1.55 (1.16, 2.06) 1.92 (1.35, 2.74) 0.83 (0.36, 1.88) 0.005 Unadjusted Ref. Ref. 1.37 (1.01, 1.86) 1.51 (1.02, 2.23) 0.64 (0.27, 1.50) Model 1 0.467

Online Table III: All-cause mortality risk at times of biomarker (GlycA or hsCRP) discordance: risk associated with GlycA when hsCRP is $<25^{th}$ percentile and for hsCRP when GlycA is $<25^{th}$ percentile, in WHS.

Abbreviations: $CI = confidence interval, HR = hazard ratio, hsCRP = high sensitivity C-reactive protein. Model 1 is adjusted for age, race, family history of myocardial infarction, hypertension, smoking, alcohol use (<math>\geq 1 drink/day$), body mass index, HbA1c, LDLc, HDLc, log-transformed triglycerides, and randomization arm. Further adjustment of GlycA and hsCRP (Model 2) for each other produced no appreciable change in the results. *During maximal follow-up. **Natural-log transformed for regression analyses. †For consistency, quartiles are a used in the primary analyses.

Online Figure I: Schematic example of tri-antennary N-acetyl linked glycan chain, with N-acetylglucosamine (GlcNAc) contributing to the GlycA signal (red box). GlycA identifies bi-, tri-, and tetra-antennary N-linked glycan chains with $\beta 1 \rightarrow 2$ and $\beta 1 \rightarrow 6$ mannose-GlcNAc linkage. Asparagine represents the universal amino acid site for N-glycosylation. (Modified from Otvos *et al. Clinical Chemistry* 2015.¹⁰)

Online Figure II: Median (25th, 75th percentile) percentage change in hsCRP and GlycA after 12 months of rosuvastatin therapy in JUPITER.

