Class	Compound	Structure	EC50 (nM)	Vmax	ΔPD (mV)
A	CFTR _{act} -A043	HO NH NH	332	89%	-8.6 <u>+</u> 0.49
В	CFTR _{act} -B018		685	86%	-2.5 <u>+</u> 0.43
В	CFTR _{act} -B074		340	93%	-9.9 <u>+</u> 0.99
В	CFTR _{act} -B089		377	91%	-3.4 <u>+</u> 0.53
В	CFTR _{act} -B156		571	93%	-3.1 <u>+</u> 1.1
E	CFTR _{act} -E053		385	94%	-4.1 <u>+</u> 1.0
J	CFTR _{act} -J027	H ₂ N N O NO ₂	138	90%	-9.1 <u>+</u> 0.39

Supplementary Table 1. Chemical structures and data for CFTR activators.

К	CFTR _{act} -K032	N N N N N N N N N N	70	97%	-10 <u>+</u> 1.1
K	CFTR _{act} -K089		251	93%	-8.5 <u>+</u> 0.81
О	CFTR _{act} -O018		752	93%	-5.7 <u>+</u> 1.8
О	CFTR _{act} -O037		513	82%	
Q	CFTR _{act} -Q022		802	90%	
Q	CFTR _{act} -Q86		640	93%	
R	CFTR _{act} -R014	S N N S O N O F	21	100%	-14 <u>+</u> 0.42

R	CFTR _{act} -R053	399	98%	
R	CFTR _{act} -R088	379	95%	
R	CFTR _{act} -R101	174	94%	
R	CFTR _{act} -R103	126	100%	
R	CFTR _{act} -R142	31	100%	
R	CFTR _{act} -R176	36	100%	
R	CFTR _{act} -R185	35	94%	

ref. 27		2000	65%	-2.5 <u>+</u> 0.38
ref. 27	N NO_2 N N NO_2 N N F F	400	49%	-7.4 <u>+</u> 0.90
VX-770	O O O O O O O O O O O O O O O O O O O	Variable	39%	-1.8 <u>+</u> 0.29

Compounds identified in primary and analog screening were grouped into 8 chemical classes. EC_{50} and Vmax against human CFTR were determined from Isc measurement on FRT-CFTR cells. 100% CFTR activation was defined as that produced by 20 mM forskolin. Measurements of ocular surface PD were performed in wild-type CD1 mice. Summary of Δ PD produced by 1mM test compound (low Cl- perfusate containing amiloride; mean \pm SE, n \geq 3 independent experiments per activator).