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Materials and Methods 
Cell Culture 

All cells were cultured in incubators at 37°C with 5% CO2. GM12878 and HL-60 
were maintained in RPMI 1640 medium (Gibco cat. no. 11875) containing 15% FBS, 
100U/ml penicillin and 100μg/ml streptomycin. GM12878 flasks were counted and split 
to 300,000 cells/ml three times a week. HL-60 flasks were counted and split to 100,000 
cells/ml three times a week. Patski embryonic kidney fibroblast and HEK293T cells were 
maintained in DMEM (Gibco cat. no. 11965) with 10% FBS, 100U/ml pencillin and 
100μg/ml streptomycin. Patski cells were trypsinized three times a week and split 1:5 
unless they were less than 50% confluent, in which case media was replaced and cells 
were allowed to continue growth. HEK293T cells were trypsinized and split 1:10 three 
times a week. 
 
Sample Processing 

Adherent lines were trypsinized, and then both adherent and suspension cells were 
washed once in PBS. Cells were combined and then lysed (2,500 cells per tagmentation 
reaction) using cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 
0.1% IGEPAL CA-630; (4)) supplemented with protease inhibitors (Sigma). The isolated 
nuclei were then pelleted and resuspended in Nextera TD buffer (Illumina) for 
tagmentation. Nuclei were distributed onto 96-well plates and 2.5μM Tn5 (each well of 
the plate contained a unique barcode combination) was added to each well as previously 
described (17, 18). The tagmentation reaction was carried out for 30 minutes at 37°C and 
then the reaction was stopped by adding 40mM EDTA to each well. The nuclei were 
incubated for another 15 minutes at 37°C and then all nuclei were pooled. The pooled 
nuclei were then sorted on a FACSAria II cell sorter (BD). 15 nuclei (on the basis of 
forward- and side-scatter) were sorted into each well of a 96-well plate containing 20μl of 
EB buffer for the human/mouse mixture experiment. For the two experiments involving 
mixtures of human cells, nuclei were first stained with DAPI (Invitrogen) at a final 
concentration of 3μM and then 25 DAPI-positive nuclei were sorted into each well of a 
plate with 20μl EB buffer. Tn5 was released from the DNA and libraries were amplified 
20 cycles while incorporating standard Nextera library barcodes following the protocol 
described in (17, 18). After the initial three experiments described in the paper, we 
switched to a set of 10bp library barcodes that were otherwise identical to the standard 
Nextera library adapters to allow us to sequence multiple experiments in parallel. After 
PCR, samples were pooled and cleaned with a Clean & Concentrator kit (Zymo). Sample 
concentrations were determined by Qubit (Invitrogen) and the libraries were run on a 
diagnostic 6% PAGE gel. 
 
Sequencing 

Libraries were sequenced on a MiSeq (Illumina) using a v2 300 cycle kit and a 
custom recipe (paired end 51bp reads with index reads that covered both the Tn5 barcode 
and the library amplification barcode) and custom primers as described in (17, 18). 
Libraries were loaded at 15pM. Base calls were converted to the qseq format with 
Illumina’s offline basecaller (OLB v1.9.3) and then converted to fastq format with a 
custom pipeline. Barcodes that did not match any of the expected barcodes exactly were 
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converted to the closest barcode if the edit distance was no greater than 3 and there were 
no secondary matches within an additional 1 base pair edit distance. Subsequently, reads 
were trimmed with Trimmomatic (24) and then mapped to an appropriate reference 
genome with BWA (25). For the human/mouse mixture, we created a chimeric reference 
genome of hg19 and mm9 after removing sequences that were not a part of the reference 
chromosomes. The human cell line mixtures were mapped to hg19 after removing 
sequences that were not a part of the reference chromosomes. Reads mapping to the 
mitochondrial genome and reads mapping with a quality less than 10 were removed. 
Finally, all fragments in the same library with duplicate start and end coordinates were 
removed using Picard (http://broadinstitute.github.io/picard). For RNA-seq, RNA was 
extracted with the RNeasy kit (Qiagen) and libraries were constructed with the standard 
TruSeq kit (Illumina). RNA quality and concentration were confirmed by Agilent 
Bioanalyzer, using the RNA 6000 Nano kit. Samples were multiplexed and sequenced 
(75bp single-end) on an Illumina NextSeq. Libraries were then mapped to the human 
genome (hg19) with TopHat (26) and gene expression levels were quantified with 
Cufflinks and Cuffdiff 2 (27). 
 
Data Analysis 
Calculating the barcode collision rate 

An important parameter of our experimental design is the barcode collision rate (the 
fraction of barcodes that represent more than one nucleus out of all barcodes observed in 
a given experiment). The expected rate can be calculated in a straightforward manner 
based on the classic birthday problem (28) as a function of the total number of barcodes 
available to draw from (96 tagmentation barcodes in our experiments) and the number of 
nuclei sorted into each well of the PCR plate. If we assume that we are equally likely to 
sort nuclei from any of the tagmentation reactions into any given well of the PCR plate, 
we can calculate the expected collision rate as 96 – the expected number of barcodes 
representing one or zero nuclei. The expected number of barcodes not representing any 
nuclei in an experiment can be calculated as:  
 
(# 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) ∗ (1 − 1

# 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
)(# 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)    (1) 

 

And the number of barcodes expected to represent exactly one cell is: 

(# 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) ∗ (1 − 1
# 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

)(# 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑑𝑑−1)   (2) 
 
Because some collisions will involve nuclei of the same type, we can only observe 
approximately half of the barcode collisions that actually occur in our experiments. To 
estimate the actual barcode collision rate in each experiment, we: (1) Calculated the 
number of nuclei that appeared to be mixtures of two cell types; (2) Based on the ratio of 
cell types to one another within any given experiment, adjusted this count to account for 
the fact that collisions involving nuclei of the same cell type will be unobserved; (3) 
Made the simplifying assumption that collisions never involved more than two nuclei (as 
this should be true for the vast majority of collisions). We observe relatively high 
variance in the representation of the 96 transposase barcodes in our experiments (Fig. 
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S1A shows distribution of transposase barcodes for the all experiments experiments; Fig. 
S1B shows the distribution of PCR barcodes for comparison in the first three experiments 
described in the main text), however, our observed collision rates for the experiments 
seem well aligned with the theoretical expectation. We tried to estimate the effect the 
non-uniform distribution of barcodes might have on our observed collision rate by 
simulating barcodes drawn from a random Poisson process with the relative probabilities 
of each barcode set by the observed frequencies of transposase barcodes. However, the 
resulting total collision rates estimated for each experiment seemed to match reasonably 
well with the theoretical expectation (Fig. S1C).  

 
Determining accessible hypersensitive sites in single cells 

To identify sites of accessible chromatin in individual cells, we first created 
reference maps of hypersensitive sites independently determined by the ENCODE 
Consortium using DNase I sequencing. To catalog hypersensitive sites in the 
GM12878/Patski comparison and the GM12878/HL-60 comparison, we downloaded 
hypersensitivity maps produced by the Stamatoyannopoulos lab from the ENCODE 
website (https://www.encodeproject.org). This group identified hypersensitive sites using 
an algorithm called ‘Hotspot’ (29) and provided hypersensitivity maps for two replicates 
for each sample. For each sample we downloaded the ‘hotspot’ files for each replicate. 
For the comparison of GM12878 and Patksi cells, hotspots for replicate samples were 
intersected and used as reference hypersensitive sites using BedTools (30). For the 
comparisons between GM12878 and HL-60, replicates were intersected separately for 
each cell line and then sites from the two cell lines were merged into a single reference 
using BedTools. For the GM12878 and HEK293 comparison, we downloaded 
hypersensitive sites produced by the Crawford lab (as maps for HEK293 were not 
produced by the Stamatoyannopoulos lab). This group produced hypersensitive maps 
(without replicates) using an algorithm called ‘F-seq’ (31). The DHS maps from each cell 
line were merged into a single reference using BedTools. In all analyses, hotspots or F-
seq peaks overlapping regions of the genome blacklisted by ENCODE 
(https://sites.google.com/site/anshulkundaje/projects/blacklists) were filtered out. For the 
identification of sites differentially accessible between GM12878 and HL-60 (below), we 
also filtered out hypersensitive sites overlapping known CNVs from either cell line. HL-
60 and GM12878 CNV coordinates determined by the ENCODE Consortium (22) were 
downloaded from http://genome.ucsc.edu. In addition, chromosomes 18, X and Y were 
excluded from analysis, as they are known to be aneuploid in HL-60. Reads overlapping 
ENCODE hypersensitive sites (22) were then identified with a custom python script 
using pysam (https://github.com/pysam-developers/pysam) to produce a matrix of the 
counts of reads overlapping each individual hypersensitive site (rows) for each individual 
cell (columns). This matrix was then converted to a binary matrix such that if a cell had at 
least one read overlapping a given hypersensitive site, it was considered accessible in that 
cell.  

 
Comparing with bulk ATAC-seq 

For comparison with previously published ATAC-seq data, we downloaded fastq 
files for the 500 cell replicates from GEO accession GSE47753 (4) and processed the 
samples through our mapping pipeline. Briefly, reads were first trimmed to for 
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sequencing adapters and truncated to 51 bp with Trimmomatic, and then mapped to the 
human genome with BWA. Finally, duplicate reads were removed with Picard. After 
these steps, the number of reads overlapping each hypersensitive site were counted using 
pysam. 

 
Evaluating the complexity of sequenced libraries 

PCR duplication rates and library complexity estimates were determined for 
mappable (i.e. MAPQ >10), non-mitochondrial reads using the 
EstimateLibraryComplexity command in Picard. For comparison, the complexity of bulk 
ATAC-seq libraries generated from 500 cells (described above) was also estimated with 
Picard. To determine the number of sequence fragments per cell, the estimated total 
number of fragments in the library was divided by 500 (the number of cells included) for 
the bulk samples. Likewise, for the single cell library, the estimated total number of 
fragments from Picard was divided by 533 (the number of nuclei recovered in this 
experiment given our 500 read cutoff). 

 
Identifying DHSs differentially accessible between cell types 

Hypersensitive sites that are differentially accessible between GM12878 and HL-
60 in our single cell ATAC-seq data were identified using logistic regression via the 
VGAM framework in R (32). For each site, accessibility was encoded as a binary 
response variable via the binomialff VGAM family function, which was supplied with 
default parameters. The best guess of each cell’s type was used as a categorical predictor 
of accessibility. Cells were assigned to a particular cell type on the basis of the genome-
wide relative proportion of reads mapping to cell line-specific hypersensitive sites (≥ 
70% of cell type-specific reads mapping to DHSs from one of the two cell types). Cells 
that appeared to be a mixture of both cell types were excluded from this analysis. In 
addition, DHSs that were not observed in at least two cells and sites overlapping reported 
CNVs were excluded from this analysis. Statistical significance of observed differences 
in a site’s accessibility between cell types was assessed by likelihood ratio test via the 
lrtest() function in VGAM. P-values were adjusted for multiple testing using the 
Benjamini and Hochberg method (33) and significant associations were identified at an 
FDR of 0.05. 

 
Identifying enriched annotations for differentially accessible DHSs 

Chromatin state information for GM12878 from the ENCODE Consortium was 
downloaded from the UCSC genome browser (http://genome.ucsc.edu/; “Combined” 
chromatin state track; (22, 34)). To determine the chromatin states of differentially 
accessible sites we intersected bed files of the genomic coordinates for each using 
BedTools (30). To identify phenotypes associated with differentially accessible sites of 
the genome and modules of coordinately regulated chromatin accessibility, we first 
linked hypersensitive sites to the genes they regulate using links defined in (2) and then 
hypergeometric test function runGSAHyper() in the Piano package in R (35) to identify 
KEGG (36, 37) and Reactome (38, 39) pathways enriched among the genes . As a 
background set for differentially accessible sites, we used all genes linked to accessible 
sites in GM12878 and HL-60 we had defined using ENCODE DNase I hypersensitivity 
data. The target set was the unique set of genes linked to the 1,666 sites that were 
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differentially accessible in our logistic regressions. As a background set for modules of 
coordinately regulated chromatin accessibility, we used all genes linked to hypersensitive 
sites included in the latent semantic analysis.  

 
Identifying enriched annotations for coordinately accessible modules of DHSs 

To identify modules of DHSs that are significantly enriched for specific pathways 
or annotations, we first linked DHSs within modules to the genes they regulate and then 
tested for significant enrichments of annotation terms using the hypergeometric test 
function as described above. To identify modules of DHSs that significantly overlap 
transcription factor binding in GM12878, we downloaded all transcription factor ChIP 
peak data sets for that cell type from ENCODE and intersected these maps with sites in 
the different modules and then used a hypergeometric test to determine significant 
overlaps. 

 
Dimensionality reduction of chromatin accessibility data 

For multidimensional scaling, pairwise Jaccard distances were calculated between 
cells based on the binary hypersensitive site usage matrix. These distance were then used 
to represent relationships between the cells in two dimensions using the cmdscale() 
function in R. All cells and all sites that were observed in at least one cell were included 
in these calculations. For latent semantic indexing of the cellular mixtures, we first 
filtered out cells that did not have at least 400 sites open in the binary hypersensitivity 
site usage matrix. We also filtered out hypersensitivity sites that were not used in at least 
150 cells. The binary site usage matrix was then transformed using a term frequency–
inverse document frequency algorithm. To do this, each site used in a cell was weighted 
by the total number of sites used in the cell. This value was then multiplied by the log of 
1 + the inverse frequency of the site across all cells. Singular value decomposition was 
then performed on this transformed matrix. To visualize sensitivity, we produced a lower 
dimension representation of the data using the first 6 components of this singular value 
decomposition and capping the LSI scores at +/- 1.5. Cells and sites were clustered using 
Ward clustering on components 2-6, as component 1 appeared to be related to read depth. 
For latent semantic indexing of the GM12878 cells alone, sites used by fewer than 10% 
of cells were filtered out, as were cells with fewer than 400 sites open. A lower 
dimension representation of the data was produced with 6 components, excluding the first 
component and capping the LSI scores at +/- 1.5. Hierarchical clustering was performed 
with the “average” algorithm in this analysis. 
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Fig. S1. 
Expected and observed collision rate. (A) Barplot showing non-uniform distribution of 
transposase barcodes across all 15 experiments. (B) Barplot of PCR barcodes in three of 
the experiments (the other experiments used a different set of barcodes that cannot be 
directly compared here). (C) Observed/expected collision rate as a function of the 
number of nuclei sorted. Black line shows the expected collision rate based on the classic 
birthday problem. Gray ribbon shows 95% confidence interval of simulations that drew 
barcodes from a Poisson distribution while matching the observed frequencies of 
observed barcodes. Points show observed experimental collision rates. Points are jittered 
to avoid overplotting. Note: for the GM12878/Patski experiment, 15 unstained nuclei 
were sorted (instead of 25 DAPI-positive nuclei in the other experiments). 
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Fig. S2 
Number of mappable reads assigned to each possible barcode combination. (A) 
Histogram of the number of reads (log-transformed) assigned to each barcode for the 
experiment mixing GM12878 (human) and Patski (mouse) cells. (B) Same as in (A) for 
the experiment mixing GM12878 and HEK293T cells. (C) Histogram for the experiment 
mixing GM12878 and HL-60. The dashed line marks 500 reads in each graph. 
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Fig. S3 
Overlap of hypersensitivity sites from ENCODE. Venn diagrams depicting the 
overlaps of hypersensitive sites identified by the ENCODE Consortium for (A) 
GM12878 and HEK293T and (B) GM12878 and HL-60 (24). Note that there are different 
total numbers of sites for GM12878 in the two panels, because each pairwise comparison 
required the use of data from different labs with slightly different DNase-seq protocols. 
 
  

9 
 



 
 

 

Fig. S4 
Site coverage in individual cells compared to read depth in the human cell mixture 
experiments. (A,C,E) Scatter plot of the number of sites covered by each cell compared 
to the total number of reads recovered for that cell. (B,D,F) Histogram of the number of 
sites covered by each cell (in red) compared to the total number of reads recovered for 
that cell (in blue).  (A and B) Site coverage for the GM12878/HEK293T mixture 
experiment. (C and D) Site coverage for the GM12878/HL-60 mixture experiment.  (E 
and F) Site coverage for all GM12878/HL-60 experiments presented in the main text 
(includes the data from C and D).  

10 
 



 
 

 

Fig. S5 
Multidimensional scaling identifies read depth as a major factor in clustering single 
cells by cell type. (A) Plot of log-transformed read depth (x-axis) against dimension 1 of 
multidimensional scaling analysis (y-axis) based on Jaccard distances in experiment 
mixing HEK293T cells with GM12878 cells. (B) Same as in A for experiment mixing 
HL-60 and GM12878 cells. 
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Fig. S6 
Reproducibility of hypersensitive site usage for individual cells. (A) Scatterplot 
comparing site usage in GM12878 cells from two different experiments. X-axis: Log10-
transformed sum of GM12878 cells in which each site is used in the human/mouse 
mixture experiment normalized by the total site usage count for GM12878 cells in the 
GM12878/Patski experiment (‘Normalized Usage’). Y-axis: Log10-transformed 
normalized usage for GM12878 cells in the GM12878/HL-60 experiment. Dashed blue 
line is the identity line. (B) Log10-transformed normalized usage for GM12878 cells in 
the GM12878/Patski experiment compared to the Log10-transformed number of reads 
overlapping each hypersensitive site in a previously published bulk ATAC-seq sample 
generated from 500 cells (4) normalized by read depth across all DHSs. Dashed blue line 
is the identity line. In C and D, contours indicate density of points plotted in the region of 
the graph. Red indicates the highest density of points, while blue indicates lower 
densities. 
 
  

12 
 



 
 

 
 

Fig. S7 
KEGG pathways enriched in genes differentially accessible between GM12878 and 
HL-60 cells. Barplot of hypergeometric test q-value for enrichment of pathways (labeled 
on y-axis) for genes linked to significantly differentially accessible sites between 
GM12878 and HL-60. 
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Fig. S8 
Reactome pathways enriched in genes differentially accessible between GM12878 
and HL-60 cells. Barplot of hypergeometric test q-value for enrichment of pathways 
(labeled on y-axis) for genes linked to significantly differentially accessible sites between 
GM12878 and HL-60. 
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Fig. S9 
Number of mappable reads assigned to each possible barcode combination on 
Experimental Condition Tests Day 1. As in Fig. S2, each panel represents the cells 
isolated in one experimental condition. The dashed line marks 500 reads in each graph. 
“2xTn5”=Doubled enzyme concentration; “CountedNuclei”=Counting nuclei instead of 
cells to determine starting material; ”PosControl”=Standard conditions described in the 
methods; “Spermidine”=Supplemented 40mM EDTA stop solution with 1mM 
Spermidine. 
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Fig. S10 
Number of mappable reads assigned to each possible barcode combination on 
Experimental Condition Tests Day 2. As in Fig. S2, each panel represents the cells 
isolated in one experimental condition. The dashed line marks 500 reads in each graph. 
Names indicate varying enzyme concentrations. 
 
  

16 
 



 
 

 
 
 

Fig. S11 
Number of mappable reads assigned to each possible barcode combination on 
Experimental Condition Tests Day 3. As in Fig. S2, each panel represents the cells 
isolated in one experimental condition. The dashed line marks 500 reads in each graph. 
“1x_12_5uM” and “2x_12_5uM” used 12.5 or 25μM enzyme, respectively. “DecBatch” 
and “FebBatch” tested two batches of enzyme in parallel. 
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Fig. S12 
Heatmap of binary site usage for GM12878/HL-60 mixture experiments. This 
heatmap is identical to Fig. 3C, except that binary site usage is plotted rather than lower 
dimensional representation generated from latent semantic indexing. Rows are 
hypersensitive sites and columns are cells. 
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Fig. S13 
KEGG pathways enriched in modules of coordinately regulated chromatin 
accessibility between GM12878 and HL-60 cells. Each row represents a pathway 
(labeled on y-axis) and each column represents a module from the heatmap presented in 
Fig. 3C. The color of each pathway/module combination indicates the q-value for 
enrichment of genes with that annotation term in that module. 
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Fig. S14 
Reactome pathways enriched in modules of coordinately regulated chromatin 
accessibility between GM12878 and HL-60 cells. Each row represents a pathway 
(labeled on y-axis) and each column represents a module from the heatmap presented in 
Fig. 3C. The color of each pathway/module combination indicates the q-value for 
enrichment of genes with that annotation term in that module. 
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Fig. S15 
Enrichments for transcription factor binding within specific modules of 
coordinately accessible regulatory elements in cells from all GM12878/HL-60 
mixture experiments (4,118 GM128781 cells). (A) Enrichments for TF binding within 
specific modules.  Overall, 71 of 75 TF had significant enrichments identified with at 
least one module at an FDR of 0.1.  (B) The matrix of site usage was permuted while 
maintaining row and column sums.  This permuted matrix was then used to cluster cells 
and sites and enrichments for binding were assessed.  No significant enrichments were 
identified in the permuted data at an FDR of 0.1. 
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Fig. S16 
KEGG pathways enriched in modules coordinately regulated between GM12878 
subtypes. Each row represents a pathway (labeled on y-axis) and each column represents 
a module from the heatmap presented in Fig. 4A. The color of each pathway/module 
combination indicates the q-value for enrichment of genes with that annotation term in 
that module. 
 
  

22 
 



 
 

 
 
 

Fig. S17 
Reactome pathways enriched in modules coordinately regulated between GM12878 
subtypes. Each row represents a pathway (labeled on y-axis) and each column represents 
a module from the heatmap presented in Fig. 4A. The color of each pathway/module 
combination indicates the q-value for enrichment of genes with that annotation term in 
that module. 
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Fig. S18 
Clustering of GM12878 subtypes not correlated with experiment date. Same heatmap 
as presented in Fig. 4A, except that color bar across columns is color-coded by the date 
on which the experiment was conducted (cells from 4 dates were included). Samples do 
not cluster by date. 
 
  

24 
 



 
 

 
 
 

Fig. S19 
Clustering of GM12878 subtypes not correlated with experimental condition. Same 
heatmap as presented in Fig. 4A, except that color bar across columns is color-coded by 
experimental condition. We tested several batches of enzyme, several enzyme 
concentrations and several enzymatic reaction stopping conditions during the four 
different experiments. Samples do not cluster by enzymatic condition. 
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Fig. S20 
Enrichments for transcription factor binding within specific modules of 
coordinately accessible regulatory elements in cells from the first experimental 
condition test day (1,879 GM12878 cells). (A) Enrichments for TF binding within 
specific modules.  Overall, 63 of 75 TF had significant enrichments identified with at 
least one module at an FDR of 0.1.  (B) The matrix of site usage was permuted while 
maintaining row and column sums.  This permuted matrix was then used to cluster cells 
and sites and enrichments for binding were assessed.  No significant enrichments were 
identified in the permuted data at an FDR of 0.1. 
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Fig. S21 
Enrichments for transcription factor binding within specific modules of 
coordinately accessible regulatory elements in cells from the second and third 
experimental condition test days (2,022 GM12878 cells). (A) Enrichments for TF 
binding within specific modules.  Overall, 62 of 75 TF had significant enrichments 
identified with at least one module at an FDR of 0.1.  (B) The matrix of site usage was 
permuted while maintaining row and column sums.  This permuted matrix was then used 
to cluster cells and sites and enrichments for binding were assessed.  No significant 
enrichments were identified in the permuted data at an FDR of 0.1. 
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Fig. S22 
Co-accessibility patterns between putative enhancers and TSS elements of LYN as 
measured with independent biological replicates.  Experimental condition test days 2 
and 3 were pooled to construct a replicate with similar numbers of cells as experimental 
condition test day 1. Latent semantic indexing was performed on each subset 
independently, and co-accessibility was calculated by Pearson correlation between the 
resulting regularized values. 
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Table S1. 
Genomic coverage of DNase I hypersensitivity maps. This table reports the genomic 
coverage of hypersensitivity sites used in our analyses after combining replicates and 
merging between cell types. “Cell Type of DHS Map” describes which comparison the 
map was used for in the main text. “Patski” and “GM12878” were used in the original 
inter-species comparison, while the other two maps were used for the human cell type 
comparisons. “Reference genome” is listed as “mm9” for mouse cells or “hg19” for 
human cells. “Genome Size (bp)” was the non-NA size estimate from 
http://genomewiki.ucsc.edu/index.php/Hg19_Genome_size_statistics on 12/2/14). “No. 
of Elements” lists the number of individual number of elements included in each map. 
“Genome Coverage (bp)” lists the total bases covered by the reference maps. “Genome 
Coverage (fraction)” is the “Genome Coverage (bp)” divided by “Genome Size (bp)”.  
 
Cell Type 
of DHS 
Map 

Reference 
Genome 

Genome Size 
(bp)* 

No. of 
Elements 

Genome 
Coverage 
(bp) 

Genome 
Coverage 
(fraction) 

Patski mm9 2,620,345,972 159,424 66,787,300 0.025 
GM12878 hg19 2,897,310,462 124,844 43,196,806 0.015 
GM12878 
vs. 
HEK293T hg19 2,897,310,462 181,379 86,020,710 0.030 
GM12878 
vs. HL-60 hg19 2,897,310,462 230,632 97,103,964 0.034 
*Genome sizes from http://genomewiki.ucsc.edu/index.php/Hg19_Genome_size_statistics 
on 12/2/14 
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Table S2. 
Tests of differential accessibility from single cell ATAC-seq data comparing 
GM12878 and HL-60. This table contains all 52,479 sites tested for differentially 
accessibility. It is too large to include here and so is supplied as a separate file. For this 
analysis, sites overlapping copy number variants identified by the ENCODE Consortium 
for either cell type were filtered out. In addition, chromosomes 18, X and Y were 
removed, because HL-60 is known to be trisomic for all three. The columns of the file are 
as follows: 
Column 1 – Chromosome of element 
Column 2 – Genomic start coordinate of element 
Column 3 – Genomic end coordinate of element 
Column 4 – P-value from our binomial test of differential accessibility between the two 
cell types 
Column 5 – Significance indicator. “0” = not significant after multiple test-correction. 
“1” = significant after multiple test-correction. 
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