Supplementary Information

Drug target identification using network analysis: Taking active components in *Sini* decoction as an example

Si Chen¹, Hailong Jiang¹, Yan Cao¹, Yun Wang¹, Ziheng Hu²,

Zhenyu Zhu^{1,*} & Yifeng Chai^{1,*}

1 School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China

* Correspondence and requests for materials should be addressed to Z.Z. (email: zzyzyfzhu@163.com) or Y.C. (email: <u>yfchai@smmu.edu.cn</u>)

Supplementary Table S1. Metabolism of components in SND retrieving from admetSAR³.

No.	Compounds	CYP450 1A2	CYP450	2C9	CYP450	2D6	CYP450	2C19	CYP450	3A4
		inhibitor	inhibitor		inhibitor		inhibitor		inhibitor	
S 3	Mesaconine	No	No		No		No		No	
S4	Senbusine A	No	No		No		No		No	
S 5	Senbusine B	No	No		No		No		No	
S 6	Talatizidine	No	No		No		No		No	
S 7	Aconine	No	No		No		No		No	
S 8	Hypaconine	No	No		No		No		No	
S 9	Fuziline	No	No		No		No		No	
S10	Neoline	No	No		No		No		No	
S11	Bikhaconine	No	No		No		No		No	
S12	Talatisamine	No	No		No		No		No	
S13	14-O-acetyl	No	No		No		No		No	
	neoline									
S15	Benzoylmes	No	No		No		No		No	
	aconine									
S16	Benzoylaco	No	No		No		No		No	

	nine					
S18	Jesaconitine	No	No	No	No	No
S19	Beiwutine	No	No	No	No	No
S21	Mesaconitin	No	No	No	No	No
	e					
S22	Aconifine	No	No	No	No	No
S30	Crassicaulin	No	No	No	No	No
	e A					
S 31	Salsolinol	No	pAC50=4.8nM	No	No	No
S32	Coryneine	No	No	No	No	No
S33	Chuanfumin	No	No	No	No	No
	е					
S34	Karakanine	No	No	No	No	No
Z14	24-Hydroxy	No	No	No	No	pAC50=5nM
	glycyrrhetic					
	acid					
Z25	Methyl 3b,	No	No	No	No	No
	24-dihygrox					
	y olean-11,13(
	18)-diene					
	30-O ate					
Z27	Betulic acid	No	No	No	No	No
Z28	Uralenolide	No	No	No	No	pAC50=5.4nM
H27	Licochalcon	pAC50=7.2n	No	No	pAC50=6.1nM	No
	e B	М				
H28	Echinatin	pAC50=7.2n	No	No	pAC50=6.1nM	No
		М				
H29	Isoliquiritige	pAC50=5.3n	pAC50=4.7nM	pAC50=4.8nM	pAC50=4.9nM	pAC50=5.5nM
	nin	М				
H31	Glepidotin	pAC50=5.45n	pAC50=5.6nM	pAC50=4.85nM	pAC50=5.55nM	pAC50=5.85nM

C I M

Reference

1 Cheng, F. *et al.* admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. *J Chem Inf Model* **52**, 3099-3105, doi:10.1021/ci300367a (2012).

Supplementary Table S2. Results of the physiochemical characteristics similarity between 196 components in herbs in SND and 105 FDA-approved oral drugs from drugbank.

Variables	Mean		Wilcoxon	Kolmogorov-Smirnov
			test	test
	drug herb		Significance	Significance (2-tailed)
			(2-tailed) ^a	a
ALogP	2.48556	3.03900	0.034	0.006
Molecular Weight	335.153013	425.179603	0.000	0.000
Num_H_Acceptors	4.12	6.60	0.000	0.000
Num_H_Donors	1.73	2.82	0.000	0.006
Num-Rotatable Bonds	5.97	7.32	0.003	0.020
Num_AromaticRings	1.54	1.08	0.005	0.025
Molecular_Fractional/PolarSurfaceArea	0.22856	0.23206	0.095	0.001

^a The significance level is 0.05.

Supplementary Table S3. Targets of active components in SND validated by references.

I cici che	сь.					
Gene	Target nar	ne	Serial	Name	Reference	Activity
symbol			number			
ESR2	Estrogen	receptor	H60	Daidzein	1	Ki=300 nM
	beta					
ESR1	Estrogen	receptor	H60	Daidzein	1	Ki=1800 nM
	alpha					
XDH	Xanthine		H60	Daidzein	2	IC ₅₀ =
	dehydrogena	ise				429800nM
PPARG	Peroxisome		H60	Daidzein	3	Fold
	proliferator-a	activated				activation=1.2
	receptor gan	nma				
ESR2	Estrogen	receptor	H56	Davidigenin	4	IC ₅₀ =
	beta					1000000 nM
ESR1	Estrogen	receptor	H56	Davidigenin	4	IC ₅₀ =
	alpha					1000000 nM
PPARG	Peroxisome		H28	echinatin	5	Activity
	proliferator-a	activated				
	receptor gan	nma				
PPARG	Peroxisome		H34	formononetin	3	Fold activation=

	proliferator-activated				4.6
	receptor gamma				
XDH	Xanthine	H34	formononetin	6	Inhibition=
	dehydrogenase				17.6%
PPARG	Peroxisome	H41	Gancaonin	5	Activity
	proliferator-activated		L		
	receptor gamma				
PPARG	Peroxisome	Z29	Glycyrrhetic	7	Activity
	proliferator-activated		acid		
	receptor gamma				
PPARG	Peroxisome	H29	Isoliquiritigen	3	Fold activation=
	proliferator-activated		in		1.3
	receptor gamma				
XDH	Xanthine	H20	Liquiritigenin	6	IC ₅₀ =
	dehydrogenase				11300 nM
ESR1	Estrogen receptor	H10	rutin	8	Activity=107.97
	alpha				%
XDH	Xanthine	H10	rutin	9	IC ₅₀ =
	dehydrogenase				52200 nM
PPARG	Peroxisome	H10	rutin	10	Activity
	proliferator-activated				
	receptor gamma				
ADRA2	Alpha-2A adrenergic	H10	rutin	11	Ki=9340
А	receptor				nM
ESR1	Estrogen receptor	H11	quercetin	8	Activity=76.81
	alpha				%
HIF1A	Hypoxia-inducible	H11	quercetin	12	IC ₅₀ =
	factor 1-alpha				10200nM
PPARG	Peroxisome	H11	quercetin	3	Fold activation=
	proliferator-activated				1.3
	receptor gamma				
CA2	Carbonic anhydrase	H11	quercetin	13	Ki=
	II				2540nM
XDH	Xanthine	H11	quercetin	14	Fold
	dehydrogenase				activation=170
PON1	Serum	H11	quercetin	15	Activity
	paraoxonase/arylester				
	ase 1				
CDK2	Cyclin-dependent	H11	quercetin	16	IC ₅₀ =
	kinase 2				40000nM
ADRB2	Beta-2 adrenergic	S39	higenamine	17	EC ₅₀ =
	receptor				126.5 ng/mL
HMOX1	Heme oxygenase 1	S39	higenamine	18	Activity
NOS2	Nitric Oxide	S39	higenamine	19	IC ₅₀ =

NOS2	Synthase 2, Inducible Nitric Oxide	J13	1-Dehydro-	20	53µM Activity
AGTR1	Angiotensin II	J54	e 6-Gingerol	21	IC ₅₀ =
ESR2	Receptor, Type 1 Estrogen receptor beta	H20	liquiritigenin	22	8.173 μM EC ₅₀ = 36.5 nM

Reference

- 1 Matsuda, H., Shimoda, H., Morikawa, T. & Yoshikawa, M. Phytoestrogens from the roots of Polygonum cuspidatum (Polygonaceae): structure-requirement of hydroxyanthraquinones for estrogenic activity. *Bioorg Med Chem Lett* **11**, 1839-1842 (2001).
- 2 Park, J. S., Park, H. Y., Kim, D. H., Kim, D. H. & Kim, H. K. ortho-dihydroxyisoflavone derivatives from aged Doenjang (Korean fermented soypaste) and its radical scavenging activity. *Bioorg Med Chem Lett* 18, 5006-5009 (2008).
- 3 Matin, A. *et al.* 7-Hydroxy-benzopyran-4-one derivatives: a novel pharmacophore of peroxisome proliferator-activated receptor alpha and -gamma (PPARalpha and gamma) dual agonists. *J Med Chem* **52**, 6835-6850 (2009).
- 4 Zhao, L. & Brinton, R. D. Structure-based virtual screening for plant-based ERbeta-selective ligands as potential preventative therapy against age-related neurodegenerative diseases. J Med Chem 48, 3463-3466 (2005).
- 5 Kuroda, M. *et al.* Phenolics from Glycyrrhiza glabra roots and their PPAR-gamma ligand-binding activity. *Bioorg Med Chem* **18**, 962-970 (2010).
- 6 Hayashi, T. *et al.* Inhibition of cow's milk xanthine oxidase by flavonoids. *J Nat Prod* **51**, 345-348 (1988).
- Lallemand, B. *et al.* N-(2-{3-[3,5-bis(trifluoromethyl)phenyl]ureido}ethyl)-glycyrrhetinamide
 (6b): a novel anticancer glycyrrhetinic acid derivative that targets the proteasome and displays anti-kinase activity. *J Med Chem* 54, 6501-6513 (2011).
- 8 Liu, L. *et al.* Discovery of estrogen receptor alpha modulators from natural compounds in Si-Wu-Tang series decoctions using estrogen-responsive MCF-7 breast cancer cells. *Bioorg Med Chem Lett* 22, 154-163 (2012).
- 9 Cos, P. *et al.* Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. *J Nat Prod* **61**, 71-76 (1998).
- 10 Ha do, T. *et al.* The selected flavonol glycoside derived from Sophorae Flos improves glucose uptake and inhibits adipocyte differentiation via activation AMPK in 3T3-L1 cells. *Bioorg Med Chem Lett* **20**, 6076-6081 (2010).
- 11 Nahrstedt, A. & Butterweck, V. Lessons learned from herbal medicinal products: the example of St. John's Wort (perpendicular). *J Nat Prod* **73**, 1015-1021 (2010).
- 12 Ko, S., Lee, M. K., Shin, D. & Park, H. Structure-based virtual screening approach to the discovery of novel inhibitors of factor-inhibiting HIF-1: identification of new chelating groups for the active-site ferrous ion. *Bioorg Med Chem* **17**, 7769-7774 (2009).
- 13 Innocenti, A., Beyza Ozturk Sarikaya, S., Gulcin, I. & Supuran, C. T. Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I-XIV with a series of natural product

polyphenols and phenolic acids. Bioorg Med Chem 18, 2159-2164 (2010).

- 14 Pauff, J. M. & Hille, R. Inhibition studies of bovine xanthine oxidase by luteolin, silibinin, quercetin, and curcumin. *J Nat Prod* **72**, 725-731 (2009).
- 15 Atrahimovich, D., Vaya, J. & Khatib, S. The effects and mechanism of flavonoid-rePON1 interactions. Structure-activity relationship study. *Bioorg Med Chem* **21**, 3348-3355 (2013).
- 16 Lee, J., Park, T., Jeong, S., Kim, K. H. & Hong, C. 3-Hydroxychromones as cyclin-dependent kinase inhibitors: synthesis and biological evaluation. *Bioorg Med Chem Lett* **17**, 1284-1287 (2007).
- 17 Bai, G. *et al.* Identification of higenamine in Radix Aconiti Lateralis Preparata as a beta2-adrenergic receptor agonist1. *Acta Pharmacol Sin* **29**, 1187-1194 (2008).
- 18 Ha, Y. M. et al. Higenamine reduces HMGB1 during hypoxia-induced brain injury by induction of heme oxygenase-1 through PI3K/Akt/Nrf-2 signal pathways. Apoptosis 17, 463-474 (2012).
- 19 Kang, Y. J. *et al.* Inhibition of activation of nuclear factor kappaB is responsible for inhibition of inducible nitric oxide synthase expression by higenamine, an active component of aconite root. *J Pharmacol Exp Ther* **291**, 314-320 (1999).
- Li, F. *et al.* In vitro antioxidant and anti-inflammatory activities of 1-dehydro-[6]-gingerdione,
 6-shogaol, 6-dehydroshogaol and hexahydrocurcumin. *Food Chem* 135, 332-337 (2012).
- 21 Liu, Q. *et al.* [6]-gingerol: a novel AT(1) antagonist for the treatment of cardiovascular disease. *Planta Med* **79**, 322-326 (2013).
- 22 Mersereau, J. E. *et al.* Liquiritigenin is a plant-derived highly selective estrogen receptor beta agonist. *Mol Cell Endocrinol* **283**, 49-57 (2008).

High Degree	p-value	Middle degree	p-value	Low degree	p-value
(20-41)		(10-19) pathway		(1-9) pathway	
pathway					
HIF-1 signaling	1.95E-07	Dilated	6.46E-04	HIF-1 signaling	5.48E-08
pathway		cardiomyopathy	cardiomyopathy		
Calcium	9.49E-05	TNF signaling	9.35E-04	VEGF signaling	1.16E-07
signaling		pathway		pathway	
pathway					
Insulin secretion	8.32E-04	cGMP-PKG	2.03E-03	Oxytocin signaling	5.53E-07
		signaling pathway		pathway	
Oocyte meiosis	1.39E-03	Calcium signaling	2.49E-03	cGMP-PKG	6.69E-07
		pathway		signaling pathway	
Tuberculosis	3.59E-03	Neuroactive	5.84E-03	Calcium signaling	1.22E-06
		ligand-receptor		pathway	
		interaction			
				Adrenergic	8.89E-06
				signaling in	
				cardiomyocytes	

Supplementary Table S4. The significance of every relevant pathway of high degree (20-41), middle degree (10-19) and low degree (1-9) targets.

previous		<u> </u>		
NO	In vivo components	Origins		Formula
1	Yunganoside K2	plasma	and	C42H62O17
		urine		
2	Uralsaponin B	urine		C42H62O16
3	Talatizamine	plasma	and	C24H39NO5
		urine		
4	Songorine	plasma	and	C22H31NO3
		urine		
5	Senbusine B	urine		C23H37NO6
6	Senbusine A	plasma	and	C23H37NO6
		urine		
7	Neoline	plasma	and	C24H39NO6
		urine		
8	Mesaconine	plasma	and	C24H39NO9
		urine		
9	Liquiritin apioside	plasma	and	C26H30O13
		urine		
10	Liquiritin	plasma	and	C21H22O9
		urine		
11	Liquiritigenin-O-sulfate	urine		C15H12O7S
12	Liquiritigenin glucuronide	plasma	and	C21H21O10
		urine		
13	Liquiritigenin	plasma	and	C15H12O4
		urine		
14	licoricesaponine H2/K2 or Uralsaponin B	plasma		C42H64O15
15	Licoricesaponin A3	plasma		C48H72O21
16	Licorice saponin J2	plasma		C42H64O16
17	Licorice saponin G2	plasma	and	C42H62O17
		urine		
18	Licorice saponin C2	plasma		C42H62O15
19	Licorice saponin B2	plasma		C42H64O15
20	Licorice saponin A3	urine		C48H72O21
21	licoisoflavone B-O-sulfate	urine		C20H16O9S
22	Licoisoflavone B	urine		C20H16O6
23	Licoisoflavone	urine		C20H18O6
24	Licochalcone D-O-glucuronide	urine		C27H30O11
25	Licochalcone D	urine		C21H22O5
26	Licobenzofuran-O-glucuronide	urine		C27H30O11
27	Licobenzofuran	urine		C21H22O5
28	Karakoline	urine		C22H35NO4
29	Karakolidine	urine		C22H35NO5
30	Isotalatizidine	plasma	and	C23H37NO5
		1		

Supplementary	Table	S5.	In	vivo	components	in	SND	retrieving	from	our
previous researc	^{1,2} .									

		urine		
31	Isomer of licorice saponin B2	plasma		C42H64O15
32	Isoliquiritin apioside	plasma	and	C26H30O13
		urine		
33	Isoliquiritin	plasma	and	C21H22O9
		urine		
34	Isoliquiritigenin-O-sulfate	urine		C15H12O7S
35	Isoliquiritigenin glucuronide	plasma	and	C21H21O10
		urine		
36	Isoliquiritigenin	plasma	and	C15H12O4
		urine		
37	Hypaconitine	urine		C33H45NO10
38	Hypaconine	urine		C24H39NO8
39	Hetisine	urine		C20H27NO3
40	Glyzaglabrin	urine		C16H10O6
41	Glycyrrhizin	plasma	and	C42H62O16
		urine		
42	Glycyrrhisoflvanone	urine		C21H20O6
43	Glycyrrhetic acid	plasma		C30H46O4
44	Glycyroside	plasma		C27H30O13
45	Glycycoumarin	urine		C21H20O6
46	Glucoliquiritin apioside	plasma		C32H40O18
47	Gancaonin N/Gancaonin B	urine		C21H20O6
48	Gancaonin L	urine		C20H18O6
49	Gancaonin B/Gancaonin N	urine		C21H20O6
50	Fuzitine	urine		C20H24NO4
51	Fuziline	plasma	and	C24H39NO7
		urine		
52	Foromonetin-O-sulfate	urine		C16H12O7S
53	Foromonetin-O-glucuronide	urine		C22H20O10
54	Foromonetin monohydroxylate	urine		C16H12O5
55	Foromonetin monohydroxylate	urine		C16H12O5
56	Foromonetin monohydroxylate	urine		C16H12O5
57	Foromonetin monohydroxylate	urine		C16H12O5
58	Foromonetin monohydroxylate	urine		C16H12O5
59	Formononetin glucuronide	plasma		C22H20O10
60	Formononetin	plasma	and	C16H12O4
		urine		
61	Dihydroformanonetin	urine		C16H14O4
62	Demethyl-8-methoxyl-14-benzoylaconine	urine		C32H45NO10
63	Demethyl-14-acetyltalatizamine	urine		C24H35NO7
64	Demethyl-14-acetylkarakoline	urine		C23H35NO5
65	Demethyl talatizamine	urine		C23H37NO5
66	Demethyl talatizamine	urine		C23H37NO5

67	Demethyl senbusine B	urine		C22H35NO6
68	Demethyl senbusine A	urine		C22H35NO6
69	Demethyl neoline	urine		C23H37NO6
70	Demethyl neoline	urine		C23H37NO6
71	Demethyl karakolidine	urine		C21H33NO5
72	Demethyl karakolidine	urine		C21H33NO5
73	Demethyl isotalatizidine	urine		C22H35NO5
74	Demethyl hypaconitine	urine		C32H43NO10
75	Demethyl dehydrogen isotalatizidine	urine		C22H33NO5
76	Demethyl benzoylhypaconine	urine		C30H41NO9
77	Demethyl benzoyldeoxyaconine	urine		C31H43NO9
78	Demethyl benzoylaconine	urine		C31H43NO10
79	Demethyl isotalatizidine	urine		C22H35NO5
80	Dehydrogen karakolidine	urine		C22H33NO5
81	Dehydrogen chuanfunine	urine		C22H33NO5
82	Dehydrated benzoylmesaconine	plasma	and	C31H41NO9
		urine		
83	Dehydrated benzoyhypaconine	urine		C31H41NO8
84	Dehydrated 6-gingerol	urine		C17H24O3
85	Davidigenin-O-sulfate	urine		C15H14O7S
86	Davidigenin-O-sulfate	urine		C15H14O7S
87	Davidigenin-O-sulfate	urine		C15H14O7S
88	Davidigenin-O-sulfate	urine		C15H14O7S
89	Davidigenin-O-glucuronide	urine		C21H22O10
90	Davidigenin	urine		C15H14O4
91	Daidzein-O-sulfate	urine		C15H10O7S
92	Daidzein	urine		C15H10O4
93	Chuanfunine	plasma	and	C22H35NO5
		urine		
94	Benzoylmesaconine	plasma	and	C31H43NO10
		urine		
95	Benzoylhypaconine	plasma	and	C31H43NO9
		urine		
96	Benzoyldeoxyaconine	plasma	and	C32H45NO9
		urine		
97	Benzoylaconine	plasma	and	C32H45NO10
		urine		
98	Beiwudine	urine		C31H41NO8
99	Aconine	plasma	and	C25H41NO9
		urine		-
100	8-methoxyl-14-benzoylaconine	urine		C33H47NO10
101	6-Gingerol glucuronide	plasma		C23H34O10
102	6-Gingerol	urine		C17H26O4
102				C15U1004

104	16-β-Hydroxycardiopetaline	urine		C21H33NO4
105	14-benzoy-10-OH-mesaconine	urine		C31H43NO11
106	14-benzoy-10-OH-aconine	urine		C32H45NO11
107	14-acetyltalatizamine	plasma	and	C26H41NO6
		urine		
108	14-acetylneoline	urine		C26H41NO7
109	14-acetylkarakoline	urine		C24H37NO5
110	10-OH-mesaconine	urine		C24H39NO10
111	10-OH-aconine	urine		C25H41NO10
112	10-Hydroxytalatizamine	urine		C24H39NO6

Reference

- 1Tan, G. *et al.* A strategy for rapid analysis of xenobiotic metabolome of Sini decoction in vivo
using ultra-performance liquid chromatography-electrospray ionization
quadrupole-time-of-flight mass spectrometry combined with pattern recognition approach. J
Pharm Biomed Anal 96, 187-196, doi:10.1016/j.jpba.2014.03.028 (2014).
- 2 Tan, G. *et al.* Analysis of phenolic and triterpenoid compounds in licorice and rat plasma by high-performance liquid chromatography diode-array detection, time-of-flight mass spectrometry and quadrupole ion trap mass spectrometry. *Rapid Commun Mass Spectrom* 24, 209-218, doi:10.1002/rcm.4373 (2010).

Supplementary Table S6. Quality control statistics on the performance of text mining for the term "heart failure"

Database Name	target proteins by searching	false positives	True target proteins
DrugBank database	4	0	4
OMIM	2	1	1
UniProtKB	114	94	20
TTD	28	20	8
GeneCards	72	60	12

Supplementary Figure 1. Comparing chemical characteristics of active ingredients in SND. (A) PCA of active components in SND and approved anti-heart failure drugs calculated chemical characteristics. from Molecular weight: seven Num_AromaticRings: the number of aromatic rings; Num_H_Donors: the number of hydrogen bond donors; Molecular_FractionalPolarSurfaceArea: the molecular polar surface area; Num_RotatableBonds: the number of rotatable bonds; ALogP: the octanol-water partition coefficient; Num_H_Acceptors: the number of hydrogen bond acceptors. S: Aconitum carmichaelii, G: Glycyrrhiza uralensis, J: Zingiber officinale. (B)-(H) are distributions of these seven chemical characteristics of ingredients in SND and approved oral drugs.

Supplementary Figure 2. Target protein-target protein interaction network