Supplementary Information

Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

Vernon Seow^{1a†}, Junxian Lim^{1a,2,3†}, Adam J. Cotterell^{1a}, Mei-Kwan Yau^{1a,2,3}, Weijun Xu^{1a,2,3}, Rink-Jan Lohman^{1a,2,3}, W. Mei Kok^{1a,2,3}, Martin J. Stoermer^{1a}, Matthew J. Sweet^{1b,2,3}, Robert C. Reid^{1a,2,3}, Jacky Y. Suen^{1a,2,3}, David P. Fairlie^{1a,2,3}*

^{1a}Division of Chemistry and Structural Biology or ^{1b}Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.

²Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.

³ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
[†]These authors contributed equally.

***Correspondence to:** Professor David P. Fairlie (Tel: +61-7334 62989, Fax: +61-7334 62990, Email: <u>d.fairlie@imb.uq.edu.au</u>)

Supplementary Figure 1. Statistics from MD simulations. (A) C5aR-3D53 root mean square deviation (RMSD) over 100 ns MD simulations. (B) C5aR-3D53 interaction intensities plot.

Supplementary Figure 2. Two-dimensional representations of 3D53-C5aR interactions at multiple time points in MD stimulations. (A) C5aR-3D53 complex at 10 ns, (B) 50 ns (C) and 80 ns.

SER 204

Supplementary Figure 3. **C5aR-3D53 interactions at 25 ns and 45 ns**. (A) 25 ns, Trp5 pi-stacked between TM6 (Tyr258) and TM7 (Tyr290). (B) 45 ns, Trp5 moved out to form H-bond with Y290, with an intermediate stage of forming a T-shaped edge-to-face pi-stacking interaction with Y290.

Supplementary Figure 4. Comparison of relative conformational change in C5aR transmembrane. Four different time points were sampled during 3D53-C5aR MD simulations (3D53 ligand was removed for clarity), white: 10 ns; pink: 50 ns; gold: 80 ns and brown: 100 ns. Transmembrane (TM) 1 and 2 helices were observed to undergo significant conformational changes in the MD simulations of the 3D53-C5aR complex, moving 8.8 Å and 6.1 Å respectively.

Supplementary Figure 5. Optimization for C5aR-PA-induced paw oedema in male Wistar rats. (A) Intraplantar (i.pl.) administration of C5aR-PA (0.35-2 mg per paw in 100 μ L of saline control. Paw swelling was recorded over 4 h duration and expressed as percentage area change from baseline. The maximal swelling induced by 350 μ g C5aR-PA maximized after 1 h before subsiding after 4 h following injection. Higher doses of C5aR-PA (1 mg and 2 mg) did not further increase the magnitude of paw swelling, so 350 μ g was considered an optimal dose of C5aR-PA for injection per paw. (B) 3D53 and (C) W54011 (5 and 10 mg/kg, p.o. in 500 μ L olive oil per rat) given orally 1 h prior 350 μ g C5aR-PA injection. Error bars are means \pm SEM (n=2 per group).

CLUSTAL W (1.83) multiple sequence alignment

sp P61073 CXCR4_HUMAN sp P21730 C5AR1_HUMAN	MEGISIYTSDNYTEEMGSGDYDSMKEPCFREENANFNKIFLPTIYSIIFLTGIVGNGLVILVMGYQKKLRSMTDKYRLHL 80 MDSFNYTTP-DYGHYDDKDTLDLNTPVDKTSNTLRVPDILALVIFAVVFLVGVLGNALVVWVTAFEAK-RTINAIWFLNL 78 *:.:. *. :* *:*: .*::**.**:**.**: * .:: * ::: * ::*
sp P61073 CXCR4_HUMAN sp P21730 C5AR1_HUMAN	SVADLLFVITLPFWAVDAVANWYFGNFLCKAVHVIYTVNLYSSVLILAFISLDRYLAIVHATNSQRPRKLLAEKVVYV158AVADFLSCLALPILFTSIVQHHHWPFGGAACSILPSLILLNMYASILLLATISADRFLLVFKPIWCQNFRGAGLAWIACA158:***:*::*:*:*:*****************************
sp P61073 CXCR4_HUMAN sp P21730 C5AR1_HUMAN	GVWIPALLLTIPDFIFANVSEADDRYICDRFYPNDLWV-VVFQFQHIMVGLILPGIVILSCYCIIISKLSHSKGHQKR 235 VAWGLALLLTIPSFLYRVVREEYFPPKVLCGVDYSHDKRRERAVAIVRLVLGFLWPLLTLTICYTFILLRTWSRRATRST 238 .* *******.*:: * * : :*. *.:*: :::::*:: *::
sp P61073 CXCR4_HUMAN sp P21730 C5AR1_HUMAN	KALKTTVILILAFFACWLPYYIGISIDSFILLEIIKQGCEFENTVHKWISITEALAFFHCCLNPILYAFLGAKFKTSAQH315KTLKVVVAVVASFFIFWLPYQVTGIMMSFLEPSSPTFLLLKKLDSLCVSFAYINCCINPIIYVVAGQGFQGRLRK313*:*** :: :** **** :*::.:: ::* *: ::**:*****: * :: ::
sp P61073 CXCR4_HUMAN sp P21730 C5AR1_HUMAN	ALTSVSRGSSLKILSKGKRGGHSSVSTESESSSFHSS 352 SLPSLLRNVLTEESVVRESKSFTRSTVDTMAQKTQAV 350 :*.*: *:: :.* :*:*.* :: .::

Supplementary Figure 6. ClustalW sequence alignment of human CXCR4 and C5aR1. CXCR4 was the top template with sequence identity of 32% and sequence similarity of 53% to C5aR. Uniprot ID codes are provided.

Supplementary Figure 7. Ramachandran Plot of stereochemical property of residues and quality assessment of the homology model of C5aR TM region. 98.7% of the residues were located in the favored and allowed φ - ψ regions, whereas only 3 residues were in disallowed region. The model of C5aR TM regions forms intact canonical seven-helical bundles. The TM backbone rmsd between the model and the template CXCR4 is 0.18 Å. The Qmean¹ score is 0.45 and DFire² energy is -407.7. The results were comparable to original template with a Qmean6 score of 0.48 and DFire energy of -470.

Supplementary Figure 8. Top **docked pose of 3D53 in C5aR homology model.** Docked pose of 3D53 in C5aR homology model showed similar pose to previous studies¹³. Trp5 of 3D53 is known to dictate function, switching to agonist activity if Trp was changed to a hydrophobic non-aromatic group but maintaining antagonist activity if changed to an aromatic group (Phe, Naphthalanine)¹³. Ile116 is known to be important for this activation switch blocked by Trp5²⁵. On the opposite side, Val286 was also shown to contribute to the mechanism. Thus Trp5 is in the vicinity of Ile116 and Val286. Ac-Phe was predicted to locate between TM5 and TM6, there was no dominant interaction with this residue, consistent with our previous modelling studies²⁵. Arg6 was not observed to form any salt-bridge to protein residues but was exposed to solvent.

	3D53 ^a		W54011 ^a		JJ47 ^a	
	Average	SEM	Average	SEM	Average	SEM
Rat weight (g)	221.6	9.3	254	6.9	238.3	2.3
Vdss (L)	0.9	0.4	4.6	0	0.8	0.1
	4.1	1.9	18.3	3.1	3.5	0.5
AUC i.v.	322.9	17.7	212.5	29.3	410.4	39.5
(0-8h)						
(ng.h/ml)						
AUC p.o.	76.6	31	1570.2	151.5	501.3	5.2
(0-8h)						
(ng.h/ml)						
CL	52.1	2.8	82.8	10.5	41	4
(ml/min/kg)						
t1/2 (min)	21.6	4.4	124.4	31.3	43.2	4.8
C _{max} (ng/ml)	17.5	4.5	483.6	41.2	126.6	14.5
T _{max} (min)	50	20	180	0	135	45
F(%)	2.4	1	74.3	7.9	12.2	0.1

Supplementary Table 1. Pharmacokinetics parameters of C5aR antagonists in rats.

^aC5aR antagonist were administered 1 mg/kg i.v. and 10 mg/kg p.o.

Vdss; volume of distribution steady

AUC; area under curve

CL; total clearance

t1/2; plasma half-life

C_{max}; maximal plasma concentration reached

 T_{max} ; time of maximal C_{max}

F; Fraction of intact compound absorbed to plasma (oral availability)

Supplementary Table 2. Primer sequences for target genes.

Gene	5'-3'	3'-5'
TNF	TCTGGCCCAGGCAGTCAGATC	CACTGGAGCTGCCCCTCAGC
IL1B	CCTCTTCGAGGCACAAGGCACAA	TGGCTGCTTCAGACACTTGAGCAAT
CCL3	CCCACATTCCGTCACCTGCTCAG	AGCAGCAAGTGATGCAGAGAACTG
PTGS2	TGGCAGGGTTGCTGGTGGTA	TCTGCCTGCTCTGGTCAATGGA
18S	ACCACGGGTGACGGGGAATC	CCGGGTCGGGAGTGGGTAAT