Supporting information

The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces

cerevisiae

Weicheng Zhang,^a Shaopan Bao,^{a,b} and Tao Fang^{*a}

Table S1 The information provided for ZnO NPs' size and genotype of yeast strains, zeta potential and hydrodynamic diameter of ZnO particles of at 1 and 6 h time points.

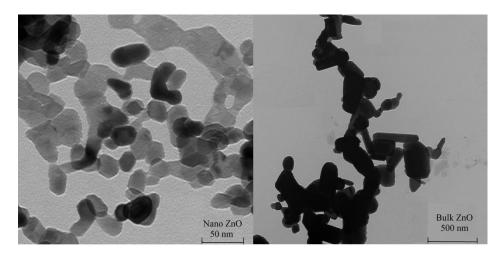
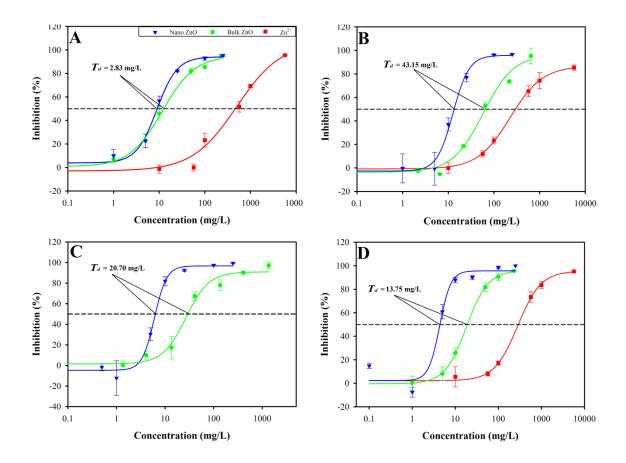
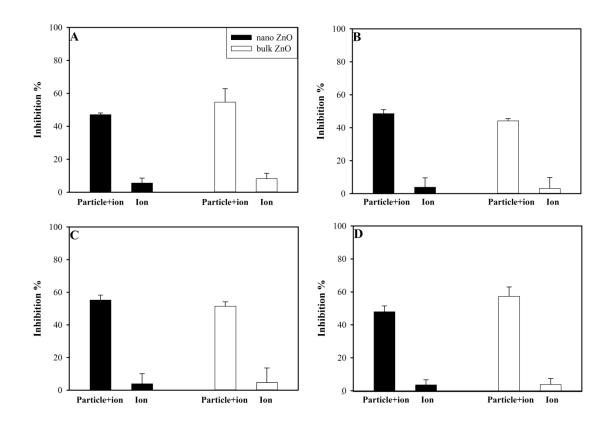
Particles	Size	Hydrodynamic	c diameter ^c (nm)	Zeta potential ^c (eV)			
	$(\mathbf{nm})^{b}$	1 h	6 h	1 h	6 h		
Nano ZnO (30 mg/L)	20	790.533 (±157.752)	1883.000 (±64.967)	25.033 (±0.306)	23.400 (±0.173)		
Nano ZnO (300 mg/L)	20	443.512 (±24.962)	601.312 (±34.837)	23.133 (±0.814)	25.033 (±0.569)		
Bulk ZnO (30 mg/L)		727.667 (±19.072)	723.733 (±23.599)	-18.067 (±0.404)	-17.833 (±0.751)		
Bulk ZnO (300 mg/L)		762.934 (±11.314)	1034.667 (±16.660)	-11.733 (±0.643)	-9.933 (±0. 513)		
Strains ^a		Genotyp	e				
Wild type (BY4741)	MATa /	his $3\Delta0$ leu $2\Delta0$ met $15\Delta0$ un	$ra3\Delta 0$	-40.433 (±0.569)	-28.5 (±3.111)		
<i>yap1</i> mutant (<i>yap1</i> Δ)	$\begin{array}{c} \mathbf{MATa} \\ yap1\Delta :: \end{array}$	his3∆0 leu2∆0 met15∆0 un hisG	$ra3\Delta 0$	-34.400 (±1.587)	-30.15 (±0.778)		
Quadruple mutant (4 Δ)		his3∆0 leu2∆0 met15∆0 un KanMX, pdr5∆∷LEU2, cw		-30.200 (±2.982)	-25.2 (±0.424)		
Quintuple mutant (5Δ)	$snq2\Delta$::	nis3∆0 leu2∆0 met15∆0 un KanMX, pdr5∆::LEU2, cv HIS3, yap1∆::hisG		-30.500 (±2.458)	-25.7 (±0.624)		

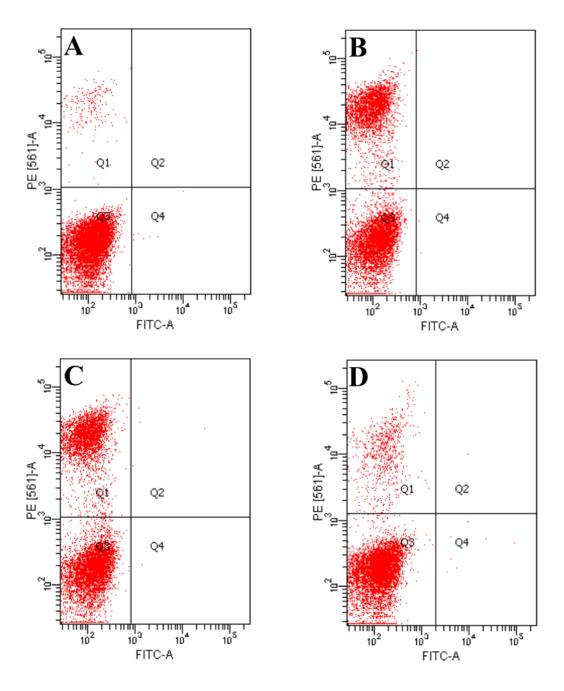
^{*a*} the applied yeast strains in present research were donated by lab of aquatic animal protein engineering, Institute of Hydrobiology, Chinese Academy of Sciences. ^{*b*} particles size of ZnO NPs was from Beijing Nachen S&T Ltd. ^{*c*} Both of hydrodiameter and zeta potential for nano and bulk ZnO at two time points expressed as average values with standard deviation from 6 replications. ^{*a*}.Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. Email: <u>fangt@ihb.ac.cn</u> ^{*b*}.Graduate University of Chinese Academy of Sciences, Beijing 100049, China

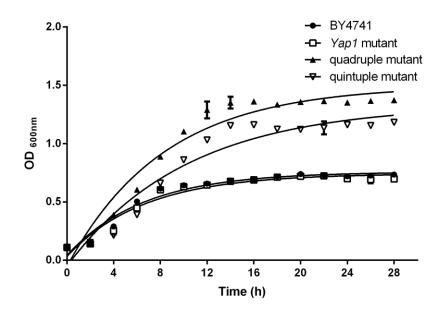
Organism Exposure duration	NPs size (nm)		E(L)C ₅₀ mg/L		E(L)C ₅₀ mg/L		$T_e^{\text{ particle}}$		T_e^{ion}		$\log T_e^{\text{ particle}}$		$\log T_e^{ion}$				
	ZnO	CuO	n ZnO	b ZnO	ZnSO ₄ •7H ₂ O	n CuO	b CuO	CuSO ₄	ZnO	CuO	ZnO	CuO	ZnO	CuO	ZnO	CuO	
Saccharomyc es cerevisiae ¹	8 h	50-70	30	121	134	331	21.6	2031	28.6	1.11	94.03	2.74	1.32	0.05	1.97	0.44	0.12
Vibrio fischeri ²	0.5 h	50-70	30	1.9	1.8	1.1	79	3811	1.6	0.95	48.24	0.58	0.02	-0.02	1.68	-0.24	-1.70
Daphnia magna ²	48 h	50-70	30	3.2	8.8	6.1	3.2	164.8	0.17	2.75	51.50	1.91	0.05	0.44	1.71	0.28	-1.30
Thamnocepha lus platyurus ²	24 h	50-70	30	0.18	0.24	0.98	2.1	94.5	0.11	1.33	45.00	5.44	0.05	0.12	1.65	0.74	-1.30
Tetraphymen a thermophile ³	24 h	50-70	30	6.8	7.4	6.7	97.9	1966	1.4	1.09	20.08	0.99	0.014	0.04	1.30	0.00	-1.85
Pseudokirchn eriella subcapitata ⁴	96 h	50-70	30	0.042	0.037	0.042	0.71	11.55	0.02	0.88	16.27	1.00	0.03	-0.06	1.21	0.00	-1.52

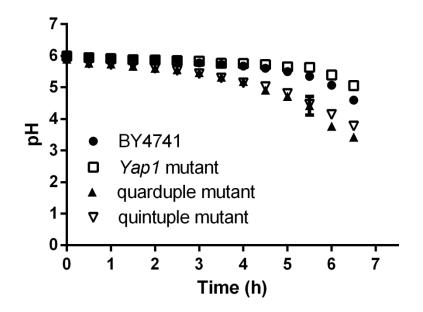
Table C2 Table date for 7-0 NDs and CoO NDs a small as their bal	1	
Table S2. Toxicity data for ZnO NPs and CuO NPs as well as their bul	k counterpart and salt to differe	ent organisms were from interatures.

 T_e^{particle} and T_e^{particle} were calculated through equation 4 and 5.


Figure S1 TEM images of nano and bulk ZnO (10 mg/L) in Deionized-water.


Figure S2 The cytotoxicity of ZnO NPs, bulk ZnO and zinc salt to yeast strains. A: BY4741; B: $yap1\Delta$; C: 4Δ ; D: 5Δ . T_d for each strain was calculated by equation 3.


Figure S3 Inhibition caused by calculated EC50 of ZnO (nano and bulk) particles and its correspondingly released Zn²⁺ to yeast and mutants. A: BY4741; B: *yap1* Δ ; C: 4 Δ ; D: 5 Δ . n = 3, from three independent experiments.

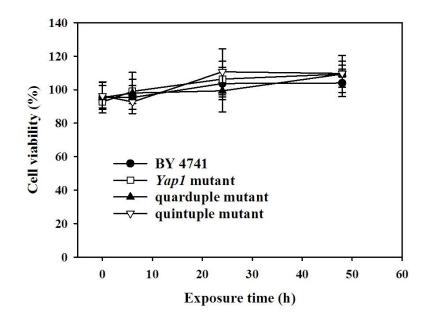

Figure S4 The apoptosis experiments were conducted using double dye Annexin V-FITC/ PI to wild type yeast. A: Blank (0 mg/L of ZnO NPs), B: Treatment 1 (5 mg/L of ZnO NPs), C: Treatment 2 (5 mg/L of bulk ZnO), D: Treatment 4 (5 mg/L of Zn^{2+}). Q1 region denotes the cell dyed by PI, Q4 region denotes the cell dyed by Annexin V-FITC, and Q2 region denotes the cell dyed by both Annexin V-FITC and PI.

Figure S5 The Yeast *Saccharomyces cerevisiae* wild-type BY4741 and mutants' growth in SD medium at 30 $^{\circ}$ C with 200 rpm continuous shaking during 28 h.⁵

Figure S5 Dynamic variation of pH values in the SD medium over time in the presences of yeast wild-type and mutants. Data are means \pm standard error of 3 independent replicates.⁵

Figure S7 The cell viability of yeast strains under non-stress condition at different exposure time. Data are means \pm standard error of 3 independent replicates. The increased cell viability (> 100%) at 24 and 48 h could be explained by the volatilization of deionized water during the exposure duration.

Reference:

 Kasemets, K.; Ivask, A.; Dubourguier, H.-C.; Kahru, A., Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. *Toxicology in Vitro* 2009, *23* (6), 1116-1122.
Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H.-C.; Kahru, A., Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. *Chemosphere* 2008, *71* (7), 1308-1316.

3. Mortimer, M.; Kasemets, K.; Kahru, A., Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. *Toxicology* **2010**, *269* (2–3), 182-189.

4. Aruoja, V.; Dubourguier, H.-C.; Kasemets, K.; Kahru, A., Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. *Science of The Total Environment* **2009**, *407* (4), 1461-1468.

5. Bao, S.; Lu, Q.; Fang, T.; Dai, H.; Zhang, C., An assessment of the toxicity of CuO nanoparticles using multiple-gene-deleted mutants of Saccharomyces cerevisiae. *Applied and Environmental Microbiology* **2015**.