
SUPPLEMENTARY INFORMATION 

 

Supplementary Figure 1 – ‘Collapsed’ enrichment analysis 

 
This figure shows the results for the ‘collapsed’ enrichment analysis. In the ‘collapsed’ enrichment analysis, 

each control or allele-specific SNV is counted once uniquely, as long as it occurs in at least one individual. We 

map variants associated with allele-specific binding (ASB; green) and expression (ASE; blue) to various 

categories of genomic annotations, such as coding DNA sequences (CDS), untranslated regions (UTRs), 

enhancer and promoter regions, to survey the human genome for regions more enriched in allelic behavior. 

Using the control non-allele-specific SNVs as the expectation, we compute the log odds ratio for ASB and ASE 

SNVs separately, via Fisher’s exact tests. The number of asterisks depicts the degree of significance 

(Bonferroni-corrected): *, p<0.05; **, p<0.01; ***, p<0.001. For each transcription factor (TF) in AlleleDB, we 

also calculate the log odds ratio of ASB SNVs in promoters, providing a proxy of allele-specific regulatory role 

for each available TF. Genes known to be mono-allelically expressed such as imprinted and MHC genes (CDS 

regions) are highly enriched for both ASB and ASE SNVs. The actual log odds ratio of ASB SNVs in imprinted 

genes, both ASB and ASE SNVs in immunoglobulin genes and ASE SNVs for MHC genes are indicated on the 

bars. 

 

Between the two enrichment analyses, we observe consistent trends in the odds ratios of ASB SNVs and ASE 

SNVs across the MAE gene sets, except for the T cell and olfactory receptors. The categories are enriched in 

ASE SNVs when we collapsed the SNV count but, interestingly, depleted when we expand the enrichment 

analysis in a population-aware fashion (Figure 5). This suggests that the allele-specific expression in certain T 

cell and olfactory receptors are not consistently observed in all individuals. Also, there is a consistent depletion 

in ASE SNVs for the constitutively expressed housekeeping genes, implying that most housekeeping genes give 

a more balanced (biallelic) expression (Figure 5). 



Supplementary Figure 2 – Consistent ASB and ASE calling (by read depth) 

 

This figure shows the percentage of (a) ASB and (b) ASE SNVs (opaque bars with black boundaries) when 

compared to the accessible SNVs (ACC; transparent bars with no boundaries) as a function of read depth, for 

381 unrelated individuals (excluding NA12878). Here, we display >90% of ASB and ASE SNVs, by not 

showing those with extreme read depths. Despite the bias in SNV counts towards low read depth, the 

percentages of our ASB and ASE SNVs that are called are relatively consistent across all read depths (% ASB 

or ASE; indicated by circles). 
 



Supplementary Figure 3 – Consistent ASE calling (by ethnicity) 

 
 

This figure shows the number of accessible (transparent-colored bars) and ASE SNVs (opaque-colored bars 

with black boundaries) per individual, grouped and colored by population: CEU (blue), CHB (orange), FIN 

(magenta), GBR (red), JPT (yellow), TSI (grey) and YRI (green). The CEU trio are represented by the three 

spikes at the far left. In general, the YRI have more accessible and ASE sites, probably because they have 

higher number of heterozygous SNVs in their genomes. The number of ASE sites in addition to the proportion 

with regards to their accessible sites per individual are relatively consistent. 

  

 

 



Supplementary Figure 4 – High reproducibility of ASE calling 

 

 
 

This figure shows the replication of AS calls between technical replicates. We randomly sampled two subsets of 

245M (‘M’ denotes ‘million of reads’) from a pooled RNA-seq dataset of NA12878, without replacement, i.e. 

these two sets are mutually exclusive. We then run the AlleleDB pipeline. The Venn diagram shows that the 

calls between the replicates are very comparable (>75% overlap), demonstrating that our calls reproduce very 

well. 

 

 

 



Supplementary Figure 5 – Replication of ASE calls with increasing read depth 

 

 
 

This figure shows the replication of AS calls at increasing read depths. We randomly subsampled subsets of 

various read coverage from a pooled RNA-seq dataset of NA12878 – 100M, 200M, 300M, 400M and 490M 

(‘M’ denotes ‘million of reads’) – such that each smaller pool of reads is a direct subset of the larger sets, with 

490M denoting the entire set of reads. For instance, 100M is a subset of all the other sets. We then ran the 

AlleleDB pipeline. We show that >82% ASE sites are consistent in at least 2 subsets, with very small number of 

sites unique to each set. 

 



Supplementary Table 1 – Heterogeneity of AS analyses in eight studies 

 

Study ASE/ASB Reference genome Aligner Detection test 

Filter 

duplicate 

reads (RNA-

seq/ChIP-seq) 

 

Ambiguous 

mapping 

Montgomery et al. (2010) ASE Human ref genome MAQ Binomial test per-SNP basis No 

 

No* 

Pickrell et al. (2010) ASE Human ref genome MAQ Betabinomial test per-gene basis No 

 

Yes 

Lalonde et al. (2011) ASE -- -- -- -- 

 

-- 

ENCODE (2012)/ 

Djebali et al. (2012) Both Personal genome Bowtie1 Binomial test per-SNP basis No 

 

No 

gEUVADIS (2013) ASE Human ref genome GEM mapper Binomial test per-SNP basis No 

 

Yes 

 

 

 

Kasowski et al. (2013) 

 

 

 

Both 

 

 

 

Personal genomes 

 

BWA (ChIP-

seq); TopHat 

(RNA-seq) 

 

 

 

Binomial test per-SNP basis 

 

 

 

Both 

 

 

 

No 

Kilpinen et al. (2013) Both Human ref genome BWA Binomial test per-SNP basis ChIP-seq only 

 

Yes 

McVicker et al. (2013) ASB Human ref genome BWA Betabinomial test per-region basis ChIP-seq only 

 

Yes 

   
 

  
 

AlleleDB Both Personal genomes Bowtie1  Betabinomial test per-SNP basis No Yes 

 

*Mapping bias in Montgomery et al. was deemed accounted for by weighting the binomial null with a global allelic ratio 

This table shows the heterogeneity in the eight studies performing allele-specific analyses using different tools and parameters, e.g. read mapping 

with a range of read aligners, alignment to different reference genomes and variations of statistical tests in detecting the allele-specific variants. We 

uniformly processed the tools and parameters in AlleleDB. 

 



Supplementary Table 2 – Datasets Quality Control 

 
 ChIP-seq 

datasets 

#Filtered RNA-seq 

datasets 

#Filtered #Total 

retained 

Initial 287 0 993 0 1,280 

Insufficient aligned 

reads 

276 11 987 6 1,263 

Overdispersed* 186 90 955 32 1,141 

*We define an “overdispersed” ChIP-seq dataset as those with ρ ≥ 0.3, while an “overdispersed” RNA-seq 

dataset is defined more strictly by ρ ≥ 0.125, which is one standard deviation more than the mean 

overdispersion in the RNA-seq datasets in our processing. 

 

This table shows the number of individual datasets being flagged and segregated due to insufficient reads and 

due to having an “overdispersed” allelic ratio distribution.  

 

 

 

Supplementary Table 3 – Number of reads that overlap heterozygous SNVs 

 

Number of 

heterozygous SNVs 

Number of maternal 

reads overlapping this 

number of SNVs (%) 

Number of paternal 

reads overlapping this 

number of SNVs (%) 

1 360,891 (96.866%) 360,645 (96.834%) 

2 11,453 (3.074%) 11,546 (3.100%) 

3 254 (0.068%) 239 (0.064%) 

4 4 (0.001%) 6 (0.002%) 

 

This table shows the number of uniquely mapped maternal (column 2) and paternal (column 3) reads that 

overlap a certain number of heterozygous SNVs (column 1) from an example dataset from NA12878 CTCF 

ChIP-seq assay. ~97% of reads that map uniquely to the maternal or paternal haplotype overlap only 1 

heterozygous SNV. On average, we find that >90% of uniquely mapped reads that overlap any heterozygous 

SNVs at all, overlap only 1 heterozygous SNV. 

 

 



Supplementary Table 4 – Heritability of allele-specific binding and expression 

 

 Child v Father Child v Mother Father v Mother 

ASB β r # SNVs β r # SNVs β r # SNVs 

PU.1 1.01 0.87 33 0.98 0.97 19 0.98 0.91 13 

CTCF 0.98 0.78 65 0.98 0.84 109 0.99 0.67 40 
          

ASE 0.71 0.58 655 0.87 0.77 396 0.69 0.57 240 

 

Child : NA12878 

Father : NA12891 

Mother : NA12892 

 

This table shows the slope and Pearson’s correlation results for two DNA-binding proteins, PU.1 and CTCF, 

and ASE for parent-child and parent-parent comparisons. 

 

Supplementary Table 5 – Ambiguous mapping bias correction by site or read removal 

 

NA12878 datasets 

Number of AS SNVs removed due to 

Removal of sites with 

>5% allelic bias (%)  

Removal of reads with 

AMB (%) 

CTCF ChIP-seq dataset 

(same dataset as in Supp Table 3) 
20/101 (20%) 11/101 (11%) 

RNA-seq dataset 17/375 (4.5%) 5/375 (1.3%) 
#AMB stands for ‘ambiguous mapping bias’. 

*The denominators in columns 2 and 3 are the numbers of original allele-specific (AS) SNVs that are detected when 

AMB was not accounted for. 

 

This table summarizes the results in examining the effects of accounting for ambiguous mapping bias via the 

removal of sites (column 3) and reads (column 4) using two datasets. We chose a ChIP-seq and a RNA-seq 

datasets from NA12878. We find that removal of sites often filters SNVs that might be still allele-specific even 

after removing reads that show ambiguous mapping bias (AMB), indicating that site removal can be over-

conservative and read removal is able to retain AS SNVs that are still allele-specific. Also, in our study, we find 

that AMB seems to have a greater effect on ChIP-seq datasets. Between 10-21% of the detected AS SNVs are 

removed in ChIP-seq compared to 1-4% in RNA-seq datasets, depending on which bias removal strategy was 

adopted. 

 

Supplementary Note 1 

Alternative method to account for ambiguous mapping bias 

As an alternative approach to account for ambiguous mapping bias within the personal genome framework, we 

also introduce some modifications into the AlleleSeq pipeline. After construction of a diploid personal genome, 

the reads are aligned to both haploid genomes and all valid highest scored alignments are reported for each read 

(allowing multi-mapping and alignments with up to two mismatches). First, similar to the original pipeline, only 

uniquely mapped reads are considered when the alignments are compared between the two haplotypes at all 

heterozygous loci. Then, for each allele with the lower count at unbalanced sites, we identify all reads (bearing 

the allele) that non-uniquely map to its locus on the respective haplotype. As it is not possible to unambiguously 

determine the origin of multimapping reads, we currently adopt the simplest approach and filter out sites with 

such reads. Finally, allele-specific events are then assessed for heterozygous sites that were not filtered away 

(additional filtering is applied to remove SNPs residing in CNV locations) by applying the beta-binomial test 

followed by correcting for multiple hypothesis testing. 


