Influence of linker length in Shape Recognition of B* DNA by Dimeric Aminoglycosides (Supporting Information)

Sunil Kumar,^{*a*†} Meredith Newby Spano,^{*b*} and Dev P. Arya ^{*a**}

^{*a*} Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634

^b NUBAD, LLC, 900 B West Faris Road, Greenville, South Carolina 29605

[†] Current Address: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520.

1.	Procedure for the synthesis of neomycin dimers
2.	Characterization of neomycin dimers7-93
3.	ITC profile of neomycin and neomycin dimers with AT DNA94-99
4.	FID derived AC50 of neomycin based ligands towards AT rich DNA100

Procedure for the synthesis of neomycin dimers

Synthesis of linkers (diisothiocyanate from diamine)

To a solution of diamine (0.20 mmol) in dichloromethane (anhydrous, 5 mL), 1,10-Thiocarbonyldi-2(1H)-pyridone (0.22 mmol, 2.2 equiv.) was added and the reaction started with constant stirring in inert atmosphere. The progress of the reaction was monitored by TLC. Flash chromatography (in dichloromethane) afforded the desired product as colorless oil (see Table S1 for % yields).

Synthesis of *N-Boc* protected neomycin dimers

To a solution of neomycin-boc-5"-amine (1 or 2) (0.05 mmol) in dry pyridine (5 mL), DMAP (cat. amount) was added followed by diisothiocyanate/diisocynate linker (0.025 mmol, 0.50 eq) and the reaction started under inert atm. The reaction mixture stirred at r.t. for 15 h in the atmosphere of argon. The progress of the reaction was monitored by TLC. The volatiles were removed on rotovap. Purification by flash column chromatography [0 to 10 % ethanol in CH₂Cl₂ (v/v)] afforded the desired product as a white solid (% yields are reported for individual compounds in table). [R_f 0.38-0.46, 10 % ethanol in CH₂Cl₂ (v/v)].

Deprotection of *N-Boc* **protected neomycin dimers**

To a solution of neomycin dimer (0.012 mmol) in dioxane (3 mL), 4 M HCl/dioxane (1 mL) was added and the reaction started at room temperature. There is a formation of white precipitate after 15 min. The reaction mixture was centrifuged and the solid was collected. The solid was washed with a solution of diethyl ether/hexane $[3 \times 5 \text{ mL}, 1:1 \text{ (v/v)}]$. The solid was dissolved in water and lyophilized to afford the desired product as a white powder (% yields are reported for individual compounds in table).

Linker	% yield		
SCNNCS	96.2		
SCN	97.4		
SCN O NCS	95.8		
SCN O NCS	95.5		
Table S1. % yields of the diisothicyanate linkers synthesized from diammines.			

Neomycin Dimer	Linker length	% yield	
DPA71	1	66.2	
DPA72	7	61.7	
DPA73	7	65.0	
DPA74	8	61.2	
DPA75	10	61.5	
DPA76	14	60.4	
DPA77	16	69.2	
DPA78	16	68.0	
DPA79	18	66.3	
DPA80	22	67.2	
DPA311	17	70.1	
DPA312	19	70.7	
DPA313	20	69.8	
Table S2. Overall % yields of the neomycin dimers from two steps (N-boc protected and			

Table S2. Overall % yields of the neomycin dimers from two steps (N-boc protected and deprotected).

Characterization of neomycin dimers

Synthesis of Hexa-N-Boc deoxy-neomycin-5''-isothiocyanate

in dry DCM (3.0 mL), DMAP (cat. amount) was added followed by the addition of TCDP (8.4 mg, 36.0 μ mol) and the reaction started with constant stirring at r.t. in the atmosphere of argon gas. The reaction ran for 12 h. The progress of the reaction was monitored by TLC. The solvents were removed on evaporater. Flash column chromatography [0 to 10 % EtOH in DCM (v/v)] yields an off white powder (24.55 mg, 80 %). [R_f 0.62, 10 % EtOH in DCM (v/v)]; IR (KBr, cm⁻¹) 2980, 2910, 2105 (NCS), 1701, 1510; ¹H NMR (500 MHz, CD₃COCD₃) δ 6.41 (t, *J* = 5.36 Hz, 1 H, NH_{6IV}), 6.25-6.33 (m, 1 H, NH₁₁ or NH_{6II}), 6.12 (d, *J* = 7.72 Hz, 1 H, NH₁₁ or NH_{6II}), 5.94-6.12 (m, 3 H, NH₃₁, NH_{2IV}, NH_{2II}), 5.23-5.25 (m, 2 H), 5.27-5.31 (m, 2 H), 4.85-4.95 (m, 1 H), 4.48 (m, 1 H), 4.42 (m, 1 H), 4.31 (t, *J* = 5.05 Hz, 1 H), 4.22-4.27 (m, 1 H), 4.12 (q, *J* = 4.73 Hz, 1 H), 3.99-4.08 (m, 2 H), 3.89-3.97 (m, 1 H), 3.74-3.88 (m, 4 H), 3.52-3.74 (m, 9 H), 3.40-3.52 (m, 4 H), 3.16-3.35 (m, 4 H), 1.35-1.65 (m, 56 H, H_{21ax}, 6 × Boc). MS MALDI-TOF calcd. for C₅₄H₉₃N₇O₂₄ (M+Na⁺), 1277.60, obsd: 1276.55.

Synthesis of N-Boc DPA71.

To a solution of Hexa-*N*-Boc deoxy-neomycin-5''-amine (1) (15.0 mg, 12.0 µmol) in dry pyridine (3.0 mL), DMAP (cat. amount) was added followed by the addition of a solution of *Hexa-N-Boc deoxy-neomycin-5''*-isothiocyanate, A (14.8 mg, 12.0 µmol) in dry pyridine (1.0 mL) and the reaction started with constant stirring at r.t. in the atmosphere of argon gas. The reaction ran for 12 h. The progress of the reaction was monitored by TLC. The solvents were removed on evaporater. Flash column chromatography [0 to 10 % EtOH in DCM (v/v)] yields an off white powder (25.95 mg, 82 %). [R_f 0.44, 10 % EtOH in DCM (v/v)]; IR (KBr, cm⁻¹) 3300-3500 (br), 2975, 2918, 2105 (br, -C=S), 1705, 1619; ¹H NMR (500 MHz, CD₃COCD₃) δ 6.42 (t, J = 5.84 Hz, 2 H, NH_{6IV}), 6.36 (d, J = 9.15 Hz, 2 H, NH₁₁ or NH_{6II}), 6.23-6.30 (m, 2 H, NH₁₁ or NH_{6II}), 6.18 (d, J = 6.13 Hz, 2 H, NH_{21V} or NH₃₁), 5.99-6.06 (m, 2 H, NH_{21V} or NH₃₁), 5.88-5.99 (br, s, 2 H, NH_{21I}), 5.14-5.22 (m, 4 H), 4.94-5.01 (m, 4 H), 4.77-4.82 (m, 2 H), 4.39-4.45 (m, 4 H), 4.37 (d, J = 6.47 Hz, 2 H), 4.31-4.35 (m, 4 H), 4.15-4.21 (m, 4 H), 4.02-4.10 (m, 4 H), 3.82-3.95 (m, 8 H), 3.74-3.82 (m, 6 H), 3.58-3.70 (m, 10 H), 3.54-3.58 (m, 4 H), 3.50-3.54 (m, 2 H),

3.40-3.50 (m, 6 H), 3.15-3.26 (m, 6 H), 1.50-1.60 (m, 2 H, H_{2Iax}), 1.35-1.50 (m, 108 H, 12 × Boc). MS MALDI-TOF calcd. for $C_{107}H_{188}N_{14}O_{48}S$ (M+H₂O⁺), 2486.24, obsd: 2485.70.

DPA71.

IR (KBr, cm⁻¹) 3401 (br, OH), 2093, 1642; ¹H NMR (500 MHz, D₂O): 5.80 (m, 2 H, H_{1II}), 5.28 (d, J = 3.16 Hz, 2 H, H_{1II}), 5.06 (br, 2 H, H_{1IV}), 4.41 (m, 2 H, H_{4III}), 4.26 (d, J = 5.83 Hz, 2 H, H_{2III}), 4.15-4.20 (m, 2 H, H_{4IV}), 4.05-4.11 (m, 2 H, H_{4I}), 3.96-4.03 (m, 4 H), 3.85 (t, J = 9.78 Hz, 2 H, H_{6II}), 3.78 (t, J = 10.25 Hz, 2 H, H_{5I}), 3.64-3.74 (m, 8 H, H_{2IV}, H_{4II}, H_{5IV}, and H_{3III}), 3.60 (s, 2 H, H_{6I}), 3.40-3.53 (m, 6 H, H_{3II}, H_{3I} and H_{5II}), 3.27-3.38 (m, 4 H), 3.17-3.27 (m, 8 H, H_{3I}, H_{3I}, H_{3II}), 3.08-3.17 (m, 4 H), 2.23-2.31 (m, 2 H, H_{2Ieq}.), 1.69 (q, J = 12.45 Hz, 2 H, H_{2Iax}.); MS MALDI-TOF m/z for C₄₇H₉₂N₁₄O₂₄S [M+H₂O]⁺, calcd 1287.38, found 1287.67.

DPA72.

IR (KBr, cm⁻¹) 3434 (br, OH), 2093, 1638, 1366; ¹H NMR (500 MHz, D₂O) δ 7.32 (m, 1 H, Ar), 7.24 (m, 1 H, Ar), 7.05 (m, 2 H, Ar), 5.85-5.91 (m, 2H, H_{1II}), 5.28-5.32 (m, 2H, H_{1III}), 5.14-5.20 (m, 2H, H_{1IV}), 4.35-4.43 (m, 2 H), 4.25-4.34 (m, 2 H), 4.14-4.24 (m, 6 H), 4.12 (t, *J* = 2.84 Hz, 4 H), 4.05 (t, *J* = 9.46 Hz, 2 H, H_{6II}), 3.85-3.94 (m, 4 H), 3.82 (t, *J* = 8.86 Hz, 2 H, H_{5I}), 3.71-3.78 (m, 4 H), 3.53-3.70 (m, 8 H), 3.47-3.51 (m, 4 H), 3.39-3.47 (m, 4 H), 3.30-3.38 (m, 8 H), 3.18-3.30 (m, 8 H), 3.00-3.17 (m, 8 H), 2.32-2.41 (m, 2 H, H_{2Ieq}), 1.80-1.91 (m, 2 H, H_{2Iax}); MS MALDI-TOF m/z for C₅₄H₉₈N₁₆O₂₆ [M+Na]⁺, calcd 1410.45, found 1410.33; UV (water) $\lambda_{max} = 234$ nm.

DPA73 (Linker = 1,3-diisothiocyanatopropane).

 $[R_f = 0.45 \text{ in CH}_2Cl_2];$ IR (KBr, cm⁻¹); 3400, 2967, 2912, 2050 (br, NCS), 1728, 1602, 1472; ¹H NMR (300 MHz, CDCl_3): ∂ 3.75 (t, J = 4.25 Hz, 4 H), 2.07 (p, J = 3.21 Hz, 2 H), ¹³C NMR (125 MHz, CDCl_3): ∂ 42.09, 30.17.

DPA73

IR (KBr, cm⁻¹) 3431 (br, OH), 2091 (weak), 1654, 1524, 1366; ¹H NMR (500 MHz, D₂O): 5.98-6.04 (m, 2 H, H_{1II}), 5.30-5.34 (m, 2 H, H_{1II}), 5.18-5.23 (br, 2 H, H_{1IV}), 4.33-4.42 (m, 4 H, H_{4II}, H_{2III}), 4.26-4.32 (m, 2 H), 4.19-4.25 (m, 2 H, H_{4IV}), 4.13 (m, 2 H, H_{4I}), 4.10 (t, J = 10.09 Hz, 2 H, H_{6II}), 3.95 (t, J = 10.56 Hz, 2 H, H₅₁), 3.74-3.90 (m, 8 H), 3.60-3.75 (m, 8 H, H_{2IV}, H_{4II}, H_{5IV}, and H_{3III}), 3.51-3.60 (m, 6 H), 3.42-3.52 (m, 8 H), 3.32-3.41 (m, 6 H), 3.20-3.32 (m, 8 H, H_{3I}, H_{5II}, H_{3II}), 3.00-3.20 (m, 6 H), 2.67-2.87 (m, 4 H, linker protons), 2.37 (dt, JI = 3.62 Hz, J2 = 4.25 Hz, 2 H, H_{2leq}), 1.89 (q, J = 13.25 Hz, 2 H, H_{2lax}), 1.16 (m, 2 H, linker protons); MS MALDI-TOF m/z for C₅₁H₁₀₀N₁₆O₂₄S₂ [M+H₂O]⁺, calcd 1403.44, found 1402.91.

N-Boc DPA74.

[R_f 0.37 in 10% EtOH in DCM (v/v)]; IR (KBr, cm⁻¹) 3375 (OH), 2930, 2870, 1691, 1600-1500 [-C=C- (aromatic region)]; ¹H-NMR (500 MHz, CD₃COCD₃) δ 7.42 (s, 4 H, aromatic region), 6.86 (m, 4 H, NH_{6IV}), 6.57-6.77 (m, 4 H, NH₁₁), 6.09-6.33 (m, 4 H, NH_{6II}, NH₃₁), 5.85-6.09 (m, 4 H, NH_{2IV}, and NH_{2II}), 5.02-5.16 (m, 8 H, H_{1II}, H_{1III}, OH_{4IV}, H_{1IV}), 4.92-4.98 (m, 4 H), 4.09-4.38 (m, 10 H), 3.95-4.07 (m, 8 H), 3.77-3.91 (m, 8 H), 3.67-3.77 (m, 4 H), 3.52-3.65 (m, 16 H), 3.40-3.52 (m, 10 H), 3.25-3.39 (m, 4 H), 3.07-3.23 (m, 6 H), 2.11-2.16 (m, 2 H), 1.52-1.70 (m, 2 H, H_{2Iax}), 1.10-1.53 (m, 110 H, , H_{2Iax}, 12 × Boc); MALDI-TOF : calcd for C₁₁₄H₁₉₄N₁₆O₅₀ [M+H₂O]⁺ 2605.31, found 2604.10. **DPA74.**

IR (KBr, cm⁻¹) 3434 (br, OH), 2089, 1642; ¹H NMR (500 MHz, D₂O) δ 7.27 (s, 2H, Ar), 5.91-5.94 (m, 2H, H_{1II}), 5.34 (d, *J* = 3.47 Hz, 2H, H_{1II}), 5.20 (d, *J* = 3.47 Hz, 2H, H_{1IV}), 4.42 (t, 2H, *J* = 4.73 Hz, 2 H H_{4III}), 4.33-4.35 (m, 2H, H_{2III}), 4.24 (d, *J* = 5.83 Hz, 2H, H_{5IV} or H_{3IV}), 4.17-4.22 (m, 4H, H_{5IV} or H_{3IV}, H_{3III}), 4.14 (t, *J* = 2.99 Hz, 2 H), 3.85-3.95 (m, 8H), 3.65-3.70 (m, 8 H), 3.48-3.55 (m, 4 H), 3.22-3.38 (m, 12 H), 3.12-3.20 (m, 4 H), 3.03 (t, *J* = 9.30 Hz, 2 H), 2.35-2.43 (m, 2 H, H_{2Ieq}), 1.89-2.00 (m, 2 H, H_{2Iax}); MS MALDI-TOF m/z for C₅₄H₉₈N₁₆O₂₆ [M+Na]⁺, calcd 1410.44, found 1410.79; Anal. Calcd for C₅₄H₁₁₀N₁₆O₂₆Cl₁₂: C, 35.54; H, 6.08; Cl, 23.31; N, 12.28; O, 22.79. Found: C, 35.18; H, 5.92; N, 11.98; UV (water) $\lambda_{max} = 253$ nm.

DPA75 (Linker = 1,6-diisothiocyanatohexane).

R_f = 0.60, (silica gel, CH₂Cl₂); IR (KBr, cm⁻¹); 3000-3400 (br), 2105 (NCS), 1670 (br), 1420; ¹H NMR (300 MHz, CDCl₃): ∂ 3.31-3.38 (m, 4 H), 1.59-1.62 (m, 4 H), 1.44 (t, J = 3.62 Hz, 4H).¹³C NMR (125 MHz, CDCl₃, 25 °C): ∂ 122 (NCS), 42.82, 31.05, 25.93.

N-Boc DPA75.

[R_f = 0.36, 10% CH₃OH in CH₂Cl₂, (v/v)]; ¹H-NMR (500 MHz, CD₃COCD₃) δ 6.55-5.92 (m, 12 H, NH_{6IV}, NH_{1I}, NH_{6II}, NH_{3I}, NH_{2IV}, and NH_{2II}), 5.11-5.31 (s, br, 4H, H_{1II}, H_{1III}), 4.96-5.09 (m, 4 H, OH_{4IV}, H_{1IV}), 4.85 (s, 2H, OH), 4.72 (s, 2H, OH), 4.40-4.65 (m, 4 H, OH), 4.20-4.31 (m, 4 H, H_{5IV} or H_{3IV}), 4.13-4.30 (m, 4 H, H_{3III} and H_{5IV} or H_{3IV}), 4.02-4.12 (m, 4 H), 3.91-3.98 (t, 2H, *J* = 7.25 Hz, H_{2IV}), 3.81-3.90 (m, 8 H), 3.62 (m, 16 H, -O-CH₂-CH₂-O-, linker protons), 3.42-3.54 (m, 6 H), 3.17-3.38 (m, 10 H), 1.32-1.63 (m, 110 H, H_{2Iax}, 12 × Boc); MALDI-TOF : calcd for C₁₁₄H₂₀₂N₁₆O₄₈S₂ [M] ⁺ 2627.32, found 2627.14.

DPA75.

IR (KBr, cm⁻¹) 3432 (br, OH), 2089, 1644; ¹H NMR (500 MHz, D₂O) δ 5.91-5.95 (m, 2H, H_{1II}), 5.32 (d, J = 3.94 Hz, 2H, H_{1III}), 5.17 (m, 2H, H_{1IV}), 4.30 (t, J = 4.73 Hz, 2 H, H_{4III}), 4.23 (t, J = 4.73 Hz, 2 H), 4.19 (t, J = 4.89 Hz, 2 H), 4.13-4.17 (m, 2 H), 4.11 (t, J = 2.99 Hz, 2 H), 4.05 (t, J = 9.93 Hz, 2 H, H_{6II}), 4.92 (t, J = 9.14 Hz, 2 H, H_{5I}), 3.80-3.88 (m, 4 H), 3.69-3.74 (m, 2 H), 3.63 (t, J = 9.93 Hz, 2 H, H_{3II}), 3.40-3.50 (m, 4 H), 3.28-3.40 (m, 8 H), 3.21-3.28 (m, 6 H), 3.12-3.17 (m, 2 H), 2.91-3.02 (m, 2 H), 2.34-2.42 (m, 2 H, H_{2Ieq.}), 1.77 (q, J = 11.51, 2 H, H_{2Iax.}); MS MALDI-TOF m/z for C₅₄H₁₀₆N₁₆O₂₄S₂ [M]⁺, calcd 1427.64, found 1427.57.

N-Boc DPA76.

[R_f = 0.38, 10% CH₃OH in CH₂Cl₂, (v/v)]; IR (cm⁻¹): 3375 (OH), 2930, 2870, 2150 (-C=S), 1691, 1510; ¹H-NMR (500 MHz, CD₃COCD₃) δ 7.42 (s, 2 H, (S=C-NH-CH₂-CH₂-O-), 7.32 (s, 2 H, C_{5III}-CH₂-CH₂-NH-C=S), 6.59 (t, 2H, *J* = 5 Hz, NH_{6IV}), 6.47 (m, 2H, NH₁₁), 6.34-5.90 (m, 8 H, NH_{6II}, NH_{3I}, NH_{2IV}, and NH_{2II}), 5.29 (s, 2H, H_{1II}), 5.13 (s, 2H, H_{1III}), 4.95-5.05 (m, 4 H, OH_{4IV}, H_{1IV}), 4.77 (s, 2H, OH), 4.63 (s, 2H, OH), 4.38-4.49 (m, 4 H, OH), 4.21-4.32 (m, 4 H, H_{5IV} or H_{3IV}), 4.10-4.21 (m, 4 H, H_{3III} and H_{5IV} or H_{3IV}), 4.05 (s, 2H, H_{4IV}), 3.94 (t, 2H, *J* = 7.25 Hz, H_{2IV}), 3.80-3.92 (m, 8 H), 3.70-3.81 (m, 8 H), 3.66 (m, 12 H, -O-CH₂-CH₂-O-, linker protons), 3.39-3.58 (m, 12 H), 3.17-3.37 (m, 10 H), 1.35-1.60 (m, 110 H, H_{2Iax}, 12 × Boc); MALDI-TOF : calcd for C₁₁₈H₂₁₀N₁₆O₅₀S₂ [M+Na] + 2650.33, found 2650.44.

DPA76.

IR (KBr, cm⁻¹) 3433 (br, OH), 2926, 1648, 1524; ¹H NMR (500 MHz, D₂O) δ 5.96 (m, 2H, H_{1II}), 5.32 (s, 2H, H_{1III}), 5.18 (s, 2H, H_{1IV}), 4.38 (m, 2H, H_{4III}), 4.23-4.35 (m, 4H, H_{2III}), 4.07-4.16 (m, 2H, H_{5IV} or H_{3IV}), 4.02 (t, *J* = 9.78 Hz, 2 H, H_{6II}), 3.92 (t, *J* = 9.93 Hz, 2 H), 3.78-3.87 (m, 8 H), 3.72 (m, 4 H), 3.54-3.68 (m, 12 H), 3.39-3.53 (m, 10 H), 3.14-3.38 (m, 16 H), 2.30-2.43 (m, 2 H, H_{2Ieq}), 1.74-1.88 (m, 2 H, H_{2Iax}); MS MALDI-TOF m/z for C₅₄H₁₀₆N₁₆O₂₆S₂ [M+H₂O]⁺, calcd 1482.64, found 1481.89; Anal. Calcd for C₅₄H₁₁₈N₁₆O₂₆Cl₁₂ S₂: C, 34.19; H, 6.27; Cl, 22.42; N, 11.81; O, 21.93; S, 3.38. Found: C, 33.95; H, 6.16; N, 11.68.

N-Boc DPA77.

[R_f = 0.40, 10% CH₃OH in CH₂Cl₂, (v/v)]; ¹H-NMR (500 MHz, CD₃COCD₃) δ 6.54-6.63 (t, 2H, *J* = 5 Hz, NH_{6IV}), 6.40-6.53 (m, 2H, NH_{1I}), 6.35-5.87 (m, 10 H, NH_{6II}, NH_{3I}, NH_{2IV}, and NH_{2II}), 5.28 (s, 2H, H_{1II}), 5.15 (s, 2H, H_{1III}), 4.94-5.08 (m, 4 H, OH_{4IV}, H_{1IV}), 4.75 (s, 2H, OH), 4.62 (s, 2H, OH), 4.40-4.51 (m, 4 H, OH), 4.20-4.31 (m, 4 H, H_{5IV} or H_{3IV}), 4.11-4.20 (m, 4 H, H_{3III} and H_{5IV} or H_{3IV}), 4.01-4.11 (s, 4H), 3.91-3.98 (t, 2H, *J* = 7.25 Hz, H_{2IV}), 3.81-3.90 (m, 8 H), 3.71-3.81 (m, 8 H), 3.66 (m, 8 H, -O-CH₂-CH₂-O-, linker protons), 3.39-3.58 (m, 10 H), 3.20-3.38 (m, 10 H), 1.32-1.63 (m, 110 H, H_{2Iax}, 12 × Boc); MALDI-TOF : calcd for C₁₂₀H₂₁₄N₁₆O₄₈S₂ [M] ⁺ 2711.40, found 2710.96.

IR (KBr, cm⁻¹) 3412 (br, OH), 2928, 1684, 1521, 1366; ¹H NMR (500 MHz, D₂O): 5.94 (d, J = 4.09 Hz, 2 H, H_{1II}), 5.30 (d, J = 2.68 Hz, 2 H, H_{1II}), 5.19 (d, J = 1.58 Hz, 2 H, H_{1IV}), 4.29-4.34 (m, 4 H), 4.16-4.23 (m, 4 H), 4.11 (t, J = 2.99 Hz, 2 H), 4.02-4.08 (m, 2 H), 3.98 (t, J = 10.25 Hz, 2 H, H_{6II}), 3.76-3.84 (m, 4 H), 3.90 (t, J = 9.14 Hz, 2 H, H_{5I}), 3.76-3.84 (m, 4 H), 3.69-3.73 (m, 2 H), 3.59 (t, J = 9.15 Hz, 2 H), 3.44-3.51 (m, 4 H), 3.42 (d, J = 3.94 Hz, 2 H), 3.40 (d, J = 4.10 Hz, 2 H), 3.30-3.80 (m, 6 H), 3.20-3.30 (m, 8 H), 3.09-3.18 (m, 6 H), 3.01 (dd, JI = 3.47 Hz, J2 = 3.62 Hz, 2 H), 2.76-2.84 (m, 4 H, linker protons), 2.70 (q, J = 8.98 Hz, 2 H), 2.37 (dt, JI = 3.94 Hz, J2 = 4.25 Hz, 2 H, H_{2leq.}), 1.80 (q, J = 12.61 Hz, 2 H, H_{2lax.}), 1.19 (s, 2 H, linker protons), 1.05-1.12 (m, 18 H, linker protons); MS MALDI-TOF m/z for C₆₀H₁₁₈N₁₆O₂₄S₂ [M+Na]⁺, calcd 1534.98, found 1535.81.

N-Boc DPA78 (Linker = 4, 9-dioxa-1, 12- dodecadiisothiocyanate).

R_f = 0.50, (silica gel, CH₂Cl₂); IR (KBr, cm⁻¹) 3350, 2950, 2110 (NCS), 1250, 1050; ¹H NMR (300 MHz, CDCl₃): ∂ 3.65 (t, J = 4.22 Hz, 4H), 3.55(t, J = 3.84 Hz, 4H), 3.46 (t, J = 3.72 Hz, 4H), 1.93 (p, J = 3.64 Hz, 4H), 1.61 (p, J = 3.58 Hz, 4H).¹³C NMR (125 MHz, CDCl₃) : ∂ 131, 70.88, 66.58, 53.5, 42.15, 30.21, 26.36; MS/GC calcd.: 288.07, obsd (M⁺): 288.

N-Boc DPA78.

[R_f 0.40, 10 % MeOH in CH₂Cl₂, (v/v)]; ¹H NMR (300 MHz, CDCl₃, 25 °C); ∂ 6.15 (s, 2H), 5.46 (br s, 2 H), 5.13 (br s, 2 H), 4.92 (m, 2 H), 4.23 (m, 2 H), 4.09 (br s, 4 H), 3.88-3.91 (m, 4 H), 3.74-3.77 (m, 4 H), 3.63-3.67 (m, 4 H), 3.53-3.56 (m, 4 H), 3.44-3.47 (m,

4 H), 3.56-3.44 (m, 30 H), 3.00-3.30 (m, 24 H), 1.92-1.95 (m, 2 H), 1.87-1.91 (m, 4 H), 1.60-1.64 (m, 8 H), 1.38-1.58 (m, 110 H); ¹³C NMR (500 MHz, D₂O) δ 167 (C=S), 155-158 (m, 6 × Boc, C=O), 100, 71, 69, 67, 62, 53, 52, 51, 42.5, 38.5, 33, 32, 31.8, 31.1, 31, 27.5, 26, 25; MALDI-TOF : calcd for C₁₁₈H₂₁₀N₁₆O₅₀S₂ [M] ⁺ 2716.39, found 2716.90. **DPA78.**

DPA 78

¹H NMR (500 MHz, D₂O): 5.99 (d, J = 3.92 Hz, 2 H, H_{1II}), 5.28-5.36 (m, 2 H, H_{1III}), 5.16-5.22 (m, 2 H, H_{1IV}), 4.36-4.44 (m, 2 H), 4.22-4.32 (m, 4 H), 4.17-4.23 (m, 4 H), 4.08-4.15 (m, 2 H), 4.03 (t, J = 9.78 Hz, 2 H, H_{6II}), 3.90 (t, J = 9.93 Hz, 2 H, H_{5I}), 3.78-3.87 (m, 4 H), 3.67-3.77 (m, 4 H), 3.54-3.65 (m, 12 H, linker protons), 3.40-3.54 (m, 10 H), 3.32-3.39 (m, 6 H), 3.30 (t, J = 4.58 Hz, 2 H), 3.12-3.29 (m, 8 H), 2.38 (dt, JI = 3.78Hz, J2 = 4.41 Hz, 2 H, H_{2leq}.), 1.71-1.91 (m, 4 H, H_{2lax}, linker protons), 1.05-1.25 (m, 4 H, linker protons), 1.05-1.12 (m, 18 H, linker protons); ¹³C NMR (500 MHz, D₂O) δ 176, 109, 97, 91, 77, 75, 74, 73, 72, 70.9, 70.6, 70.1, 69.5, 68.1, 68, 62.5, 61, 53, 52, 51, 50, 49, 48, 42.5, 40.5, 40.1, 27.5, 25; MALDI-TOF : calcd for C₅₈H₁₁₄N₁₆O₂₆S₂ [M+H₂O]⁺ 1533.75, found 1533.43.

DPA79 (Synthesis and characterization of DPA79 is reported in S. Kumar, L. Xue and D. P. Arya, *J. Am. Chem. Soc.*, 2011, **133**, 7361-7375).

N-Boc DPA80.

 $[R_f = 0.42, 10\% CH_3OH \text{ in } CH_2Cl_2 (v/v)]; IR (KBr, cm^{-1}) 3300 (br, OH), 2950, 2902, 2833, 2107 (br, -C=S), 1727, 1615, 1450; ¹H-NMR (500 MHz, CD_3COCD_3) \delta 7.58 (s, 2)$

H, (S=C-NH-CH₂-CH₂-O-), 6.60 (m, 2 H, NH_{6IV}), 6.19-6.35 (m, 4 H, NH₁₁, NH_{6II}), 6.14 (s, br, 2 H, NH_{3I}), 6.06 (d, J = 9.62 Hz, 2 H, NH_{2IV}), 5.91 (s, 2 H, NH_{2II}), 5.77 (m, 2 H, OH), 4.96-5.14 (m, 8 H, H_{1II}, H_{1III}, OH_{4IV}, H_{1IV}), 4.76 (s, 2 H, OH_{6I}), 4.56-4.70 (s, 2 H, OH_{4II}), 4.18-4.27 (m, 4 H, H_{3III} and H_{5IV} or H_{3IV}), 4.10-4.17 (m, 2 H, H_{3IV} or H_{5IV}), 3.98-4.10 (m, 8 H, H_{4IV}, H_{2IV}), 3.90-3.98 (m, 2 H), 3.78-3.86 (m, 6 H, H_{5II} or H_{5I}), 3.74 (t, J = 8.82 Hz, 2 H, H_{5II} or H_{5I}), 3.51-3.70 (m, 12 H, H_{6I}, H_{4I}, H_{3I}, H_{5III}, and H_{2II}), 3.38-3.51 (m, 8 H, H_{3II} and H_{1I}), 3.22-3.38 (m, 10 H), 3.12-3.22 (m, 4 H, H_{3I} or H_{1I}), 2.98-3.12 (m, 4 H, H_{3I} or H_{1I}), 1.10-1.65 (m, 130 H, H_{2Iax}, 6 × Boc, linker protons); MS MALDI-TOF calcd. for C₁₂₄H₂₂₂N₁₆O₅₀S₂ (M+Na⁺), 2817.30, obsd, 2818.45.

IR (KBr, cm⁻¹) 3432 (br, OH), 2102, 1646; ¹H NMR (500 MHz, D₂O): 5.96 (t, J = 3.94 Hz, 2 H, H_{1II}), 5.32 (m, 2 H, H_{1III}), 5.18-5.24 (m, 2 H, H_{1IV}), 4.29-4.36 (m, 4 H), 4.17-4.26 (m, 4 H), 4.10-4.15 (m, 2 H), 3.97-4.09 (m, 4 H, H_{6I}), 3.92 (t, J = 9.30 Hz, 2 H, H_{5I}), 3.77-3.87 (m, 6 H), 3.68-3.74 (m, 2 H), 3.60 (t, J = 9.30 Hz, 2 H), 3.47-3.52 (m, 2 H), 3.40-3.47 (m, 6 H), 3.31-3.40 (m, 8 H), 3.20-3.32 (m, 8 H), 3.09-3.20 (m, 6 H), 2.98-3.05 (m 2 H), 2.96 (m, 2 H), 2.77-2.89 (m, 4 H), 2.72 (q, J = 8.98 Hz, 2 H), 2.37 (dt, JI = 3.94 Hz, J2 = 4.25 Hz, 2 H, H_{2leq}.), 1.81 (q, J = 12.45 Hz, 2 H, H_{2lax}.), 1.25-1.32 (s, 4 H, linker protons), 1.04-1.13 (m, 18 H, linker protons); MS MALDI-TOF m/z for C₆₄H₁₂₆N₁₆O₂₄S₄ [M+2H₂O]⁺, calcd 1668.04, found 1668.15.

DPA311.

IR (KBr, cm⁻¹) 3433 (br, OH), 2110, 1641; ¹H NMR (500 MHz, D₂O) δ 5.85-5.60 (m, 2 H, H_{1II}), 5.25-5.38 (m, 2 H, H_{1II}), 5.10-5.20 (m, 2 H, H_{1IV}), 4.15-4.35 (m, 8H), 4.08-4.14 (m, 2 H), 3.97-4.06 (m, 2 H), 3.88-3.96 (m, 2 H, H_{5I}), 3.75-3.86 (m, 4 H), 3.68-3.74 (m, 2 H), 3.54-3.64 (m, 4 H), 2.95-3.50 (m, 30 H), 2.50-2.85 (m, 6 H), 2.30-2.40 (m, 2 H, H_{2Ieq}), 1.71-1.90 (m, 2 H, H_{2Iax}), 1.30-1.58 (m, 4 H, linker protons), 1.02-1.25 (m, 12 H, linker protons); MS MALDI-TOF m/z for C₅₉H₁₁₆N₁₆O₂₄S₄ [M+H₂O]⁺, calcd 1579.91, found 1580.21.

DPA312.

IR (KBr, cm⁻¹) 3430 (br, OH), 2106, 1642; ¹H NMR (500 MHz, D₂O) δ 5.85-5.96 (m, 2 H, H_{1II}), 5.20-5.28 (m, 2 H, H_{1II}), 5.10-5.15 (m, 2 H, H_{1IV}), 4.17-4.30 (m, 6 H), 4.12-4.16 (m, 2 H), 4.06 (t, *J* = 2.84 Hz, 2 H), 3.94 (t, *J* = 9.78 Hz, 2 H, H₅₁), 3.86 (t, *J* = 9.30 Hz, 2 H), 3.70-3.80 (m, 6 H), 3.64-3.68 (m, 2 H), 3.48-3.59 (m, 6 H), 3.41-3.45 (m, 2 H), 3.31-3.40 (m, 4 H), 3.26-3.30 (m, 6 H), 3.14-3.25 (m, 8 H), 3.04-3.13 (m, 4 H), 2.94-3.04 (m,

2 H), 2.55-2.80 (m, 6 H), 2.27-2.37 (m, 2 H, H_{2Ieq.}), 1.75 (q, J = 12.45 Hz, 2 H, H_{2Iax.}), 1.30-1.41 (m, 4 H, linker protons), 1.02-1.20 (m, 12 H, linker protons); MS MALDI-TOF m/z for C₆₁H₁₂₀N₁₆O₂₄S₄ [M+H₂O]⁺, calcd 1589.96, found 1608.0.

DPA313.

IR (KBr, cm⁻¹) 3431 (br, OH), 2104, 1646; ¹H NMR (500 MHz, D₂O) δ 5.85-5.97 (m, 2 H, H_{1II}), 5.24-5.33 (m, 2 H, H_{1II}), 5.13-5.21 (m, 2 H, H_{1IV}), 4.20-4.37 (m, 6 H), 4.13-4.19 (m, 2 H), 4.05-4.12 (m, 2 H), 3.96 (t, J = 9.62 Hz, 2 H, H_{5I}), 3.88 (t, J = 9.62 Hz, 2 H), 3.72-3.83 (m, 6 H), 3.66-3.72 (m, 2 H), 3.51-3.64 (m, 6 H), 3.29-3.50 (m, 10 H), 3.16-3.30 (m, 6 H), 2.95-3.15 (m, 6 H), 2.60-2.83 (m, 6 H), 2.30-2.40 (m, 2 H, H_{2Ieq}.), 1.75 (q, J = 12.13 Hz, 2 H, H_{2Iax}.), 1.30-1.57 (m, 4 H, linker protons), 1.02-1.20 (m, 12 H, linker

protons); MS MALDI-TOF m/z for $C_{62}H_{122}N_{16}O_{24}S_4$ [M+H₂O]⁺, calcd 1603.98, found 1622.18.

Hexa-N-Boc deoxy-neomycin-5"-isothiocyanate (A).

N-Boc DPA 71.

DPA71.

DPA 72.

DPA73.

DPA74.

N-Boc DPA 76.

DPA77.

DPA77.

DPA78.

DPA80.

DPA311.

ITC profile of neomycin and neomycin dimers with AT DNA

Figure S68. ITC profile of indicated ligands including neomycin and neomycin dimers with d[5'-G₂A₆T₆C₂-3']. The upper panel in each ITC titration represents the heat burst curves, each of which is the result of a 9 μ L injection of 125 μ M of **neomycin dimer**, with a DNA concentration of 4 μ M/duplex. The area under each heat burst curve was calculated by integration and yielded the associated injection heats that are plotted as a function of molar ratio of drug-to-DNA in the lower panel in each figure. Corrected injection heats plotted as a function of the [drug]/DNA ratio. Buffer conditions: 100 mM KCl, 10 mM SC, 0.5 mM EDTA, pH 5.5. T = 25 °C. [DNA] = 4 μ M/duplex. [**neomycin dimer**] = 125 μ M. [Neomycin] = 250 uM and the [DNA] = 8 μ M/duplex.

Compound	Structure of the	N ₁	$K_1 (M^{-1})$	ΔH_1	ΔS_1
name	linker			(kcal/mol)	(cal/mol.K)
DPA71	s s	ND	ND	-3.9±0.2	ND
DPA72		1.0±0.0	(2.5±0.3)X10 ⁷	-13.5±0.7	-10.5
DPA73		0.8±0.1	(7.6±1.8)X10 ⁷	-19.6±3.0	-29.6
DPA74		ND	ND	-2.4±0.3	ND
DPA75		ND	ND	-4.2±0.4	ND
DPA76	H N S N N N N N N N N N	0.8±0.1	(7.2±0.5)X10 ⁷	-3.6±0.3	26.4
DPA77	$\mathbb{E}_{O} \xrightarrow{H}_{10} \xrightarrow{H}_{10} \xrightarrow{H}_{O} \xrightarrow{H}_{10} \xrightarrow{H}_{O}$	1.0±0.1	(6.1±0.4)X10 ⁷	-6.1±0.5	15.0
DPA78	H S S N N N N N N N N N N N N N N N N N	1.1±0.1	(9.1±1.0)X10 ⁷	-5.1±0.3	16.8
DPA79*	H S N N N N N	1.1±0.0	(1.6±0.2)X10 ⁸	-5.2±0.1	19.9
DPA80*	$ \underset{S}{\overset{\text{for }}{\longrightarrow}} \underset{10}{\overset{\text{for }}{\longrightarrow}} \underset{S}{\overset{\text{for }}{\longrightarrow}} \underset{10}{\overset{\text{for }}{\longrightarrow}} \underset{S}{\overset{\text{for }}{\longrightarrow}} $	0.8±0.1	(1.2±0.2)X10 ⁸	-4.4±0.3	22.4

DPA311*	$\mathbb{I}_{S}^{H} \mathbb{I}_{5}^{H} I$	0.7 <u>+</u> 0.0	(1.3±0.1)X10 ⁸	-5.2±0.3	19.8			
DPA312*	$\begin{array}{c} \begin{array}{c} \begin{array}{c} H \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	0.7 <u>+</u> 0.0	(1.6±0.2)X10 ⁸	-3.7±0.2	21.3			
DPA313*	$\mathbb{K}_{S}^{H} \mathbb{K}_{8} \mathbb{K}_{S}^{H} \mathbb{K}_{8} \mathbb{K}_{S}^{H} \mathbb{K}_{8} \mathbb{K}_{S}^{H} \mathbb{K}_{8} \mathbb{K}_{S}^{H} \mathbb{K}_{8} \mathbb{K}_{S}^{H} \mathbb{K}_{8} \mathbb{K}_{8}^{H} \mathbb{K}_{8} \mathbb{K}_{8}^{H} \mathbb{K}_{8} \mathbb{K}_{8}^{H} \mathbb{K}_{8}^$	0.8 <u>+</u> 0.0	(1.3±0.2)X10 ⁸	-6.7±0.4	12.2			
Neomycin	NA	3.1±0.0	(3.1±0.3)X10 ⁵	-2.0±0.2	4.6			
Table S3. ITC-derived thermodynamic characterization of neomycin dimers and neomycin								
with DNA duplex d[5'-G ₂ A ₆ T ₆ C ₂ -3'] at 25 °C. d[5'-G ₂ A ₆ T ₆ C ₂ -3'] = 8 μ M/duplex [neomycin								
dimer] = 125 μ M. Buffer condition: 100 mM KCl, 10 mM SC, 0.5 mM EDTA, pH 5.5.								

AC₅₀ values of neomycin dimers and neomycin against AT rich DNA