Supplementary Figure Legends

Supplementary Figure 1. Hi-C data at the *CFTR* locus from human fibroblasts cells generated by the Ren Lab (data source: <u>http://www.3dgenome.org</u>). Dotted red lines indicate the TAD boundaries identified by 4C-seq, which are consistent with the Hi-C data. CTCF ChIP-seq data from ENCODE are also shown.

Supplementary Figure 2. Validation of 4C interactions by FISH. (A) Screen shot from UCSC genome browser showing the locations of BACs used for the FISH experiment. (B) Representative FISH images showing nuclear staining with DAPI, individual fluorescent BAC probes, and all signals merged. (C) Box and whisker plot showing quantification of physical distances between BAC probes. The box represent 25% to 75% percentile and bars represent 5% to 95% percentile. Images from 94 nuclei (282 pairs) were used for the quantification.

Supplementary Figure 3. Design and validation of CRISPR/Cas9 mediated deletion of *cis*-regulatory elements. (A, B) -20.9 kb site deletion. (A) UCSC genome browser graphic showing schematic for the design of the CRISPR/Cas9 target deletion and its location relative to the -20.9kb DHS. Below, the location of the deletion breakpoints is shown following direct sequencing of gel-purified PCR products generated using flanking primers (Suppl. Table 3). (B) Agarose gel image showing PCR product with

no template (1), 2 alleles deleted (2), and all three alleles deleted (3) (note Caco2 is 3N for CFTR). (C, D) intron 11 DHS deletion. (C) UCSC genome browser graphic showing schematics for the design of CRISPR/Cas9 deletion and its location relative to the intron 11 DHS. Below, the location of the deletion breakpoints is shown (as for A) (Suppl. Table 3). (D) Agarose gel image showing PCR product using template from WT (1), one allele deleted (2), two alleles deleted (3), and all three alleles deleted clones (4).

Supplementary Figure 4. Test splicing variants in WT and del11 clones by RT-PCR. cDNA from 2 WT and 4 del11 clones were used for RT-PCR. Primers used are illustrated by the schematic and described in Chalkley et al. J. Med. Genet. 1991. All WT and del11 clones show same splicing variants: 1kb product being the full length product; and 0.8kb product that lacks exon 12 (exon 12 (-)), which is common in normal tissues.

Supplementary Figure 5. Measurement of CTCF enrichment at the gel-forming mucin gene cluster on chromosome 11, in del-20.9 clones. (A) Schematic showing the position of CTCF binding sites (numbered I to XIII) relative to the mucin genes. (B) CTCF enrichment was assayed by ChIP-qPCR at site IV and IX. Results are mean ± S.E.M., n=4, not significant.

Supplementary Figure 2

Supplementary Figure 3

Supplementary Figure 4

Supplementary Figure 5

ChIP-qPCR Primer Sets	Sequences
-80.1kb F	GGGCATTCAAAGAAAAGCAGAAAGC
-80.1kb R	ACCCCAGTACAGAGACGTGACA
Promoter F	GTTCTCCCGCCGGTGG
Promoter R	CAGTCGCGGCCTCTCTTTAG
Intron 1 CTCF F (185+1kb)	GCAGTTAATCCTGGAACTCCGGTGC
Intron 1 CTCF R (185+1kb)	AAGTCCTTCTCTCTCATCCACAGGG
Intron 1 enhancer F (185+10kb)	TCATTGTCAACTGTCAGGTAGCAA
Intron 1 enhancer R (185+10kb)	CAGAGTTAGGATTCCAGCCAGG
Intron 10 F	TGCTTTATTGAATGGCATTACCTCTA
Intron 10 R	AGATGCTTGTGGTAAGGGAGGAG
Intron 11 F	TCCAAAAGCTGAGACAGGAAACT
Intron 11 R	ATTACATACACACAAAAGTACACACATGACT
+48.9kb F	GGCATCAGCCAGTCAAGGTT
+48.9kb R	AGCAGAGGGCAAAGTGGTACTT
+83.7kb F	CCGGGTCGAACATGCAAAGC
+83.7kb R	AGCCCTCTGCTGGAAGCGTG

Supplementary Table 1. Primer sequences for ChIP-qPCR and RT-PCR

RT-PCR Primer Sets	Sequences
B1R	GACAAACAGAACTGAAACTG
B1L	CAGCTTTCTTTAAATGTTCC

Supplementary Table 2. Restriction enzyme pairs and primer sequences used for 4C library generation.

Viewpoint	Primary	Secondary	Pooding primer	Non-reading
	enzyme	enzyme	Reading primer	primer
			AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
Promoter	NlaIII	Cen6I	CACTCTTTCCCTACACGACGCT	CATACGATGAAGTG
Promoter	Infatti	Cspor	CTTCCGATCTGCACTTACTAT	TTCTTTGGATATTG
			ATGCAGGCATG	С
		Csp6I	AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
Promoter	NlaIII		CACTCTTTCCCTACACGACGCT	CATACGATGAAGTG
CG			CTTCCGATCTCGGCACTTACT	TTCTTTGGATATTG
			ATATGCAGGCATG	С
	NlaIII	Csp6I	AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
Promoter			CACTCTTTCCCTACACGACGCT	CATACGATGAAGTG
AT			CTTCCGATCTATGCACTTACT	TTCTTTGGATATTG
			ATATGCAGGCATG	С
			AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
Promoter	NlaIII	Cen6I	CACTCTTTCCCTACACGACGCT	CATACGATGAAGTG
GA	Main	Cspor	CTTCCGATCTGAGCACTTACT	TTCTTTGGATATTG
			ATATGCAGGCATG	С
			AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
Promoter	NlaIII	Cen6I	CACTCTTTCCCTACACGACGCT	CATACGATGAAGTG
ТА	Maill	Cspor	CTTCCGATCTTAGCACTTACT	TTCTTTGGATATTG
			ATATGCAGGCATG	С
			AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
Promoter	NlaIII	Csp6I	CACTCTTTCCCTACACGACGCT	CATACGATGAAGTG
AG	INIdIII		CTTCCGATCTAGGCACTTACT	TTCTTTGGATATTG
			ATATGCAGGCATG	С
	NlaIII		AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
Promoter		Csp6I	CACTCTTTCCCTACACGACGCT	CATACGATGAAGTG
GC			CTTCCGATCTGCGCACTTACT	TTCTTTGGATATTG
			ATATGCAGGCATG	С
-20.9kb	NlaIII	DpnII	AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
			CACTCTTTCCCTACACGACGCT	CATACGACAAAGTG
			CTTCCGATCTTTAACAAAGTT	AGCTATTTTGTTTT
			TAGGTAAATGACCA	СТС
			AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
-20.9kb	NlaIII	DpnII	CACTCTTTCCCTACACGACGCT	CATACGACAAAGTG
CG			CTTCCGATCTCGTTAACAAAG	AGCTATTTTGTTTT
			TTTAGGTAAATGACCA	СТС
-20.9kb AT	NlaIII	DpnII	AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
			CACTCTTTCCCTACACGACGCT	CATACGACAAAGTG
			CTTCCGATCTATTTAACAAAG	AGCTATTTTGTTTT
			TTTAGGTAAATGACCA	СТС
-20.9kb GA		DpnII	AATGATACGGCGACCACCGAA	CAAGCAGAAGACGG
	NlaIII		CACTCTTTCCCTACACGACGCT	CATACGACAAAGTG
			CTTCCGATCTGATTAACAAAG	AGCTATTTTGTTTT
			TTTAGGTAAATGACCA	СТС

+48.9kb	NlaIII	DpnII	AATGATACGGCGACCACCGAA CACTCTTTCCCTACACGACGCT CTTCCGATCTGAGTGAGCTTG AAAGCCATG	CAAGCAGAAGACGG CATACGATGGAACA TCGTCAGTGGAAG
+48.9kb AT	NlaIII	DpnII	AATGATACGGCGACCACCGAA CACTCTTTCCCTACACGACGCT CTTCCGATCTATGAGTGAGCT TGAAAGCCATG	CAAGCAGAAGACGG CATACGATGGAACA TCGTCAGTGGAAG
+48.9kb CG	NlaIII	DpnII	AATGATACGGCGACCACCGAA CACTCTTTCCCTACACGACGCT CTTCCGATCTCGGAGTGAGCT TGAAAGCCATG	CAAGCAGAAGACGG CATACGATGGAACA TCGTCAGTGGAAG
+48.9kb GA	NlaIII	DpnII	AATGATACGGCGACCACCGAA CACTCTTTCCCTACACGACGCT CTTCCGATCTGAGAGTGAGCT TGAAAGCCATG	CAAGCAGAAGACGG CATACGATGGAACA TCGTCAGTGGAAG
-80.1kb	NlaIII	Csp6I	AATGATACGGCGACCACCGAA CACTCTTTCCCTACACGACGCT CTTCCGATCTACTGAGAACTT ACAGGGCAGTC	CAAGCAGAAGACGG CATACGACTGGTAG CTTTTGGTTGAATG
-80.1kb AT	NlaIII	Csp6I	AATGATACGGCGACCACCGAA CACTCTTTCCCTACACGACGCT CTTCCGATCTATACTGAGAAC TTACAGGGCAGTC	CAAGCAGAAGACGG CATACGACTGGTAG CTTTTGGTTGAATG
-80.1kb CG	NlaIII	Csp6I	AATGATACGGCGACCACCGAA CACTCTTTCCCTACACGACGCT CTTCCGATCTCGACTGAGAAC TTACAGGGCAGTC	CAAGCAGAAGACGG CATACGACTGGTAG CTTTTGGTTGAATG
-80.1kb GA	NlaIII	Csp6I	AATGATACGGCGACCACCGAA CACTCTTTCCCTACACGACGCT CTTCCGATCTGAACTGAGAAC TTACAGGGCAGTC	CAAGCAGAAGACGG CATACGACTGGTAG CTTTTGGTTGAATG
+15.6kb	NlaIII	Csp6I	AATGATACGGCGACCACCGAA CACTCTTTCCCTACACGACGCT CTTCCGATCTTGAAACCCTAT TTGAATAGCATG	CAAGCAGAAGACGG CATACGAATTTGTG TGTTTGGCTTTGG

Supplementary Table 3. List of gRNA sequences and PCR primers used for generation and validation of -20.9kb and intron 11 CRISPR/Cas9 clones.

Name	Sequences
-20.9kb 5' gRNA	CTGTAGACCATCCTTATTAACT
-20.9kb 3' gRNA	ACATCTTAATATAGCCATT
Intron 11 5' gRNA	CTGCCACTCCAATGTACACACC
Intron 11 3' gRNA	CATTATGTAGCTCTTGCATACT
-20.9kb validation PCR F	AACCTCATGCTTGTGCAAAT
-20.9kb validation PCR R	TCCATCACATCCCATTTGAG
Intron 11 validation PCR F	GCCCGTATCTTGGTGTCAGT
Intron 11 validation PCR R	AAGATGAAGACACAGTTCC