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S1. Description of ChIP-seq data preprocessing 

Sample ChIP-seq data

  Step 1: Fragment density map generation

  Step 2: Mappability bias correction 

  Step 3: Candidate region identification

  Step 4: Input data normalization

Step 5: Promoter region mapping and read intensity calculation

Input ChIP-seq data

hg19 Mappability file 

Forward strand

Reverse strand

Sample fragment 
density map

Simulated fragment 
density map

Segment threshold

Input fragment 
density map

Transcription starting site

Gene bodyPromoter region

Normalized input signal

5' 3'

5'3'

Hg19 RefSeq

 
Fig. S1. Flowchart of data preprocessing. 

 

A flowchart of the steps of data preprocessing is shown in Fig. S1, which are described 
in detail as follows:  
 
Step 1: 5’ locations of uniquely aligned reads (stored in BAM format) from a TF-DNA 
binding profile (sample ChIP-seq data) are extracted and further extended by the 
average DNA fragment length (200 bps) towards 3’ direction. Fragments are then 
accumulated to form a fragment density map, as shown in Fig. S1. At nucleotide i , its 
fragment density can be calculated by counting forward reads with 5’ start locations 
falling in [ ]200 1,i i− +  and reverse reads with 5’ start locations falling in [ ], 200 1i i + − . At 

this step, ChIP-seq reads are extended and clustered together to form continues 
regions if they overlap with each other. Note that only uniquely mapped reads of sample 
ChIP-seq data are used in this step so the mappability bias at different locations of 
genome needs to be properly addressed before candidate region identification. 
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Step 2: Once the sample fragment density map has been created, each chromosome is 
partitioned into segments for candidate region searching according to a mappability 
map with segmentation length l . ‘Mappbability’ is defined as the number of uniquely 
mappable nucleotides in a genome segment with length l . The default value of  l  is set 
as 1M bps in PeakSeq (1). For each segment, its uniquely mappable fraction 
(mappability/ l ) is denoted as f  (0~1), and its fragment count is denoted as N . In Fig. 
S2(a), we present f values for five 1M segments of human genome (hg19) 
chr1:1~5,000,000 (PBX1 ChIP-seq data). A histogram of N  of all segments from the 
whole genome is shown in Fig. S2(b). It can be seen from Fig. S2(a) that the variation of 
f  is not significant or very sensitive for different segments especially among those 

segments with high f  values. 
 
As mentioned by Kuan et al. (2), l  should be as small as 1k to make mappability 
variation more apparent, as shown in Fig. S2(e). However, Kuan et al. also pointed out 
that at 1k scale there may not be enough reads to build the background model (by 
performing random permutations of reads). As can be seen from Fig. S2(f), most 
segments only have less than 10 reads, which are too few to build the background 
model. In ChIP-BIT, we focus on gene promoter regions defined as relative ±10k bps 
from the transcription starting site. Therefore, for our specific problem, we set the 
segment length l  as 20k. As shown in Fig. S2(c), the sensitivity of this segment length 
is comparable to Fig. S2(e) and much better than Fig. S2(a).  It can be seen from Fig. 
S2(d) that a majority of segments have more than 50 reads, the number of which is 
suitable for building the null background model with random perturbations.  
 
To correct any bias in N  caused by f , we perform a computational simulation by 
randomly generating N  fragments in a scaled segment of length f l× . Using a height 
threshold we can determine all the contiguous regions that are above this threshold in 
the sample fragment density map. Regions above threshold are merged together if their 
genomic distances are less than the average fragment length (200 bps). For the same 
threshold we can determine the number of regions above the threshold in the simulated 
fragment density map as well. In each segment, the false discovery rate (FDR) of a 
selected height threshold can be calculated as follows: 
 

(# regions above threshold in simulation)( )
(# regions above threshold in the ChIP-seq sample)

FDR threshold =  

To meet a target FDR requirement, e.g., 0.05, a height threshold is selected 
independently for each segment of each chromosome, which accounts for genomic 
variability along each segment.  
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                                          (a)                                                              (b)  

               
                                          (c)                                                               (d)  

               
                                          (e)                                                               (f)  

Fig. S2. Genome mappability and read count distributions using different segmentation 
lengths: (a) genome mappability of 1M segmentation; (b) read count distribution (1M 
bps); (c) genome mappability of 20k segmentation; (d) read count distribution (20k bps); 
(e) genome mappability of1k segmentation; (f) read count distribution (1k bps). 
 

Step 3: From each segment, a list of candidate regions with height larger than the 
minimum threshold meeting the FDR requirement is obtained. Candidate regions from 
all segments are collected together. For each region, uniquely mapped reads in the 
control profile (Input ChIP-seq data) are then counted. Note that candidate regions are 
highly enriched in the sample profile but may not be significant if compared to the local 
input signal. Therefore, after this step, the candidate pool actually includes both peak 
and background regions. Further peak calling is needed for true peak detection. 
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(Note: Steps 1 - 3 in our data preprocessing are performed using the first pass (ChIP-
seq data preprocessing) of the PeakSeq package (version 1.31).) 
 
 
Step 4: Read counts of the control profile are further normalized against those counts in 
background regions of the sample data. Since it is generally not applicable to directly 
determine the proportion of background regions out of all candidate regions in the 
sample data, all enriched regions in the sample data are sorted according to their read 
counts from low to high. We define ρ  as a quantile threshold to select low read count 
regions for data normalization between sample and input data. By changing ρ  from 0 to 
1 with a step size of 0.2, we calculate a set of regression coefficients using linear 
regression of read counts in selected segments between the sample and the input data. 
The scaling factor uses the median value of all regression coefficients calculated. We 
amplify input read count using the scaling factor and exclude any regions in our 
candidate pool whose input read count is larger than that of sample data.  
 
 
Step 5: We map candidate regions to partitioned windows (200 bps) at gene promoter 
regions. Read intensities are calculated as the natural log value of accumulated read 
coverage in each window of the sample and input data, respectively. More details about 
read intensity calculation will be given later in Section S3.1. While there are no ‘0’ 
coverage regions in the sample data (after the processing of Step 1), some regions may 
have ‘0’ coverage in the input data. For these regions, we use their coverage as the 
minimal value of non-zero converges of all regions and then apply the log 
transformation. For the promoter region mapping, we take a similar strategy as GREAT 
(3) or TIP (4). First, every gene is assigned a promoter region as ±10k bps from the 
TSS (regardless of other nearby genes). Each promoter region is then partitioned into 
200 bps long windows. Finally, each candidate region is associated with all genes 
whose promoter regions overlap it.   
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S2. Implementation of ChIP-BIT 

A flowchart of the implementation of ChIP-BIT is illustrated in Fig. S3, and the formats of 
input and output files are listed in Table S1. In the following subsections, we will 
describe the implementation of the major steps (i.e., data format transformation, ChIP-
seq data preprocessing and ChIP-BIT) in detail. 

 

Fig. S3. Flowchart of the ChIP-BIT implementation.  
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Table S1. Input and output file formats of ChIP-BIT workflow 
 

 File name Format 

Input files 

Sample ChIP-seq data.bam BAM 

Input ChIP-seq data.bam BAM 

Hg19_mappability_20K.txt  TAB 

Hg19_RefSeg.txt  TAB 

Conifg.dat Defined by PeakSeq 

Output files 
Candidate regions.txt TAB 

ChIP-BIT_peaks.txt TAB 

 
 

S2.1 ChIP-seq data transformation 

A folder “Sample_reads” (or “Input_reads”) is created for Sample (or Input) ChIP-seq 
BAM file to record 5’ start locations of reads for each chromosome. Sample or Input 
ChIP-seq data are dumped into the system using “samtools” and further processed 
using “PeakSeq_first_pass_intensity_output” with “-preprocess” option to report 5’ start 
locations of reads for each chromosome. If whole genome is tested, chromosomes 1 - 
22, X, Y and M will be recorded separately with file name as “chrxx_mapped_reads.txt”, 
where read length, strand and 5’ location of each read tag are recorded as follows: 
 
read length  strand 5’ location  
… 
36M   R  10095 
36M   F  10100 
36M   R  10101 
36M   F  10102 
36M   R  10103 
36M   F  10106 
… 
 

S2.2 ChIP-seq data pre-processing 

For ChIP-seq data preprocessing, we use a modified version of “PeakSeq”,  
“PeakSeq_first_pass_intensity_output”, to perform Steps 1-3 and provide two functions 
written in MATLAB or R language to perform Steps 4 and 5.  
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Step 1: We use function “t_chip_seq_chr_data()” to perform read extension and 
clustering. In detail, we use function “load_fragments()” to load forward and reverse 
read tags 5’ locations from folder “Sample_reads” and then, extend each read tag to a 
200 bps long fragment and cluster forward or reverse fragments together if they form 
continuous regions using function “forwardize_combine_sort_fore_rev_strand_frags()”. 
Reads in “Input_reads” are also loaded to the system using function “load_fragments()”. 
 
Step 2: In the function “t_chip_seq_chr_data()”, we use function 
“load_mapability_map_file()” to load mappability map for every 20k bps segment from 
file “hg19_mappability_20k.txt”, the format of which is shown as follows: 
 
chr  index  number of unique nucleotide 
1  0  3206 
1  1  611 
1  2  3453 
1  3  4275 
1  4  5034 
1  5  2034 
1  6  2558 
… 
 
Then, we vary the threshold from min_thresh to max_thresh and identify continuous 
regions using function “get_peaks_per_thresholds()”. For each segment, we count the 
number of continuous regions under each threshold using function 
“count_peaks_per_thresh_per_window()”. Finally, we generate a null background model 
and calculate a threshold meeting the target FDR requirement for each segment using 
function “simulate()”.  
 
Step 3: In each segment, based on the calculated threshold from Step 2, we identify 
candidate regions using function “compare_signal_tracks()”, where function 
“process_peaks_per_window()” is used to report location and read enrichment 
information of each candidate region. A file ‘Candidate_regions.txt’ is created to store 
region information; see below for an example: 
 
chr start end Sample_boudary Sample_central Sample_count
 Input_boudary Input_central Input_count 
1 150601417 150602389 0.538 87.72 1793 0.026 4.256 87 
1 151254049 151254918 0.762 92.764 1705 0.049 5.93 109 
1 1207735 1208361 1.109 86.464 1169 0.045 3.476 47 
1 110881197 110882220 0.513 56.897 1221 0.026 2.842 61 
1 23405332 23406309 3.116 47.955 985 0.038 0.584 12 
… 
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All above-mentioned functions in Steps 1-3 have been compiled into a binary file 
“PeakSeq_first_pass_intensity_output”. A configuration file “Config.dat” is set as follows: 
 
Experiment_id                            Candidate_regions 
Enrichment_mapped_fragment_length        200 
target_FDR                               0.05 
N_Simulations                            10 
Minimum_interpeak_distance               200 
Mappability_map_file                     hg19_mappability_20k.txt 
ChIP_Seq_reads_data_dirs                 Sample_reads 
Input_reads_data_dirs                    Input_reads 
Background_model                         Simulated 
 
Step 4: Before peak calling, a scaling factor is calculated using function 
“background_normalization()” to normalize input ChIP-seq data to the similar scale of 
sample ChIP-seq data. Both MATLAB and R versions of this function are provided in 
the software package.  
 
Step 5: We load gene promoter regions from file 'hg19_RefSeq.txt'. The gene 
annotation file can be downloaded from the UCSC Genome Browser 
(https://genome.ucsc.edu/). The format of the annotation file can be seen as the 
following: 
 
chr  strand txStart txEnd  gene_symbol 
chr1  -  33772366 33786699 A3GALT2 
chr1  +  12776117 12788726 AADACL3 
chr1  +  12704565 12727097 AADACL4 
chr1  -  94458393 94586705 ABCA4 
… 
 

Then, we use function “genome_partation_region_mapping()” to partition each gene 
promoter regions into non-overlapping windows, map candidate regions to windows and 
for each window calculate read intensities respectively in sample and input ChIP-seq 
data. Both MATLAB and R versions of this function are provided in the software 
package. An example of the output is shown below: 
 
chr  start  end  sample_intensity  input_intensity  direction  
window_index  gene_symbol 
'1' 33776700 33776899 2.345  1.862 '-' 50 'A3GALT2' 
'1' 33776900 33777099 2.345  1.862 '-' 49 'A3GALT2' 
'1' 33779900 33780099 2.439  1.407 '-' 34 'A3GALT2' 
'1' 33780900 33781099 2.469  1.688 '-' 29 'A3GALT2' 
'1' 33781100 33781299 2.469  1.688 '-' 28 'A3GALT2' 
'1' 33786900 33787099 2.615  2.260 '-' -2 'A3GALT2' 
'1' 12772918 12773117 2.099  0.779 '+' -16 'AADACL3' 
'1' 12773118 12773317 2.099  0.779 '+' -15 'AADACL3' 
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S2.3 ChIP-BIT peak detection 

The core function for peak detection is accomplished by function “ChIP_BIT()”. For each 
candidate window, we estimate a posterior probability for binding occurrence. 
Histograms of read intensity, window index (relative distance to TSS), and posterior 
probability for all candidate windows are shown in Fig. S4(a), (b) and (c), respectively. 
Both MATLAB and R versions of this function are provided in the software package. 
 

                
(a) Read intensity of candidate windows          (b) Window index of candidate windows 

 

 

(c) Posterior probabilities for binding occurrence 
 

       
 (d) Read intensity of detected peaks                   (e) Relative distance of detected peaks 

 
Fig. S4. Histograms of input and output signals in ChIP-BIT peak detection. 
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Windows with posterior probabilities over 0.90 are selected and consecutive windows 
are further merged into larger peaks by function “window2peak()”. Both MATLAB and R 
versions of this function are provided in the software package. Histograms of read 
intensity and window index for detected peaks are shown in Fig. S4(d) and (e), 
respectively. 
 
 
Finally, a peak file 'ChIP_BIT_peaks.txt' is created to store all peaks detected by ChIP-
BIT. Please see below for an example: 
 
chr start end gene_symbol Sample_Reads_intensity
 Input_Reads_intensity Posterior_probability 
1 229694243 229695242 ABCB10 3.140179 2.156729 0.947231 
1 1243270 1243869 ACAP3  3.216313 2.193865 0.950682 
1 226374224 226375023 ACBD3  3.266675 2.092388 0.967518 
1 159169803 159170002 ACKR1  3.133405 1.659656 0.974730 
1 55012807 55013806 ACOT11 2.934070 2.106528 0.967670 
1 6457027 6457426 ACOT7  3.082827 1.762697 0.935282 
1 120434948 120435347 ADAM30 3.061520 1.134501 0.983762 
1 167883865 167884064 ADCY10 3.293018 1.819366 0.992985 
1 202928301 202928500 ADIPOR1 3.521880 2.694488 0.905599 
1 244616637 244623836 ADSS  3.488231 1.762697 0.954942 
1 50488427 50488626 AGBL4  2.953868 1.479771 0.991095 
1 15911006 15911405 AGMAT  2.763043 1.577070 0.975546 
… 
 
 
Note that source codes of the implementation of ChIP-BIT and a pair of testing PBX1 
and input ChIP-seq data sets (with chromosome 1 only) are provided at 
http://www.cbil.ece.vt.edu/software.htm. More details about the use of each function can 
be found in the user manual of ChIP-BIT in the package. 
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S3. Distribution hypothesis on read intensity and relative distance 

To demonstrate the distribution hypotheses on read intensity and relative distance to 
TSS of ChIP-seq binding events, we use PBX1 under MCF7 cell line (GSE accession 
number GSE28008) as an example to examine real ChIP-seq data. Extra ChIP-seq 
data from TFs under different conditions are analyzed as well. Note that regions used 
here for each TF are all candidate regions including peaks and background regions, as 
identified before peak calling (processed after Step 5 in Fig. S1).  

S3.1 Read intensity calculation 

regionN  is defined as the total number of forward and reverse reads falling in each 
candidate region, as illustrated in Fig. S5(a). We present the histogram of read count 

regionN  for all candidate regions in Fig. S6(a). It can be expected that a wider region is 
more possible to contain a relatively larger regionN . Therefore, it is not fair to directly 
evaluate read enrichment across different regions when their lengths are very different. 
The fragment density map shown in the lower part of Fig. S5(a) is very similar to the 
ChIP-seq coverage information stored in WIG format. However, no read count 
information can be recovered if WIG format ChIP-seq profile is directly used. In that 
case, the genome mappability variation across different segments cannot be assessed. 
This is the major reason why we start from BAM format ChIP-seq data.  
 
Read intensity s  for a 200 bps long window is defined as the natural log transformation 
of the accumulated read coverage 200C . The reason we select window size as 200 is due 
to the observations of significant TF peak length distribution (peaks identified by 
PeakSeq with default setting), as shown in Fig. S5(b). 
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                                        (a)                                                            (b)  
Fig. S5. Illustrations of read count, coverage and peak length for TF peaks: (a) 50 bps 
bin decomposition of each region; (b) peak length distribution. 
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                              (a)                                                                  (b)  

   
                             (c)                                                                    (d)  
Fig. S6. Read intensity calculation: (a) read count per region; (b) read coverage per 50 
bps; (c) overall read coverage per 200 bps; (d) read intensity per 200 bps. 

 
As can be seen from Fig. 5(b), there are quite few peaks with length less than 200 bps 
(<4%). And the mean (340 bps), median (380 bps) and mode (310 bps) of peak length 
all fall between 200 and 400. Therefore, each peak will occupy at least one window and 
most peaks will cover 2 or 3 windows. If the fragment density 1C  at each base is known, 
the accumulated read coverage 200C  for each window can be calculated as 200

200 1 1,i iC C==∑ , 
where i  is the location index of each base of each window. However, fragment density 
information like 1C  is very redundant considering that a typical read length for current 
ChIP-seq platform (i.e. illumina HiSeq 2500) is 36 or 50 bps and each read will be 
extended to a ~150-200 bps long fragment for further analysis.  
 
A reasonable length of a bin used to model peaks of a TF ChIP-seq profile is 50 bps (as 
used by MOSAiCS). Based on the fragment density map in Fig. 5(a), we can calculate 
the average read coverage 50C  for every bin (green bar in Fig. S5(a)). 50C  takes the 
average value of fragment density at each covered location as 50

1 1, / 50i iC=∑  and its 
histogram is shown in Fig. S6(b). In practical implementation, for each region we 
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calculate 50C  values at central 50 bps (±25 bps around the summit) and boundary 50bps 
(±25 bps around the boundary point with a height that equals to the threshold of current 
segment) respectively. For any bins between central and boundary locations, we 
estimate a value 50C  by assuming that the read coverage linearly decreases from central 
location to boundary location. Then, 200Ĉ  can be approximated by 4

1 50,i iC=∑ . The major 

difference between 200C  and 200Ĉ  is a constant amplification factor 50, which is the same 
for all regions. The histogram of 200Ĉ  is shown in Fig. S6(c). Finally, we calculate the 
read intensity by 200

ˆlog( )s C= ; the histogram of s can be found in Fig. S6(d), where a 
Gaussian distribution can be clearly observed. Read intensity of input data is calculated 
in the same way for each candidate region.  

S3.2 TF binding location analysis 

We first check the number of windows overlapping with candidate regions of PBX1 at 
gene promoter regions and present the histogram in Fig. S7(a) based on their locations 
(window index), where an exponential distribution feature can be seen. Mokry et al. (5) 
used a similar way to evaluate binding preference of TF at gene promoter regions 
(±200k bps).  
 
Users/researchers may have some concern that this exponential distribution is caused 
by mappbability variation or some other bias issues. Such bias issues are features of 
genome, independent of sample or input experiment. Therefore, for one TF, if a different 
feature can be found between sample and input ChIP-seq data, it is highly possible to 
be caused by TF binding events. We use a function “annotatePeaks.pl” of an 
independent package HOMER (6) to directly evaluate the average ChIP-seq read count 
in each window (200 bps) across all promoter regions for sample and input ChIP-seq 
profiles, respectively. Similar work was also carried out in (7) to evaluate binding 
features of 12 TFs ChIP-seq data sets where regions of ±4k from TSS were examined. 

 
     (a)                                                          (b)  

 
Fig. S7. PBX1 binding at gene promoter regions: (a) number of regions in each window; 
(b) average read enrichment of each window. 
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As shown in Fig. S7(b), there is an exponential distribution in the sample ChIP-seq data 
while a more uniform distribution in the input. The slight increase of input read count 
distribution around TSS would be possible to be caused by repetitive sequences. But 
compared to the sample data amplitude at the same location, it is much lower. All above 
observations validate our hypothesis on location-wise distribution of TF ChIP-seq data 
enrichment at gene promoter regions. 
 

S3.3 ChIP-seq read enrichment and binding location under different conditions 

Observed features about read intensity and binding location distributions are further 
checked for multiple TFs under different conditions, as shown in Fig. S8. The sample 
and input ChIP-seq data is downloaded from https://genome.ucsc.edu/ENCODE/. 

     
 

     
 

   
 
                        (a)                                         (b)                                         (c)  
Fig S8. Distributions of read intensity and relative distance to TSS of candidate regions 
for each selected TF: (a) CTCF of MCF7 cell line; (b) SUZ12 of H1-hESC cell line; (c) 
MYC of K562 cell line.   



16	
	

S4. Probability mass function of the distance from the TFBS to the 
TSS 

The conditional probability , ,( | )n w n wP d b  for a binding site at w -th window of the promoter 

region of n -th gene is determined by both its relative distance ,n wd  and its binding state 

,n wb . If , 1n wb = , the binding effect decays exponentially when ,n wd  increases. Thus, the 

conditional probability , ,( | 1)n w n wP d b =  is defined by a discrete exponential distribution as 

follows:  

( ), , ,
1( | 1) expn w n w n w
d

P d b d
C

λ= = − ,    (S-1) 

 

where ,
1( ( )* )
2n wd w sign w d= + Δ , w={0, 1, 2,..., ( 1)}W± ± ± −  is the index of window location 

and dΔ  is the window size. Relative distance ,n wd  is the relative distance from the 

midpoint of each window to the TSS. Please see Fig. S9 for an illustration of Eq. (S-1).  
 

,exp( )n wdλ−

Regulatory effect

Transcription starting site of 
n-th gene

Binding site
(w-th window)

,n wd  
 

Fig. S9. Regulatory effect of binding site locations to the TSS of target genes. 
 

Since we are using a discrete exponential distribution in (S-1), dC  is a normalized factor 
that can be calculated as: 
 

( )
1

( 1)

1 exp( )exp ( 1/ 2) 2exp( )
2 1 exp( )

W

d
w W

d W dC w d
d

λ λλ
λ

−

=− −

Δ − − Δ= − + Δ = −
− − Δ∑ . (S-2) 
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Considering that 10W d kΔ =  and 1W dλ Δ >> , we have exp( ) 0W dλ− Δ → . We bring 

2exp( ) / (1 exp( ))
2d
dC dλ λΔ= − − − Δ  back to (S-1) and the conditional probability 

, ,( | 1)n w n wP d b =  can be finally calculated as:  

 

 ( )( ), ,
1( | 1) exp 1 exp( )
2n w n wP d b w d dλ λ= = − Δ − − Δ .  (S-3) 

 
For any background region with binding state , 0n wb = , its distance to the TSS is non-

informative for its regulatory effect(s) on target gene(s). Therefore, we define the 
conditional probability , ,( | 0)n w n wP d b =  as a uniform distribution on ,n wd .		

 
 

S5. EM-based posterior probability estimation 

The posterior probability used to estimate variables is defined as: 
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By introducing Jensen’s inequality with , ,

0,1

ˆ 1n w i
i
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=∑ , we obtain the following inequality:  
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Maximizing (S-4) is equivalent to minimizing the upper bound of its natural log format as 
shown in (S-5) and supports our ability to estimate hidden variables (8). The detailed 
steps of EM algorithm can be summarized as follows (where Step 1 is the E-step and 
Steps 2-5 are the substeps of the M-step): 
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Step 1:	Estimate , ,ˆ *n w ia 	

To minimize the upper bound of the right part of (S-5), we seek , ,ˆn w ia  to meet the 

equality condition of (S-5) as follows: 
 

, , , , , , , ,
, ,

1log ( | ) ( | ) log ( | ) ( | )
ˆ n w n w n w n w i n w n w n w n w i

in w i

P s b i P d b i P s b i P d b i
a

π π
⎡ ⎤ ⎡ ⎤= = = = =⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

∑ .(S-6) 

 
Therefore, , ,ˆ *n w ia  can be estimated as 
 

, , , ,
, ,

, , , ,

( | ) ( | )
ˆ *

( | ) ( | )
n w n w n w n w i

n w i
n w n w n w n w i

i

P s b i P d b i
a

P s b i P d b i
π
π

= =
=

= =∑
.   (S-7) 

 
Step 2: Estimate *iπ  

Extending (S-5) and excluding items independent of iπ , we obtain ( )f π  as  
 

, ,ˆ( ) log log ( )n w i i
n w i

f a Pπ= − −∑∑∑π π , 1i
i
π =∑ .   (S-8) 

 

Minimizing the upper bound of (S-5) is equivalent to finding iπ  where ( ) 0
i

f
π

∂ =
∂
π . To 

address the constraint of 1i
i
π =∑ , we introduce a Lagrange parameter τ  to ( )f π . 
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The derivative of (S-9) in term of iπ  is computed as 
 

, ,
1 1ˆ ( 1) 0n w i i

n wi i i

f a β τ
π π π
∂ = − − − + =
∂ ∑∑ .   (S-10) 

 

Since 1i
i
π =∑  and , ,ˆ 1n w i

i
a =∑ , we sum (S-10) using the value(s) of i  and obtain 

1 2 2Tτ β β= + + − .  
 
Bring τ  back to (S-10), we can estimate *iπ  as 
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Step 3: Estimate *TFBSµ   

Extending (S-5) and excluding items independent on TFBSµ  , we obtain ( )TFBSf µ  as  
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Minimizing the upper bound of (S-5) is equivalent to finding TFBSµ  where ( ) 0TFBS

TFBS

df
d
µ
µ

= .	

The derivative of (S-12) in terms of TFBSµ  is computed as 
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Finally, we can estimate *TFBSµ  as 
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Step 4: Estimate *TFBSσ  

Extending (S-5) and excluding items independent on TFBSσ  , we obtain ( )TFBSf σ  as  
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Minimizing the upper bound of (S-5) is equivalent to finding TFBSσ  where ( ) 0TFBS

TFBS

df
d
σ
σ

= . 

The derivative of (S-15), relative to TFBSσ , is computed as 
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Finally, we can estimate 2( )*TFBSσ  as 
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Step 5: Estimate *λ  

Extending (S-5) and excluding items independent on λ  , we obtain ( )f λ  as  
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Minimizing the upper bound of (S-5) is equivalent to finding λ  where ( ) 0df
d
λ
λ

= . 

The derivative of (S-18), relative to λ , is computed as follows: 
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Finally, we can estimate *λ  as 
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S6. Parameter settings for competing peak calling methods 

The most recent versions of tools used for comparison in this study are downloaded 
from the website and the settings or commands are listed as follows to run each tool 
properly.  
 
1. MACS (version 1.4.2): we run MACS with default settings but varying p-value 
threshold from 1e-300 to 0.5 to calculate its precision/recall performance curve, of which 
the best performance in terms of F-measure is shown in Table 1 in the main text. The 
reported p-value is in its log-transformed (–10*log10) format so the range is [3, 3000]. 
We divide the whole range into 1000 segments with 3 as the incensement step, and 
calculate precision-recall values under each threshold. Default p-value threshold 1e-5 
(50 in -10*log10 format) is also used for performance comparison (as reported in Table 
S1 and S2 in the next section). 
 
2. PeakSeq (version 1.31): we run PeakSeq with default settings but varying Q-value 
from 0 to 1 to calculate its precision/recall performance curve, of which the best 
performance in terms of F-measure is shown in Table 1 in the main text. The range of 
Q-value is (0, 1]. We divide this range into 1000 segments with 0.001 as the 
incensement step, and calculate precision-recall values under each threshold. Default 
Q-value threshold 0.05 is also used for performance comparison (as reported in Table 
S1 and S2). 
 
3. BCP (version 1.1): we run BCP with default settings but varying p-value threshold 
from 1e-16 to 0.5 to calculate its precision/recall performance curve, of which the best 
performance in terms of F-measure is shown in Table 1 in the main text. We transform 
this p-value into its log-transformed (-10log10) format so the overall range becomes [3, 
160]. We divide this range into 1000 segments with 0.16 as the incensement step, and 
further calculate precision-recall values under each threshold. Default p-value threshold 
1e-8 (80 in -10log10 format) is also used for performance comparison (as reported in 
Table S1 and S2). 
 
4. Dfilter (version 1.5): we run Dfilter with recommended options for transcription factor 
ChIP-seq analysis: -nonzero -bs=50 -ks=20 -refine -std=2. The p-value threshold is 
varied from 1e-200 to 0.5 so as to present its precision/recall performance curve, of 
which the best performance in terms of F-measure is shown in Table 1 in the main text. 
The reported p-value is in its log-transformed (–log10) format such that its overall range 
is [0.3, 200]. We divide the range into 1000 segments with 0.2 as the incensement step, 
and calculate precision-recall values under each threshold. Default p-value threshold 
1e-6 (6 in –log10 format) is also used for performance comparison (as reported in Table 
S1 and S2). 
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5. MOSAiCS (version 1.2.2): we run MOSAiCS with default settings; the performance of 
MOSAiCS is shown is Table S1 and S2. Based on the reported average log ratio, we 
can further rank all peaks and calculate the overall precision/recall curve by varying the 
cut-off threshold, of which the best performance is shown in Table 1 in the main text. In 
detail, we take the maximum value and minimum value of the average log ratio to 
determine its overall range. Then, we divide the overall range into 1000 segments and 
calculate precision-recall values under each threshold.  
 

[Note that simulated peaks are distant from each other at least 500 bps to avoid the 
peak overlap problem when a low threshold is used.]	

S7. Simulation studies 

S7.1. Simulation data generation 

Case 1: We spread peaks at promoter regions according to an exponential distribution, 
as shown in Fig. S10(c). Read intensity distributions of true peaks and background 
regions are close in sample data but quite different in input data, as shown in Fig. 
S10(a). This is consistent to real data since background regions have highly correlated 
read enrichment in both sample and input data while true peaks are condition-specific 
and enriched in sample data only.  

           
                    (a) Raw read intensity                                (b) Read intensity of peaks 
                detected by CHIP-BIT 

         
                     (c) Raw relative distance                         (d) Relative distance of peaks 
                                                                                            detected by CHIP-BIT 

Fig. S10. Simulation results of Case 1. 



23	
	

In Fig. S10(b) and (d), CHIP-BIT successfully detected peaks by estimating their read 
intensity distribution consistently to the distribution of ‘true’ peaks in the raw data. In 
addition, the distances of detected peaks relative to TSS are exponentially distributed 
as well.  
 
 
Case 2: We spread peaks at promoter regions more evenly, as shown in Fig. S11(c). In 
addition, in this case, we lowered the fold change of peaks by increasing its input read 
intensity. In Fig. S11(a), the distribution of ‘gray’ signals is closer to the distribution of 
‘blue’ signal comparing to the situations in Fig. S10(a). 
 

            
                 (a) Raw read intensity                                (b) Read intensity of peaks 
                                                                                          detected by CHIP-BIT 
 

            
               (c) Raw relative distance                                (d) Relative distance of peaks 
                                                                                             detected by CHIP-BIT 

Fig. S11. Simulation results of Case 2. 

 

In Fig. S11(b) and (d), CHIP-BIT successfully detected peaks by estimating their read 
intensity distribution consistently to the distribution of ‘true’ peaks in the raw data. The 
distances of detected peaks relative to TSS are more evenly distributed.  
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S7.2. Peak detection using default settings for each competing method 

	
Table S2. Precision/recall on peak detection with default settings for Case 1 

 
 Case 1 CHIP-BIT PeakSeq MACS BCP Dfilter MOSAiCS 

All peaks 
Precision 0.9057 0.8526 0.8078 0.8458 0.7492 0.9527 
Recall 0.8784 0.7883 0.8084 0.7328 0.8076 0.6764 
F-measure 0.8918 0.8192 0.8081 0.7853 0.7773 0.7911 

Weak 
peaks 

Precision 0.8468 0.7522 0.8555 0.8736 0.7298 0.9173 
Recall 0.8061 0.6523 0.6749 0.5499 0.7526 0.5221 
F-measure 0.8260 0.7000 0.7546 0.6750 0.7410 0.6655 

 
 

Table S3. Precision/recall on peak detection with default settings for Case 2 
 

 Case 1 CHIP-BIT PeakSeq MACS BCP Dfilter MOSAiCS 

All peaks 
Precision 0.9028 0.8906 0.8432 0.8756 0.7373 0.8848 
Recall 0.8639 0.7643 0.7803 0.7132 0.7681 0.7506 
F-measure 0.8830 0.8241 0.8105 0.7861 0.7524 0.8122 

Weak 
peaks 

Precision 0.8345 0.8652 0.8461 0.8697 0.8807 0.8373 
Recall 0.8058 0.5749 0.6280 0.5108 0.3402 0.6214 
F-measure 0.8199 0.6908 0.7209 0.6436 0.4908 0.7134 

 
 
Table S4. Precision/recall on boundary detection for Case 1 (true positive peaks only) 

 
Case 1 CHIP-BIT PeakSeq MACS BCP Dfilter MOSAiCS 

Precision 0.9098 0.9104 0.7538 0.7351 0.7332 0.7746 

Recall 0.7703 0.8111 0.9511 0.8049 0.9882 0.9997 

 
 
Table S5. Precision/recall on boundary detection for Case 2 (true positive peaks only) 

 
 CHIP-BIT PeakSeq MACS BCP Dfilter MOSAiCS 

Precision 0.9086 0.7705 0.8661 0.7171 0.7524 0.7677 

Recall 0.7614 0.8857 0.9284 0.6515 0.9644 0.9861 
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Fig. S12. Peak length distribution of peaks detected by each competing method for 
Case 1. 

 

 
Fig. S13. Peak length distribution of peaks detected by each competing method for 
Case 2.  
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S7.3. Target gene prediction  

 
Fig. S14. Gene prediction performance of the method proposed by Ouyang et al. (9) 
with different decaying speeds (simulation Case 1 with true promoter region ±5k). 

 

  
    (a) Weight vector learned by TIP for Case 1      (b) Weight vector learned by 
                                                                                     Improved TIP for Case 1  
 

  
    (c) Weight vector learned by TIP for Case 2        (d) Weight vector learned by 
                                                                                       Improved TIP for Case 2  
 

Fig. S15. Weight vectors of TIP and Improved TIP for target gene prediction.  
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S8. Performance comparison using real ChIP-seq data 

S8.1. Identified TFBSs and validated benchmark regions  

In order to compare with the original results resented by Rye et al. (10), we directly 
download their processed bed format ChIP-seq data of MAX, NRSF and SRF as well as 
specific benchmarks from http://tare.medisin.ntnu.no/chipseqbenchmark/. In this study, 
we focus on binding sites or peaks that lay in gene promoter regions. Therefore, it is 
necessary to check the proportion of peaks within gene promoter regions ( Promoterf ) 
among peaks detected from the whole genome. For each TF, whole genome peaks are 
detected by PeakSeq with default settings and then sorted according to the Q-value. A 

Promoterf  curve obtained using different Q-value thresholds (0~0.05) is shown in Fig. S16.  
 

 

                   (a) MAX                                (b) NRSF                                   (c) SRF 

Fig. S16. Proportion of peaks at gene promoter regions.  

 
In another independent ChIP-seq study (11) on over 100 TFs under K562 cell line, it is 
reported that ~40% of identified peaks are proximal (within ±2.5 kbps) to TSSs, where 

Promoterf  = 40%. For these three representative ChIP-seq data sets, we use a larger 

promoter region as ±10 kbps. Thus, Promoterf  increases to ~50%.  
 
 
We filter all benchmarks with gene promoter regions and the remaining positive or 
negative benchmarks are summarized in Table S6.  
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Table S6. Benchmarks of MAX, NRSF and SRF 

 Whole genome Promoter region 
 Positive ambiguous Negative Positive ambiguous Negative 
MAX 163 51 200 119 (73%) 22 68 
NRSF 127 30 322 57 (45%) 14 132 
SRF 124 16 311 86 (70%) 8 112 
 
 
 
We call peaks using all methods respectively with their default settings and filter 
reported peaks using gene promoter regions. The number of peaks that lay in gene 
promoter regions for each TF and each method is shown in Table S7.  
 

Table S7. No. of promoter region bound peaks of MAX, NRSF and SRF 

	 ChIP-BIT PeakSeq BCP MOSAiCS MACS Dfilter 
MAX	 9,281 10,704 5,521 8,645 11,926 7,753 
NRSF 2,697 7,117 2,566 2,359 1,875 2,844 
SRF 1,497 1,037 1,003 1,971 2,060 1,284 

 
 
 
For ChIP-BIT, we present the histograms of read intensities and relative distance to 
TSS of regions before and after peak calling in Fig. S17 - S19 for MAX, NRSF and SRF, 
respectively.  
 

     

(a) Raw read intensity                (b) Distance to TSS                   (c) ChIP-BIT 
 
Fig. S17. Read intensities and binding locations of ChIP-BIT detected MAX peaks. 
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                  (a) Raw                        (b) Distance to TSS                   (c) ChIP-BIT 
 

Fig. S18. Read intensities and binding locations of ChIP-BIT detected NRSF peaks. 

	

	

     

                  (a) Raw                        (b) Distance to TSS                   (c) ChIP-BIT 
 

Fig. S19. Read intensities and binding locations of ChIP-BIT detected SRF peaks. 
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S8.2. Identified target genes and RNA-seq profiling  

To compare target gene prediction performance of different methods, we applied ChIP-
BIT, MACS, PeakSeq, and TIP to ATF3, EGR1 and SRF ChIP-seq data. ChIP-seq data 
is downloaded from ENCODE project under K562 cell line 
http://genome.ucsc.edu/ENCODE/. Since MACS and PeakSeq only report peak 
locations, we use GREAT to do gene annotation with upstream/downstream 10k bps, 
the same promoter region setting as ChIP-BIT or TIP. Similar to Fig. S16, we present 

Promoterf  (proportion of peaks that lay in promoter regions) for each TF in Fig. S20. 
 

 
                    (a) ATF3                              (b) EGR1                                 (c) SRF 
 

Fig. S20. Proportion of peaks at gene promoter regions.  
 
 
Then, we use the matched RNA-seq data generated before or after specific TF 
knockdown to validate genes identified by each method on each data set. The RNA-seq 
data is downloaded from GEO data base under access number GSE33816. For each 
TF, there are two replicates under control or treatment conditions (Vehicle vs. shRNA). 
We apply Tophat (2.0.14) to the fastq files of each RNA-seq sample and use Cufflinks 
(2.2.1) to estimate the abundance of each transcript (FPKM) across all samples. Finally, 
we use t-test to identify differentially expressed genes by assuming that at least one 
transcript of each gene has a significant expression change with p-value<0.05 after 
shRNA introduction. In total we identified 2,810 genes for ATF3, 3,356 genes for EGR1 
and 3,401 genes for SRF, whose expression patterns are shown in Fig. S21.  
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                  (a) ATF3                                (b) EGR1                              (c) SRF 

Fig. S21. Heat map of differentially expressed target genes after knocking down each 
specific TF. 

 

We map differentially expressed gene list to the target genes identified from ChIP-seq 
analysis using individual method. Direct target genes showing differential expression for 
each method are shown in Table S8 – S10 for ATF3, EGR1 and SRF, respectively.  
 
 

Table S8. Differentially expressed target genes of ATF3 

Methods 
 ChIP-BIT MACS PeakSeq TIP 

Target genes of ChIP-seq 
 2,443 2,963 8,680 4,255 

Differentially expressed target 
genes 

285 
(11.67%) 

342 
(11.54%) 

1,005 
(11.58%) 

401 
(9.42%) 

Average overlap with other 
methods 0.5054 0.4883 0.2262 0.1347 
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Table S9. Differentially expressed target genes of EGR1 

Methods 
 ChIP-BIT MACS PeakSeq TIP 

Target genes of ChIP-seq 
 7,190 9,454 11,707 5,600 

Differentially expressed target 
genes 

1,202 
(16.72%) 

1,547 
(16.36%) 

1,866 
(15.94%) 

762 
(13.61%) 

Average overlap with other 
methods 0.7371 0.6596 0.5681 0.5402 

 
 
 

Table S10. Differentially expressed target genes of SRF 

Methods 
 ChIP-BIT MACS PeakSeq TIP 

Target genes of ChIP-seq 
 3,582 6,620 4,243 3,747 

Differentially expressed target 
genes 

568 
(15.86%) 

1,047 
(15.82%) 

686 
(16.17%) 

429 
(11.45%) 

Average overlap with other 
methods 0.5088 0.3187 0.5165 0.3131 
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S8.3. TF association under K562 cell line using peaks identified by ChIP-BIT 
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Fig. S22. Identified TF co-association pattern in K562 cell line by using peaks detected 
by ChIP-BIT. Note that the color represents the co-association score calculated 
according to (11). 

 

Cluster C1 represents a known co-operation between STAT1/2 and IRF1 in IFNα/γ 
stimulation. C2 highlights the interaction between chromatin remodelers including CHD 
complex and HDAC complex. In Cluster C3 and C4, two stable co-associations like 
JUN-FOS and MYC-MAX are respectively identified. C5 is a TF cluster from POL3 
complex, including RPC155, POL3, BRF1 and BDP1. Cluster C6 consists of CTCF, 
RAD21, and SMC3, which are known to form large complexes regulating chromatin 
structure. C7 is a very unique co-association with five TFs from Polycomb group.  
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S9. NOTCH3 and PBX1 ChIP-seq data analysis 

         
             (a) Read intensity at NOTCH3                      (b) Read intensity at PBX1 
                      candidate regions                                         candidate regions  
 

          
            (c) Relative distance of NOTCH3                 (d) Relative distance of PBX1 

  candidate regions                                          candidate regions 

       
 

      (e) Proportion of NOTCH3 peaks                        (f) Proportion of PBX1 peaks 
          at gene promoter regions                                   at gene promoter regions 

 

Fig. S23. Raw distributions of NOTCH3 and PBX1 ChIP-seq data 
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Table S11. Read intensity distribution of peaks detected using different thresholds 

 
Threshold NOTCH3 PBX1 

0.9 

 
Read intensity 

 
Read intensity 

0.8 

 
Read intensity 

 
Read intensity 

0.7 

 
Read intensity  

Read intensity 
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Table S12. Peaks detected by each method 

 

TF Method Number of 
Peaks Mean length(bps) Standard deviation (bps) 

NOTCH3 
ChIP-BIT 3,288 530 363 
PeakSeq 15,057 603 396 
MACS 10,076 1,731 685.3 

PBX1 
ChIP-BIT 6,022 443 304 
PeakSeq 18,581 703 622 
MACS 23,013 1243 464 

 
 
 

For TIP, we sort all genes according to their z-score and select a proper number of 
targets from the top list to make it comparative to the number of genes reported by 
ChIP-BIT.  
 

Table S13. Target genes detected by competing methods 
 

TF Method Number of Genes Average overlap with other methods 

NOTCH3 

ChIP-BIT 2,871 0.38 
PeakSeq 2,657 0.24 
MACS 3,001 0.22 
TIP 2,749 0.22	

PBX1 

ChIP-BIT 5,280 0.61 
PeakSeq 6,546 0.48 
MACS 7,333 0.54 
TIP 5,564 0.48 
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S10. Functional annotation of common target genes of PBX1 and 
NOTCH3  

To identify common target genes, first of all, in each data set, we selected target genes 
which contain at least one binding site with probability over 0.8. In total, there are about 
1936 common target genes. Secondly, we calculate the posterior probability for each 
gene according to Eq. (19). The distribution of posterior probabilities for common target 
genes is shown in Fig. S24. Finally, by setting the cut-off threshold as 0.95, we 
identified 621 common targets. 
 

 
Fig. S24. Distribution of posterior probabilities for common target genes identified from 
NOTCH3 and PBX1 ChIP-seq data.  
	
	

Table S14. Target gene list of NOTCH3, PBX1 or both detected by ChIP-BIT 

Table S14 can be found in “ChIP-BIT-Suppl-TableS14.xlsx”. 

 

We further identify common target genes of NOTCH3 and PBX1 using other method by 
taking the intersection of genes regulated by individual TF, as shown in Table S15.  
 

Table S15. Numbers of common target genes detected by competing methods 

 ChIP-BIT PeakSeq MACS TIP 
NOTCH3 2,871 2,657 3,001 2,749 

PBX1 5,280 6,546 7,333 5,564 
Common 621 869 995 1535 
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S10.1 Notch signaling pathway 

Notch signaling pathway data base links: 

KEGG Notch signaling pathway  
(http://www.genome.jp/dbget-bin/www_bget?pathway+hsa04330) 
 
NCI/Nature Notch signaling pathway  
(http://pid.nci.nih.gov/search/pathway_landing.shtml?pathway_id=200015&source=NAT
URE&what=graphic&jpg=on) 
 
QIAGEN Notch signaling pathway  
(http://www.qiagen.com/us/products/genes%20and%20pathways/complete%20biology
%20list/notch%20signaling/rt2-profiler-pcr-arrays?catno=PAHS-059Z#geneglobe) 
 
 

Table S16. Notch signaling pathway enriched NOTCH3 target genes  
 

 ChIP-BIT PeakSeq MACS TIP 
NOTCH3 
signaling 
pathway 

22 14 11 16 

p-value 0.015 >0.05 >0.05 >0.05 
 
 
ChIP-BIT identified 22 Notch signaling pathway enriched NOTCH3 target genes in 
Table S15 include ARNT, BLOC1S1, CNTN1, CNTN6, DLK1, DLL4, DTX3L, DTX4, 
FIGF, GLI1, HDAC2, HES1, HEY1, LEF1, NCOA1, NCOR2, NFKB1, NOTCH2, 
NOTCH4, RBPJ, SH2D1A, and TLE1. 
 
 

Table 17 Notch signaling pathway enriched common target genes 
 

 ChIP-BIT PeakSeq MACS TIP 
NOTCH3 
signaling 
pathway 

11 4 0 8 

p-value 0.0016 >0.1 - >0.1 
 
 
ChIP-BIT identified 11 Notch signaling pathway enriched common target genes in Table 
S16 include ARNT, BLOC1S1, CNTN1, DLL4, DTX4, FIGF, HES1, HEY1, NCOA1, 
NOTCH4, and RBPJ. 
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(a) 

 
(b) 

Fig. S25. Enriched genes on (a) KEGG’s Notch signaling pathway and (b) Ingenuity 
Pathway Analysis (IPA)-defined Notch signaling network. 
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S10.2. Wnt signaling pathway 

Wnt signaling pathway database links: 
 
KEGG Wnt signaling pathway  
(http://www.genome.jp/dbget-bin/www_bget?hsa04310 ) 
 
NCI/Nature Wnt signaling pathway  
(http://pid.nci.nih.gov/search/pathway_landing.shtml?pathway_id=200077&source=NAT
URE&what=graphic&jpg=on ) 
 
QIAGEN Wnt signaling pathway  
(http://www.qiagen.com/us/products/genes%20and%20pathways/complete%20biology
%20list/wnt%20signaling/rt2-profiler-pcr-arrays?catno=PAHS-043Z#geneglobe ) 
 
 

Table S18. Wnt signalling enriched common target genes 
 

 ChIP-BIT PeakSeq MACS TIP 
Wnt signaling 

pathway 11 3 5 7 

p-value 0.047 >0.1 >0.1 >0.1 
 
 

ChIP-BIT identified 11 Wnt signaling pathway enriched common target genes in Table 
S17 include CEBPD, IL6, KLF5, PIAS1, PRICKLE1, SMAD4, SOX2, SOX9, WNT2, 
WNT2B, and WNT4. 
 

 

Fig. S26. Wnt signaling pathway defined by IPA network analysis.  
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S11. Differentially expressed genes 

In the GSI or siRNA TF knockdown study, under each condition, we only collected two 
duplicates of gene expression data. For the pairwise identification of differentially 
expressed genes, with so few samples, significance test like t-test does not work well. 
Therefore, in this study, we use the fold change (FC) information and select those 
genes if they meet the following four conditions simultaneously: 
 
(1) |Sample1 - control1|>FC threshold; (2) |Sample1 – control2|>FC threshold;  
(3) |Sample2 - control1|>FC threshold; (4) |Sample2 – control2|>FC threshold.  
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Fig. S27. Relationship of TF knockdown and target gene expression. The major TF (or 
TFs) is (or are) labeled in ‘red’.  
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Fig. S28. Overlap of differentially expressed genes under GSI, siNOTCH3 and siPBX1.  

 

 

Table S19. Differentially expressed gene lists under GSI, siNOTCH3 and siPBX1 

Table S19 can be found in “ChIP-BIT-Suppl-TableS19.xlsx”. 

 

S12. Glossary of specific terms and variables used in the text and 
supplementary material 

Cluster: A set of overlapped 200 bps long fragments extended from read tags 
Segment: Non-overlapping 20k bps long genome used for candidate region searching 

l : Length of segment, 20k 
Mappability: Number of uniquely mappable nucleotides within a segment 

f : Fraction of uniquely mappable nucleotides within a segment (mappability/ l ) 
N : Number of fragments in a segment 

Candidate region: 
A significantly enriched region compared to a simulated null background 
distribution in a segment 

ρ : Quantile threshold used to select low read count regions  

regionN : Number of fragments (read count) overlapping with a candidate region 

1C : Read coverage, number of fragments overlapping with a single nucleotide 



43	
	

Bin: Non-overlapping 50 bps long genome of a candidate region 

50C : Average read coverage of a bin, 50
1 1, / 50i iC=∑  

TSS: Transcription starting site of a gene 
Promoter region: ±10k bps from TSS 

Window: Non-overlapping 200 bps long genome at promoter region 

200C : Accumulated read coverage of a window, 200
200 1 1,i iC C==∑  

200Ĉ : Approximated accumulated read coverage of a window, 4
1 50,i iC=∑  

s : Read intensity of a window, 200
ˆlog( )C  

b : Binary binding indicator: binding event 1b = , non-binding event 0b =  

1a : Posterior probability for a binding event 

0a : Posterior probability for a non-binding event 
n : Index of gene 
w : Index of window 

,n ws : Sample read intensity of w -th window at promoter region of n -th gene  

, ,n w inputs : Input read intensity of w -th window at promoter region of n -th gene 

TFBSµ : Mean of ,n ws  with , 1n wb =  
2
TFBSσ : Variance of ,n ws  with , 0n wb =  

2
inputσ : Variance of , ,n w inputs  

,n wd : Distance between middle point of the w -th window to TSS of n -th gene 

dΔ : Window size, 200 bps 

pd : Promoter region length at one side of TSS  

λ : Exponential distribution parameter for binding locations 
π : Prior probability for a binding event 

Peak: 
One or multiple consecutive windows with posterior probabilities 1a  higher 

than a threshold, i.e. 0.95 

, ,n k jc : Co-regulation event of k -th TF and j -th TF at n -th target gene  

Promoterf : Proportion of detected peaks at promoter region among all peaks from the 
whole genome 

Differentially 
expressed target 

gene: 

For single TF, a gene has at least one binding site at promoter region and 
its differential expression p-value is < 0.05 when the TF is knocked down;  
For a pair of TF, a common gene has binding sites from both TFs 
simultaneously at promoter region and its differential expression p-value is 
< 0.05 when at least one TF is knocked down. 

Average overlap 
with other 

method: 
Average value of proportions of genes also predicted by other methods 
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