Supplementary Table 1: APE gene assembly oligomers

Oligomer Name	Sequence (5' to 3')
Oligo1Finger3 (O1F3)	ttgcgacatctgcggtcgtaaattcgct XXXXXXXXXXXXXXXXXXXXXXX cacaccaaaatccacctgcgtcaga
Oligo2Linker3-2 (O2link3-2)	cacatccgtacccacaccggtgaaaaaccgttcgcttgcgacatctgcggtcgtaaattc
Oligo3Finger2 (O3F2)	CCAatgtagaatttgtatgagaaatttetet XXXXXXXXXXXXXXXXXXXXXXX cacateegtaeeeaceggtgaaa
Oligo4Linker2-1 (O4link2-1)	${\tt catattagaattcatactggacaaaAACCATTCCAatgtagaatttgtatgagaaatttc}$
Oligo5Finger1 (O5F1)	tgaatettgegacegtegtttetet XXXXXXXXXXXXXXXXXXXXX eatattagaatteataetggacaaa
Biotinylated seed oligo	biotin-tctgacgcaggtggattttggtgtg
Assembly check-f (5'chk3-fin1)	tgaatettgegacegtegtttetet
Assembly check-r (zif268-3'chk)	tctgacgcaggtggattttggtg

Where xxxxx indicates location of 21 nt coding for 7 amino acids in positions -1 to 6 of recognition helix.

Supplementary Table 2: Oligomers for generation of linear expression template with GFP fusion

Oligomer Name	Sequence (5' to 3')
yEmCitrine-R1-f	CCTCTAGAAATAATTTTGTTTAACTTAAGAAGGAGGAAAAAAAA
yEmCitrine-r	GTAGCAGCCTGAGTCGTTATTATTTGTACAATTCATCCATACCATGG
Proline-linker-EGFP-f	cacaccaaaatccacctgcgtcagaaagacccagcgccagcgccatctaaaggtgaagaattattcac
EGFP-His6-r	${\tt GTAGCAGCCTGAGTCGTTATTAatgatgatgatgatgatgatgacccccTTTGTACAATTCATCCATACCATGG}$
Genespecific-f	$\label{eq:action} A GAAATAATTTTGTTTAACttaagaaggaggaaaaaaaaaaaaaggaacgtccgtacgcttgcccggttgaatcttgcgaccgtcgtttctct$
Extension-f	$\texttt{gatcttaaggctagagtacTAATACGACTCACTATAGGGAGACCACAACGGTTTCCC} \underline{\texttt{TCTAGA}\texttt{AATAATTTTGTTTAACt} \\ \texttt{taagaagga}$
Extension-r	CAAAAAACCCCTCAAGACCCGTTTAGAGGCCCCAAGGGGTTATGCTAGGTAGCAGCCTGAGTCG
5'final_highTm	Cy3-gatcttaaggctagagtacTAATACGACTCACTATAGGG
3'final_highTm	CAAAAAACCCCTCAAGACCCGTTTAGAG

Supplementary Table 3: Error rate analysis for APE synthesis

ZF synthesis method (polymerase used for extension)	# of full- length sequence reads (out	Total kb of interest sequence d	# deletion events	# insertion events	# substitution events	Total error events	Error/kb
Physion gol stab	32	7 6 4 9	1	0	0	6	0.785
Filusion -yel stab	52	7.040	4	2	0	0	0.765
Phusion +gel stab	32	7.648	5	0	1	6	0.785
Klenow +gel stab	28	6.692	15	1	1	17	2.54

Supplementary Table 4: Klenow extension, Cy5-labelled target oligomer design

Oligomer Name	Sequence (5' to 3')
5'CompCy5	Cy5-GTCATACCGCCGGA
Target design	GGCCAATT X XXX XXX X X TTTCCGGCGGTATGAC

Where xxxx indicates location of target sequence (11 nt target = 9 nt binding site with flanking nt on each end)

Supplementary Table 5: Microarray robotic printing routine

Step	Printing reagent	Stamps /spot	Stamps /ink	Humidity	Wash frequency
1 (prespot)	0.5% BSA in water	1	4	45-55%	No same-sample wash, 1 source well per linear template
2	Linear template printing (6 μ L final PCR product + 64 μ L 2% BSA in water)	2	4	45-55%	Wash after 32 inks
3 (overspot)	0.5% BSA in water	1	4	45-55%	No same-sample wash, 1 source well per linear template
4	Cy5-DNA target printing (10 µL Klenow product + 60 µL 2% BSA in water)	3	3	45-55%	Wash after 32 inks

Supplementary Tables

Supplementary Table 6: Gene synthesis technique comparison (for Figure 1d)

year	Previously reported error rates (publication reference)	Assembly technique	Before
2004	PA Carr et al, Protein mediated error correction for de novo DNA synth, NAR 2004	PCR assembly	1.8 error/kb
2004	Xiong A-S et al, A simple, rapid, high fidelity and cost-effective PCR-based 2step DNA synthesis method for long gene sequences, NAR 2004	PCR assembly PTDS	0.84-6.72 error/kb
2005	Binkowski BF et al, Correcting errors in synthetic DNA through consensus shuffling, NAR 2005	PCR assembly	0.98-1.3 errors/kb
2005	Fuhrmann M et al, Removal of mismatched bases from synthetic genes by enzymatic mismatch cleavage, NAR 2005	ligation	5.8-7.2 error/kb
2006	Xiong A-S et al, PCR-based accurate synthesis of long DNA sequences, NatureProtocols 2006	PCR assembly	<1 error/kb
2007	Kong DS et al, Parallel gene synthesis in a microfluidic device, NAR 2007	PCR	1.8-2.2 error/kb
2007	Mamedov TG et al, Rational denovo gene synth by rapid PCA and expression of endothelial protein-c and thrombin receptor genes, J Biotechnol 2007	PCR, PCA, fastPCA	0.53-1.1 error/kb
2008	Marsic D et al, PCR-based gene synthesis to produce recombinant proteins for crystallization, BMC Biotech 2008	SeqTBIO	1-3 error/kb
2009	Ye H et al, Experimental analysis of gene assembly with TopDown one-step real-time gene synth, NAR 2009	PCA assembly	no consideration of error rate
2010	Matzas M et al, High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using HT pyrosequencing, Nature Biotech 2010	PCR assembly	25 error/kb (starting oligomers)
2010	Kosuri S et al, Scalable gene synth by selective amplification of DNA pools from highfidelity microchips, Nat Biotech 2010	PCR assembly	0.67-0.88 errors/kb
2010	Borovkov AY et al, High-quality gene assembly directly from unpurified mixtures of microarray-synthesized oligos, NAR 2010	Ligation, Overlapping PCR	2.7-2.9 errors/kb
2011	Quan J et al, Parallel onchip gene synth and application to optimization of protein expression, Nat Biotech 2011	PCA	1.9 error/kb
2012	Saaem I et al, Error correction of microchip synthesized genes using Surveyor nuclease, NAR 2012	nSDA-PCA, PCR	1.9 error/kb
2012	Schwartz JJ et al, Accurate gene snthesis with tag-directed retrieval of sequence-verified DNA molecules, Nat Methods, 2012	Dialout PCR	
2012	Ma S et al, Error Correction in gene synthesis technology, Trends Biotechnol, 2012	various	
2013	Dormitzer PR et al, Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Science translation med. 2013	Ligation+PCA	0.64-0.75errors/kb
2014	Wan W et al, Error removal in microchip-synthesized DNA using immobilized MutS, NAR 2014	PCR	11.44-14.25/kb
2014	Currin A, et al, SpeedyGenes: an imporoved gene syntehsis method for efficient production of error-corrected, synthetic protein libraries for directed evolution, Protein Engineering, Design & Selection 2014	PCR	functional colony output, no seq data
2015	APE solid phase gene synthesis (this publication)	APE	0.78error/kb (with Phusion polymerase)

Supplementary Table 7: DNA target sequences for ZF combinatorics (Figure 1f)

Oligomer Name	Seque	nce (5	' to 3	')							
target_BAA	GGC CA	A TTT	GAG	TGG	GCG	TTT	TCC	GGC	GGT	ATG	AC
target_CAA	GGC CA	А ТТА	GAT	TGG	GCG	TTT	TCC	GGC	GGT	ATG	AC
target_DAA	GGC CA	A TTT	GTA	TGG	GCG	TTT	TCC	GGC	GGT	ATG	AC
target_ABA	GGC CA	А ТТА	GCG	GAC	GCG	TTT	TCC	GGC	GGT	ATG	AC
target_ACA	GGC CA	A TTA	GCG	GTA	GCG	TTT	TCC	GGC	GGT	ATG	AC
target_ADA	GGC CA	А ТТА	GCG	GAT	GCG	TTT	TCC	GGC	GGT	ATG	AC
target_AAB	GGC CA	A TTA	GCG	TGG	GTG	TTT	TCC	GGC	GGT	ATG	AC
target_AAC	GGC CA	А ТТА	GCG	TGG	GCC	TTT	TCC	GGC	GGT	ATG	AC
target_AAD	GGC CA	A TTA	GCG	TGG	GGA	GTT	TCC	GGC	GGT	ATG	AC
target_ABB	GGC CA	А ТТА	GCG	GAC	GTG	TTT	TCC	GGC	GGT	ATG	AC
target_CBB	GGC CA	A TTA	GAT	GAC	GTG	TTT	TCC	GGC	GGT	ATG	AC
target_DBB	GGC CA	A TTT	GTA	GAC	GTG	TTT	TCC	GGC	GGT	ATG	AC
target_BAB	GGC CA	A TTT	GAG	TGG	GTG	TTT	TCC	GGC	GGT	ATG	AC
target_BCB	GGC CA	A TTT	GAG	GTA	GTG	TTT	TCC	GGC	GGT	ATG	AC
target_BDB	GGC CA	A TTT	GAG	GAT	GTG	TTT	TCC	GGC	GGT	ATG	AC
target_BBA	GGC CA	A TTT	GAG	GAC	GCG	TTT	TCC	GGC	GGT	ATG	AC
target_BBC	GGC CA	A TTT	GAG	GAC	GCC	TTT	TCC	GGC	GGT	ATG	AC
target_BBD	GGC CA	A TTT	GAG	GAC	GGA	GTT	TCC	GGC	GGT	ATG	AC
target_ACC	GGC CA	A TTA	GCG	GTA	GCC	TTT	TCC	GGC	GGT	ATG	AC
target_BCC	GGC CA	A TTT	GAG	GTA	GCC	TTT	TCC	GGC	GGT	ATG	AC
target_DCC	GGC CA	A TTT	GTA	GTA	GCC	TTT	TCC	GGC	GGT	ATG	AC
target_CAC	GGC CA	A TTA	GAT	TGG	GCC	TTT	TCC	GGC	GGT	ATG	AC
target_CBC	GGC CA	A TTA	GAT	GAC	GCC	TTT	TCC	GGC	GGT	ATG	AC
target_CDC	GGC CA	A TTA	GAT	GAT	GCC	TTT	TCC	GGC	GGT	ATG	AC
target_CCA	GGC CA	Α ΤΤΑ	GAT	GTA	GCG	TTT	TCC	GGC	GGT	ATG	AC
target_CCB	GGC CA	A TTA	GAT	GTA	GTG	TTT	TCC	GGC	GGT	ATG	AC
target_CCD	GGC CA	A TTA	GAT	GTA	GGA	GTT	TCC	GGC	GGT	ATG	AC
target_ADD	GGC CA		GCG	GAT	GGA	GTT	TCC	GGC	GGT	ATG	AC
target_BDD	GGC CA	A 1"1"1	GAG	GA'I'	GGA	GTT	TCC	GGC	GGT	ATG	AC
target_CDD	GGC CA		GAT	GAT	GGA	GTT	TCC	GGC	GGT	ATG	AC
target_DAD	GGC CA		GTA	TGG	GGA	GTT	TCC	GGC	GGT	ATG	AC
target_DBD			GTA	GAC	GGA	GTT	TCC	GGC	GGT	ATG	AC
target_DCD			GTA	GTA	GGA	GTT	TCC	GGC	GGT	ATG	AC
target_DDA			GTA	GAT	GUG		TCC	GGC	GGT	ATG	
target_DDB			GIA	GAT	GIG	111 0000	TCC	GGC	GGT	ATG	
target_DDC			GIA	GAI	GCC		TCC	GGC	CCT	AIG	
target_BCA			GAG	GIA	GCG	111 7777	TCC	GGC	GGT	ATG	
target_BDA			GAG	GAC	GCG		TCC	GGC	GGT	ATG	
target_CDA			GAT	GAT	GCG	ттт тттт	TCC	GGC	GGT	ATC	
target DBA	GGC CI	.A TTT	GTA	GAC	GCG		TCC	GGC	GGT	ATG	AC
target DCA	GGC CI		GTA	GTA	GCG	 TTT	TCC	GGC	GGT	ATG	AC
target ACB	GGC C	а тта	GCG	GTA	GTG	 TTT	TCC	GGC	GGT	ATG	AC
target ADB	GGC CA	А ТТА	GCG	GAT	GTG	ттт	TCC	GGC	GGT	ATG	AC
target CAB	GGC CA	A TTA	GAT	TGG	GTG	TTT	TCC	GGC	GGT	ATG	AC
target CDB	GGC CA	Α ΤΤΑ	GAT	GAT	GTG	TTT	TCC	GGC	GGT	ATG	AC
-											

target_DAB	GGC	CAA	TTT	GTA	TGG	GTG	TTT	TCC	GGC	GGT	ATG	AC
target_DCB	GGC	CAA	TTT	GTA	GTA	GTG	TTT	TCC	GGC	GGT	ATG	AC
target_ABC	GGC	CAA	TTA	GCG	GAC	GCC	TTT	TCC	GGC	GGT	ATG	AC
target_ADC	GGC	CAA	TTA	GCG	GAT	GCC	TTT	TCC	GGC	GGT	ATG	AC
target_BAC	GGC	CAA	TTT	GAG	TGG	GCC	TTT	TCC	GGC	GGT	ATG	AC
target_BDC	GGC	CAA	TTT	GAG	GAT	GCC	TTT	TCC	GGC	GGT	ATG	AC
target_DAC	GGC	CAA	TTT	GTA	TGG	GCC	TTT	TCC	GGC	GGT	ATG	AC
target_DBC	GGC	CAA	TTT	GTA	GAC	GCC	TTT	TCC	GGC	GGT	ATG	AC
target_ABD	GGC	CAA	TTA	GCG	GAC	GGA	GTT	TCC	GGC	GGT	ATG	AC
target_ACD	GGC	CAA	TTA	GCG	GTA	GGA	GTT	TCC	GGC	GGT	ATG	AC
target_BAD	GGC	CAA	TTT	GAG	TGG	GGA	GTT	TCC	GGC	GGT	ATG	AC
target_BCD	GGC	CAA	TTT	GAG	GTA	GGA	GTT	TCC	GGC	GGT	ATG	AC
target_CAD	GGC	CAA	TTA	GAT	TGG	GGA	GTT	TCC	GGC	GGT	ATG	AC
target_CBD	GGC	CAA	TTA	GAT	GAC	GGA	GTT	TCC	GGC	GGT	ATG	AC
target_268wt	GGC	CAA	TTA	GCG	TGG	GCG	TTT	TCC	GGC	GGT	ATG	AC
target_37-12	GGC	CAA	TTT	GAG	GAC	GTG	TTT	TCC	GGC	GGT	ATG	AC
target_92-1	GGC	CAA	TTA	GAT	GTA	GCC	TTT	TCC	GGC	GGT	ATG	AC
target_158-2	GGC	CAA	TTT	GTA	GAT	GGA	GTT	TCC	GGC	GGT	ATG	AC

Supplementary Table 8: APE synthesis oligomers ZF combinatorics (Figure 1f)

Oligomer Name	Sequence (5' to 3')
Zif268_Oligo1fin3	${\tt ttgcgacatctgcggtcgtaaattcgctcgttctgacgaacgtaaacgtcacaccaaaatccacctgcgtcaga}$
Zif268_Oligo3fin2	${\tt CCAatgtagaatttgtatgagaaatttctctgttctgaccacctgaccacctcgtacccacaccggtgaaa}$
Zif268_Oligo5fin1	tgaatcttgcgaccgtcgtttctctcgttctgacgaactgacccgtcatattagaattcatactggacaaa
37-12Oligo1fin3	ttgcgacatctgcggtcgtaaattcgct CGTCACGACCAGCTGACCCGT cacaccaaaatccacctgcgtcaga
37-12Oligo3fin2	${\tt CCAatgtagaatttgtatgagaaatttctct} {\tt GACCGTGCTAACCTGCGTCGT} {\tt cacatccgtacccacaccggtgaaa}$
37-12Oligo5fin1	tgaatcttgcgaccgtcgtttctctC GTAACTTCATCCTGCAGCGT catattagaattcatactggacaaa
92-10ligo1fin3	ttgcgacatctgcggtcgtaaattcgct GAACGTGGTAACCTGACCCGT cacaccaaaatccacctgcgtcaga
92-10ligo3fin2	${\tt CCAatgtagaatttgtatgagaaatttctct} {\tt CAGCGTTCTTCTCTGGTTCGT} {\tt cacatccgtacccacaccggtgaaa}$
92-10ligo5fin1	tgaatcttgcgaccgtcgtttctct GACTCTCCGACCCTGCGTCGT catattagaattcatactggacaaa
158-2Oligo1fin3	ttgcgacatctgcggtcgtaaattcgct CAGTCTACCTCTCTGCAGCGT cacaccaaaatccacctgcgtcaga
158-2Oligo3fin2	${\tt CCAatgtagaatttgtatgagaaatttctct} {\tt GTTCGTCACAACCTGACCCGT} {\tt cacatccgtacccacaccggtgaaa}$
158-2Oligo5fin1	tgaatcttgcgaccgtcgtttctct GACAAAACCAAACTGCGTGTT catattagaattcatactggacaaa