Supporting Information

Structural basis for PHD_vC5HCH_{NSD1}-C2HR_{Nizp1} interaction: implications for Sotos Syndrome

Andrea Berardi ^{1,2\$}, Giacomo Quilici^{1\$}, Dimitrios Spiliotopoulos^{1§}, Maria Angeles Corral-Rodriguez¹, Fernando Martin-Garcia¹, Massimo Degano², Giovanni Tonon³, Michela Ghitti¹, and Giovanna Musco¹

¹ Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan, 20132, Italy

² Università degli Studi di Milano. Italy

³ Biocrystallography, IRCCS S. Raffaele Scientific Institute, Milan, 20132, Italy

⁴ Department, Institution, Functional genomics of cancer, IRCCS S. Raffaele Scientific Institute, Milan, 20132, Italy

* To whom correspondence should be addressed. Tel: 0039+0226434824; Fax: 0039+0226434153; Email: musco.giovanna@hsr.it

[†]The authors wish it to be known that, in their opinion, the first 3 authors should be regarded as joint First Authors

[§]Present Address: Dimitrios Spiliotopoulos, Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057

Materials and Methods

Sequence alignment

Sequence search using mouse PHD_vC5HCH_{NSD1} (residues E2117 to P2211) was done using Blast+ (v.2.2.9+) and the non-redundant database (<u>ftp://ftp.ncbi.nlm.nih.gov/blast/db/</u>), In the first round search, performed with blastp (e-value=0.0001), we retrieved 1000 sequences. Alignment of the sequences was done with ClustalO (default options). Sequences belonging to the same organism with a 95% of identity were removed. Visual inspection and sequence removing was done with Jalview. Resulting multiple sequence alignment was used as profile for psi-blast (e-value=0.0001). Several rounds of psi-blast were done, removing redundant sequences (95%) until no new sequence was found. The same protocol was applied to perform C2HR_{Nizp1} alignment. Sequence search was done using mouse C2HR_{Nizp1} (residues V398 to K434).

Histone overlay assays

MODified[™] Histone Peptide Arrays were purchased from Active Motif. They enable screening in a single experiment of 59 acetylation, methylation, phosphorylation and citrullination modifications on the entire N-terminal tails of histones H2A, H2B, H3 and H4. A series of synthetic 19mer histone H2A, H2B, H3 and H4 peptides, each of which may contain as many as four modifications, are spotted in duplicate onto a glass slide, generating a total of 384 unique histone modification combinations. Following overnight blocking at 4 °C with 5% milk in TTBS buffer (10 mM Tris/HCl pH 7.4, 150 mM NaCl, 0.05% Tween 20), the array was washed twice with TTBS and once with binding buffer (50 mM Tris/HCl pH 7.5, 300 mM NaCl, 0.1% NP-40, protease inhibitors). The array was then incubated, for 2–4 h at room temperature, with 1 µM solution of GST-tagged PHDv-C5HCH_{NSD1} in binding buffer. After three washes with binding buffer, the array was incubated with primary antibody anti-GST (1 : 1000) in 5% milk/TTBS for 1 h at room temperature. The array was then washed three times with TTBS and incubated for 1 h at room temperature with a secondary antibody HRP-conjugated (1 : 10000) in 5% milk/TTBS. Three washes with TTBS followed, and ECLTM Western Blotting detection solution (GE Healthcare) was added and incubated on the array surface for 5 min

at room temperature. The image was captured by the ImageQuantTM ECL image analysis system (GE Healthcare).

Table S1: Summary of Sotos Syndrome missense-mutations targeting PHD_vC5HCH_{NSD1}

Domain	Mutations
PHD _v	C2124R (1); Y2142N (1); H2143E (3); H2143Y (1); H2143Q (1); C2146R(1); R2152Q (2); C2159Y (1); H2162R (1)
C5HCH	C2164R (1); C2164Y (1); C2167R (3); C2178R (1); F2182I (1); C2183S (1);H2205R (1); C2178Y (1)

1. Tatton-Brown,K., Douglas,J., Coleman,K., Baujat,G., Cole,T.R., Das,S., Horn,D., Hughes,H.E., Temple,I.K., Faravelli,F., et al. (2005) Genotype-phenotype associations in sotos syndrome: An analysis of 266 individuals with NSD1 aberrations. *Am. J. Hum. Genet.*, **77**, 193-204.

 Melchior,L., Schwartz,M. and Duno,M. (2005) dHPLC screening of the NSD1 gene identifies nine novel mutations--summary of the first 100 sotos syndrome mutations. *Ann. Hum. Genet.*, **69**, 222-226.
Kurotaki,N., Harada,N., Shimokawa,O., Miyake,N., Kawame,H., Uetake,K., Makita,Y., Kondoh,T., Ogata,T., Hasegawa,T., et al. (2003) Fifty microdeletions among 112 cases of sotos syndrome: Low copy repeats

possibly mediate the common deletion. Hum. Mutat., 22, 378-387.

Table S2: Summary of Ambiguous Interactions Restraints. Active and passive residues for PHD_vC5HCH_{NSD1} and $C2HR_{Nzip1}$ are indicated

	Active residues	D2119, F2122-C2124, H2143, L2147, W2157, E2158, M2177, E2204								
	Passive residues	E2120, G2125, A2127, Q2129, V2131, K2134, K2135, D2145, N2148, P2153, G2155, K2156, E2176, R2199, T2203, D2206								
C211D	Active residues	R415, W416, R417, V418, F420, R422								
CZRR _{Nzip1}	Passive residues	K403, K412, N419, I421, L424, R425								

Table S3: HADDOCK cluster statistics. The table reports the HADDOCK score, the electrostatic and van der Waals energy terms, the ambiguous interaction restraint energy term, the empirical desolvation term and the Buried Surface Area associated to each cluster. Clusters were ranked according to the HADDOCK score. Statistics have been calculated on the five lowest HADDOCK score models in each cluster.

	HADDOCK [a.u.]	Eelec [Kcal/mol]	EvdW [Kcal/mol]	EAIR [Kcal/mol]	Edesolv [Kcal/mol]	BSA [Ų]
Cluster1	-133.7 ± 4.5	-529.5 ± 33.5	-52.3 ± 4.1	110.6 ± 34.4	11.3 ± 7.4	1539.0 ± 64.0
Cluster2	-114.7 ± 12.7	-490.3 ± 45.6	-47.6 ± 5.6	137.8 ± 13.3	1.8 ± 6.4	1622.5 ± 58.7
Cluster3	-112.2 ± 4.4	-516.6 ± 32.4	-46.1 ± 2.8	174.4 ± 24.6	9.6 ± 9.3	1413.3 ± 51.7
Cluster4	-105.9 ± 14.7	-350.7 ± 52.0	-60.1 ± 5.7	124.5 ± 15.2	16.3 ± 5.2	1652.7 ± 162.4
Cluster5	-105.1 ± 5.4	-418.6 ± 35.9	-45.6 ± 5.1	114.5 ± 26.2	14.2 ± 9.4	1505.1 ± 87.0
Cluster6	-99.1 ± 4.9	-404.6 ± 45.1	-45.1 ± 4.4	171.2 ± 7.17	9.3 ± 5.6	1354.4 ± 49.8
Cluster7	-94.4 ± 5.4	-390.7 ± 77.6	-46.1 ± 4.6	120.6 ± 16.5	9.4 ± 6.6	1505.5 ± 51.3
Cluster8	-94.7 ± 5.6	-375.6 ± 46.9	-44.4 ± 7.0	100.1 ± 19.2	20.1 ± 10.4	1369.5 ± 80.5
Cluster9	-92.7 ± 6.4	-363.8 ± 48.9	-47.4 ± 9.4	152.0 ± 25.4	21.8 ± 9.8	1413.8 ± 107.4
Cluster10	-81.7 ± 2.1	-415.6 ± 54.5	-33.8 ± 6.7	217.1 ± 17.7	18.9 ± 8.2	1157.8 ± 63.3
Cluster11	-75.6 ± 3.6	-322.2 ± 20.3	-42.2 ± 4.9	194.0 ± 22.7	12.1 ± 4.0	1175.7 ± 86.1

Figure legends

Figure S1 A) Top, alignment of PHD_vC5HCH_{NSD1} with the indicated species. Zn^{2+} binding and conserved hydrophobic residues at the domains interface are shown in red and green, respectively. Sotos mutations described in the literature (+), experimentally tested Sotos mutations (**•**) and rationally designed mutations (:) are indicated in the alignment. Bottom, PHD_vC5HCH alignment of NSD2 and NSD3. B) Sequence alignment of C2HR_{Nizp1} with the corresponding sequence in other species. Zn^{2+} binding residues and hydrophobic conserved residues are highlighted in red. The RWR signature is highlighted in blue and the Arginine of the C2HR signature is highlighted in bold. Mutations generated to validate the complex model are indicated with ":" An alignment search performed on the domain search (blast+) reveals that this domain is only present in mammals.

Figure S2: Backbone dynamics (R2/R1, R1, R2) of A) PHD_v-C5HCH_{NSD1}, free (black line) and in complex with C2HR_{Nizp1} (red line) and of B) C2HR_{Nizp1}, free (black line) and in complex with PHD_vC5HCH_{NSD1} (red line). Notably, residue R425_{Nizp1} has a very high R2 rate, it is located at the end of the α -helix and is most likely affected by *fraying* effects of the α -helix that reflect into conformational exchange and line broadening. Conceivably, the conformational exchange observed for R425 is due to the absence of the fourth Zn²⁺ binding residue in position 427, thus reducing by one helical turn the α -helix.

Figure S3: Structural comparison with other PHD tandem domains. A) Superposition of PHD_vC5HCH_{NSD1} structure (blue, lowest energy structure from the NMR bundle) and PHD_vC5HCH_{NSD3} (red, PDB code:4GND). The side-chains of P1355-P1356_{NSD3} and of R2152-P2153_{NSD1} are indicated in sticks. B) Superposition of PHD12 tandem domain (orange) of human DPF3b (2KWN) with PHD_vC5HCH_{NSD1} (blue), C) Superposition of PHD12 tandem domain (grey) of human MOZ (2LN0), with PHD_vC5HCH_{NSD1} (blue). Zn²⁺ions are represented with spheres. D) Comparison between the electrostatic surfaces of PHD_vC5HCH_{NSD1} and PHD_vC5HCH_{NSD3} in complex with H3K9me3 (blue cartoon). E) ¹H-¹⁵N HSQC spectra (top) and 1H-1D NMR spectra of WT and mutants PHD_vC5HCH_{NSD1}.

Figure S4

A) ¹H-1D NMR spectra of C2HR_{Nizp1} wild-type and mutants showing that all mutants are well folded. B) Integral of the radial distribution function g(r) of the Sulfur (Sy of C407 and C410), of the Nitrogen (Nɛ of H423) and of the water Oxygen (O) atoms around the Zn^{2+} ion during the QM/MM analysis (100 ps). A maximum radius of 5 Å is showed in order to simplify the visualization of the result. The analysis reveals that within a radius of 2.2 Å Zn^{2+} is stably tetra-coordinated by two Sy atoms, by one Nɛ and one O atom.

Figure S5 A) Superposition of ${}^{1}H^{-15}N$ spectra of $PHD_{v}C5HCH_{NSD1}$ in complex with a two-fold excess of C2HR_{Nizp1} (black) and upon addition of a twelve fold excess of H3₁₋₂₁ to the complex (red). B) Superposition of ${}^{1}H^{-15}N$ spectra of PHD_v-C5HCH_{NSD1} without (black) and with a two-fold excess of W416A-C2HR_{Nizp1} mutant.

Figures S6 A) Interaction of GST-PHD_vC5HCH_{NSD1} (top) and GST control (bottom) with histone peptide arrays. Experiments have been performed in duplicate. The Histone modification states giving the strongest positive signals involved histone H3 (1-19) with methylation of K4, K9, R8. The identity of all the spots is reported in the Active Motif company website (http://www.activemotif.com). B) Modification preference

(defined as percentage^{PTM}=(hist^{PTM},his^{tot})*100) as calculated by Array Analyses Software based on two duplicated arrays. C) Superposition of ¹H-¹⁵N HSQC spectra of PHD_v-C5HCH_{NSD1} alone (black) and upon addition of twelve-fold excess (red) of H3K4₁₋₂₁, H3K4me3₁₋₂₁, H3K9me3₁₋₂₁-D). Histograms showing the average backbone chemical shift perturbations (CSP) observed in ¹⁵N-labelled PHD_vC5HCH_{NSD1} (0.2mM) upon addition of a twelve-fold excess of H3K4₁₋₁₀, H3K4₁₋₃₇, H3R8me2₁₋₂₁ and upon addition of 300mM Lysine (K). Titrations with H3R8me2₁₋₂₁ gave a similar profile as the other titrations with 21 amino-acids long histone H3 peptides (see Figure 3A in main text). E) Histograms showing the average backbone chemical shift perturbation R2117A_K2134D PHD_vC5HCH_{NSD1} mutant (0.2mM) upon addition of a twelve-fold excess of H3K4₁₋₂₁.

Α																				
	EREDE C	FSC	GDGGQLVS	CKKPGC	PKVY	HADC	LNLTK	RPAGKW	E CPWH	Q C	DIC	GKEAASF	CEMC	PSSF	CKQH	REGMLF	ISKLDO	GRLS C	TEH D	
NSD1 Homo Sapiens (NP_071900.2) 2116	EREDE C	FSC	GDAGQLVS	CKKPGC	PKVY	HADC	LNLTK	RPAGK	E CPWH	QC	DIC	GKEAASF	CEMC	PSSF	CKQH	REGMLF	ISKLDO	GRLS C	TÉH D	2206
NSD1 Mus Musculus (NP_032765.3) 2117	EREDE C	FSC	GDAGQLVS	CKKPGC	PKVY	HADC	LNLTK	RPAGKW	E CPWH	QC	DVC	GKEAASF	CEMC	PSSF	CKQH	REGMLF	ISKLDO	GRLS C	TEH D	2207
NSD1 Pan Troglodytes (JAA39913.1) 1806	EREDE C	FSC	GDAGQLVS	CKKPGC	PKVY	HADC	LNLTK	RPAGKW	E CPWH	QC	DIC	GKEAASF	CEMC	PSSF	CKQH	REGMLF	ISKLDO	GRLS C	TEH D	1896
NSD1 Macaca Mulatta (AFH33588.1) 2117	EREDE C	FSC	GDAGQLVS	CKKPGC	PKVY	HADC	LNLTK	RPAGKW	E CPWH	QC	DIC	GKEAASF	CEMC	PSSF	CKQH	REGMLF	ISKLDO	GRLS C	TEH D	2207
NSD1 Rattus Norvegicus (NP_001100807.1) 2105	EREDE C	FSC	GDGGQLVS	CKKPGC	PKVY	HADC	LNLTK	RPAGKW	E CPWH	QC	DVC	GKEAASF	CEMC	PSSF	CKQH	REGMLF	ISKLDO	GRLS C	TEH D	2205
NSD1 Bos Mutus (ELR49876.1) 2119	EREDE C	FSC	GDAGQLVS	CKKPGC	PKVY	HADC	LNLTK	RPAGKW	E CPWH	QC	DIC	GKEAASF	CEMC	PSSF	CKQH	REGMLF	ISKLDO	GRLS C	TEH D	2209
NSD1 Xenopus Tropicalis (XP_004912922.1) 1928	EHEDE C	FSC	GDGGQLVS	CKKPGC	PKVY	HAEC	LKLTR	RPAGKW	E CPWH	QC	DIC	HKEAASL	CEMC	PSSF	CKQH	REGMLF	ISKLDO	GRLS C	TEH D	2018
NSD1 Gallus Gallus (XP_414538.4) 1845	EREDE C	FSC	GDGGQLVS	CKKAGC	PKVY	HADC	LNLTK	RPAGKW	E CPWH	QC	DMC	GKEAASF	CEMC	PRSF	CKQH	REGMLF	ISKLDO	GRLS C	TEH D	1945
NSD1 Danio Rerio (XP_683890.4) 1798	EREDE C	FYC	GDGGQIVS	CKKPGC	PKVY	HADC	LNLSK	RPAGRM	E CPWH	QC	NEC	GREAASY	CEMC	PNSY	CEQH	REGMLF	ISKLDO	GKLS C:	SEH D	1888
NSD2 Homo Sapiens (096028.1) 1237 NSD3 Homo Sapiens (NP_075447.1) 1319	QSEDE C Mhedy C	C F RC C F QC	GDGGQLVL GDGGELVN	CDRKFC CDKKDC	TKAY PKAY	HLSC HLLC	L G L G K L N L T Q	R P F G K V P P Y G K V	E CPWH	H C Q C	DVC DEC	G K P S T S F S S A A V S F	CHLC CEFC	P N S F P H S F	СКЕН СКДН	QDG TAF EKGALV	SC TPDO PSALEO	GRSY CO Grlc C	CEH D SEH D	1327 1409

EVQTSSKKSYV<mark>C</mark>PNCGKIFRWRVNFIR<mark>H</mark>LRS**R**REQEKPHE

Homo Sapi	iens (NP_116141.1)	398	8 E	VQT	- S K	KSY	′∨C	PNC	GK	ΙF	RWR	VNF	I R	LRS	5 R R E	QEKPH	ΗE	436
Mus Muscu	ulus (NP_766529.3)	397	7 E	VQT	- SQ	KSY	'VC	PNC	GK	I F	RWR	VNF	1 R	LRS	5 R R E	Q - KPH	ΙK	434
Rattus Nor	rvegicus (NP_001258325.1)	391	1 E	VQS	- SQ	KSY	′∨C	PSC	GK	ΑF	RWR	VNF	IR	LRS	RRE	Q - KPF	ΗK	428
Pan Troglo	dytes (JAA34374.1)	398	8 E	VQT	- S K	KSY	'VC	PNC	GK	I F	RWR	VNF	IR	ILRS	5 R R E	QEKPH	ΗE	436
Macaca Mu	ulatta (AFJ71001.1)	398	8 E	VQT	- S K	KSY	'VC	PNC	GK	I F	RWR	VNF	R	LRS	5 R R E	QEKPH	ΗE	436
Bos Taurus	s (NP_001192858.1)	398	8 E	VQT	SSK	KSY	′∨c	PNC	GK	I F	RWR	VNF	R	LRS	5 R R E	QEKPH	ΗE	437
Ovis Aries	(NP_001233165.1)	398	8 E	VQT	SSK	KSY	VC	PNC	GK	I F	RWR	VNF	R	LRS	5 R R E	QEKPH	ΗE	437

Supplementary Figure S1

В

Supplementary Figure S2

Supplementary Figure S3

Supplementary Figure S3

Ε

Supplementary Figure S4

Supplementary Figure S5

Supplementary Figure S6