SUPPORTING INFORMATION TABLE OF CONTENTS

Table S1: Supplemental Parameters for Table 1 (confirmed primary hits against KSHV Pr).	2
Table S2: Supplemental Parameters for Table 2 (aminothiazoles)	4
Table S3: Indoles	6
Table S4: Trifluoromethylbenzenes	8
Table S5: Tetrahydrobenzotheinopyrimidines	10
Table S6: Tetrahydrodibenzofurans	11
Table S7: Tetrahydrocyclopentaindoles	11
Table S8: Michaelis-Menten parameters: KSHV Pr, P6R + Fragment 30	12
Figure S1: ¹³ C-Met HSQC overlays: KSHV Pr + primary hits	13
Figure S2: ¹³ C-Ile HSQC overlays: KSHV Pr Δ 196 + primary hits	14
Figure S3: $^{15}N/^{1}H$ -HSQC overlays: KSHV Pr Δ 196 + primary hits	15
Figure S4: $^{15}N/^{1}H$ CSP Map: KSHV Pr Δ 196 + Fragment 6	20
Figure S5: Leu110 amide peak overlay: KSHV Pr Δ 196 + primary hits	21
Figure S6: CSPs vs. IC ₅₀ , molecular volume, TPSA: KSHV Pr Δ 196 + primary hits	22
Figure S7: 1D-STD NMR: HCMV Pr + selected Table 1 fragments	23
Figure S8: SEC, DLS, HSQC overlays, Michaelis-Menten : KSHV Pr + Frag 30	24
Figure S9: ¹³ C-IIe and ¹⁵ N/ ¹ H HSQC overlays: KSHV Pr \triangle 196 + Fragment 30	25
Figure S10: ${}^{15}N/{}^{1}H$ CSP Map: KSHV Pr Δ 196 + Fragment 30	26
Figure S11: ¹³ C-Ile HSQC overlays: KSHV Pr Δ 196 + aminothiazoles	27
Figure S12: $^{15}N/^{1}H$ -HSQC overlays: KSHV Pr Δ 196 + aminothiazoles	28
Figure S13: ¹³ C-IIe & ¹⁵ N/ ¹ H CSPs: KSHV Pr ∆196 + aminothiazoles	30

Fragment ID	мw	LE (KSHV Pr)	LogD	LipE (pIC ₅₀ – LogD)	TPSA (Ų)	Molecular Volume (Å ³)	SMILES
1	210.7	0.46	3.12	1.17	33.45	170.55	N=C1NC(=CS1)c2ccc(Cl)cc2
2	212.2	0.34	2.81	0.58	38.91	163.16	Nc1nc(cs1)c2cc(F)c(F)cc2
3	218.2	0.33	2.85	0.46	38.91	157.18	FC(F)(F)c1ccc2nc(N)sc2c1
4	226.7	0.37	3.87	-0.14	24.39	190.69	Cc1ccc(cc1Cl)NC2=NCCS2
5	196.0	0.49	2.84	0.63	15.79	130.91	Brc1ccc2ccnc2c1
6	210.1	0.43	3.35	0.02	15.79	147.47	Brc1cc2c(cc1)ncc2C
7	267.3	n/a	0.96	2.29	62.32	237.22	O=C(O)c1cc2cc(ccc2n1)OCc3ccccc3
8	187.2	0.41	2.52	1.57	39.16	177.26	Nc1cc2c(cc1)oc3CCCCc23
9	233.3	0.35	3.58	0.47	29.02	212.71	CN(C)c2ncnc1sc3CCCCc3c12
10	254.3	0.27	3.08	0.63	72.19	233.67	O=C(Nc1ccccc1C(N)=O)c2ccc(C)cc2
11	212.2	n/a	3.56	-0.56	55.12	198.13	NC(=O)c2cccc2Nc1ccccc1

Table S1: Supplemental Parameters for Table 1 (Confirmed Primary hits against KSHV Pr)

Fragment ID	MW	LE (KSHV Pr)	LogD	LipE (pIC₅₀ – LogD)	TPSA (Ų)	Molecular Volume (Å ³)	SMILES		
12	290.6	0.25	0.76	2.59	50.44	208.85	OC(=O)c1cc(oc1C(F)(F)F)c2ccc(Cl)cc2		
13	277.7	0.26	3.78	-0.31	47.05	248.79	Cc2nc(COC)cc(NCc1ccc(Cl)cc1)n2		
14	156.6	0.48	2.10	1.31	20.23	139.20	Clc1ccc(CCO)cc1		
15	256.1	0.30	3.75	-0.28	42.35	195.37	Oc1ccc(cc1)Oc2ncc(CI)cc2CI		
16	221.2	0.30	-0.48	3.92	77.84	190.44	O=C2C(O)C(O)C(=O)N2Cc1ccccc1		
17	255.0	0.39	1.96	1.67	52.05	155.80	Nc1cc(cc(Br)c1N)C(F)(F)F		
18	179.2	0.37	1.18	2.21	33.45	170.55	O=C(N1CCCCC1)c2ccco2		
19 Neg. control	201.1		1.94	1.06	28.68	156.72 FC(F)(F)c1cc2c(cc1)nnc2N			

Fragment ID	MW	LE (KSHV Pr)	LogD	LipE (pIC ₅₀ – LogD)	TPSA (Ų) Molecular Volume (ų) SMILES			
20	176.24	n/a	2.52	0.40	38.91	153.30	Nc1nc(cs1)c2ccccc2	
21	336.05	n/a	3.29	-0.36	38.91	171.18	Br.Nc1nc(cs1)c2ccc(Br)cc2	
22	190.26	n/a	3.03	0.08	38.91	169.86	Nc1nc(cs1)c2ccc(C)cc2	
23	245.12	0.44	3.73	0.69	38.91	180.37	Nc1nc(cs1)c2cc(Cl)c(Cl)cc2	
24	255.13	0.41	3.29	0.53	38.91	171.18	Nc1nc(cs1)c2cc(Br)ccc2	
25	326.37	0.28	1.72	2.80	71.45	278.37	O=C(O)c1cc(ccc1)Nc2nc(cs2)c3ccc(OC)cc3	
26	456.15	0.30	2.64	2.03	62.22	270.70	Br.O=C(O)c1cc(ccc1)Nc2nc(cs2)c3ccc(Br)cc3	
27	330.79	0.27	2.45	1.85	62.22	266.36	O=C(O)c1cc(ccc1)Nc2nc(cs2)c3ccc(Cl)cc3	
28	330.79	031	2.36	2.56	62.22	266.36	O=C(O)c3ccc(Nc1nc(cs1)c2ccc(Cl)cc2)cc3	
29	375.24	0.30	2.53	2.15	62.22	270.70	O=C(O)c3ccc(Nc1nc(cs1)c2ccc(Br)cc2)cc3	
30	365.23	0.31	3.08	2.09	62.22	279.89	O=C(O)c1cc(ccc1)Nc2nc(cs2)c3ccc(Cl)c(Cl)c3	

Table S2: Supplemental Parameters for Table 2 (Phenylaminothiazoles)

Fragment ID	MW	LE (KSHV Pr)	LogD	LipE (pIC₅₀ – LogD)	TPSA (Ų)	Molecular Volume (Å ³)	SMILES
31	365.23	0.31	2.96	2.21	62.22	O=C(O)c3ccc(Nc1nc(cs1)c2ccc(Cl)c(Cl)c2)cc3	
32	296.34	0.24	1.76	1.82	62.22	252.82	O=C(O)c3ccc(Nc1nc(cs1)c2ccccc2)cc3
33	442.17	0.25	5.40	-1.72	34.15	269.25	Br.Brc1ccc(cc1)c3csc(Nc2cc(OC)ccc2)n3
34	456.15	0.22	5.18	-1.72	43.39	267.63	Br.Brc1ccc(cc1)c4csc(Nc2cc3OCOc3cc2)n4

Table S3: Indoles

Fragment ID	R1	R2	R3	R4	R5	KSHV Pr IC₅₀ (μM)	MW	LE
35	CH₃		н	Н	CI	412.0	370.84	0.18
36		н	н	н	CI	466.0	291.78	0.23
37	CH ₂ CO ₂ H	н	Н	н	Br	> 500	254.08	0.33
38	н	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Н	н	Br	> 500	254.08	0.33
39		н	н	Н	Br	> 500	336.23	0.22
40	CH ₂ CH ₂ CO ₂ H	Н	Н	Н	Br	> 500	268.11	0.28
41	н	н	H O O	Br	Н	> 500	224.06	0.36

Fragment ID	LogD	LipE	TPSA (Ų)	Molecular Volume (Å ³)	SMILES
35	2.53	0.86	60.26	320.54	O=C(c2cc1ccc(Cl)cc1n2C)N4CCC(Oc3 ncccn3)CC4
36	1.68	1.65	28.48	261.22	O=C(Cn2ccc1ccc(Cl)cc12)N3CCN(C)C C3
37	-0.88	4.15	42.23	175.09	O=C(O)Cn2ccc1ccc(Br)cc12
38	2.76	0.51	42.10	175.44	O=C(OC)c1cc2ccc(Br)cc2n1
39	1.93	1.21	28.48	265.57	O=C(Cn2ccc1ccc(Br)cc12)N3CCN(C)C C3
40	-0.53	3.55	42.23	191.89	O=C(O)CCn2ccc1ccc(Br)cc12
41	2.55	0.58	32.86	149.89	Brc1cc2c(cc1)ncc2C=O

 Table S4: Trifluoromethylbenzenes

Fragment ID	R1	R2	R3	R4	KSHV Pr IC ₅₀ (μM)	MW	LE	LogD	LipE	TPSA (Ų)	Molecular Volume (Å ³)	SMILES
42	Br	¹ ⁴ ⁴ ² ⁴ N	Н	Н	221	310.11	0.30	3.51	0.15	12.47	211.36	FC(F)(F)c1cc(Br)c(c c1)N2CCOCC2
43	Br	NH_2	н	Н	336	240.02	0.41	2.79	0.68	26.02	144.51	Nc1ccc(cc1Br)C(F)(F)F
44	Н	CH ₃ N OH	н	Н	> 500	273.70	0.25	3.03	0.18	33.12	214.69	FC(F)(F)c1ccc(cc1) c2nc(C)c(CO)s2
45	Н	н	H ₂ N N CH ₃ N N ⁷² 474 NH	Н	> 500	268.24	0.24	2.63	0.56	63.83	218.69	Cc2cc(Nc1cc(ccc1) C(F)(F)F)nc(N)n2
46	NO ₂	NH_2	Н	CI	> 500	240.57	0.30	3.22	-0.05	71.85	163.50	FC(F)(F)c1cc(c(N)c c1Cl)[N+]([O-])=O
47	Н	Br	NH_2	Н	> 500	240.02	0.37	2.79	0.37	26.02	144.51	Nc1cc(ccc1Br)C(F)(F)F
48		Н	Н	Н	> 500	280.25	0.21	3.11	-0.11	55.12	229.42	O=C(Nc1cc(ccc1)C(F)(F)F)c2ccc(N)cc2

Fragment ID	R1	R2	R3	R4	KSHV Pr IC ₅₀ (μM)	MW	LE	LogD	LipE	TPSA (Ų)	Molecular Volume (Å ³)	SMILES
49	NH NH	н	Н	Н	> 500	295.27	0.20	2.48	0.52	54.02	243.18	FC(F)(F)c1cc(ccc1) NC(=O)NCc2ccncc 2
50	Br	н	CH ₃	н	> 500	239.04	0.32	4.13	-1.42	0.00	149.79	FC(F)(F)c1cc(C)cc(Br)c1
51	NH ₂	NH_2	Н	н	> 500	176.14	0.31	1.19	1.47	52.05	137.92	Nc1ccc(cc1N)C(F)(F)F
52	Br	Н	Н	н	> 500	225.01	0.30	3.62	-1.26	0.00	133.23	FC(F)(F)c1cc(Br)cc c1
53	Br	CH ₃	Н	н	> 500	239.04	0.27	4.13	-1.86	0.00	149.79	Cc1ccc(cc1Br)C(F)(F)F
54	CI	NH CH ₃	Н	н	> 500	251.63	0.18	3.39	-1.34	29.10	193.63	Clc1cc(ccc1NC(=O) CC)C(F)(F)F

Table S5: Tetrahydrobenzothienopyrimidines

Fragment ID	R1	R2	R3	KSHV Pr IC ₅₀ (μM)	MW	LE	LogD	LipE	TPSA (Ų)	Molecular Volume (Å ³)	SMILES
55	CH ₃ CH ₃	Н	Н	71.3	248.34	0.34	4.09	0.06	35.02	225.73	CC(C)Oc2ncnc1sc3CCCCc3c12
56*	N N N N N N N N N N N N N N N N N N N	CH₃	Н	85.1	379.43	0.28	3.85	0.22	38.26	261.50	O=C(O)C(=O)O.Cc1nc(c2c(n1)s c3CCCCc23)N4CCOCC4
57 [*]	N O O	CH ₃	Н	136.0	459.01	0.18	5.20	-1.33	50.73	377.43	CI.Cc1nc(c2c(n1)sc3CCCCc23) N6CCN(Cc4ccc5OCOc5c4)CC6
58	ОН	Н	Н	> 500	206.26	0.32	3.17	0.04	46.01	174.82	Oc2ncnc1sc3CCCCc3c12
59	ОН	н	CH₃	> 500	220.29	0.19	3.46	-1.41	46.01	191.40	Oc2ncnc1sc3CCC(C)Cc3c12

* Contains: ethanedioate * Contains: HCI

Gable et al.

 Table S6: Tetrahydrodibenzofurans

Fragment ID	R1	R2	KSHV Pr IC ₅₀ (μM)	MW	LE	LogD	LipE	TPSA (Ų)	Molecular Volume (ų)	SMILES
60	°u_O_OH	Н	> 500	246.26	0.25	-0.37	3.57	59.67	218.76	O=C(O)COc1cc2c(cc1)oc3CCCCc 23
61		CH₃	> 500	279.35	0.23	2.23	0.69	59.31	242.92	CS(=O)(=O)Nc1cc2c(cc1C)oc3CC CCc23

 Table S7: Tetrahydrocyclopentaindole

Fragment ID	R1	R2	KSHV Pr IC ₅₀ (μM)	MW	LE	LogD	LipE	TPSA (Ų)	Molecular Volume (Å ³)	SMILES
62	CI	CI	76.0	226.10	0.41	4.05	0.07	15.79	179.66	Clc3ccc1c(nc2CCCc12)c3Cl

[Fragment 30], μM	V _{max} (μM/sec)	K _m (μM)
0.00	(32.69 ± 3.08) x 10 ⁻⁵	11.34 ± 2.33
1.56	(26.39 ± 2.88) x 10 ⁻⁵	9.80 ± 2.49
3.13	(23.86 ± 3.32) x 10 ⁻⁵	12.24 ± 3.58
6.25	(14.05 ± 1.82) x 10 ⁻⁵	6.42 ± 2.40
12.5	(8.87 ± 1.84) x 10 ⁻⁵	8.43 ± 4.39
25.0	(5.84 ± 7.53) x 10 ⁻⁵	23.52 ± 49.27

Table S8: Michaelis-Menten parameters, KSHV Pr, P6R substrate + Fragment 30

Figure S1:

Overlays of the ¹³C/¹H-HSQC spectra of selectively ¹³C-methionine labeled wild-type KSHV Pr in the absence (black) and presence (red) of 25x molar excess of the Table 1 fragments. Loss of intensity of the M197 dimer peak with a concomitant shift of the M197 monomer peak are hallmarks of dimer disruption.

Figure S2:

Overlays of the ¹³C/¹H-HSQC spectra of selectively ¹³C-Isoleucine labeled KSHV Pr Δ 196 in the absence (black) and presence (red) of 20 - 25x molar excess of the Table 1 fragments. Perturbations of the Ile44 and Ile105 methyl group resonances indicate fragment binding at the dimer interface near the hot spot Trp109.

Figure S3A

Figure S3B

Figure S3C

105

110

115

120

125

130

.**L123** 120

212

122

126

128

130

132

7.5

6

105

110

115

120

125

130

120

122 L79

124

126

128

130

132

7.5

24 μM

8.0

~ 24 µM

1 10 KSHV Pr ∆196 no inhibitor [0:1] 1 IV KSHV Pr ∆196 no inhibitor [0:1] 504 µM Fragment 15 [22:1] G151 G151 105 105 105 F10 S185 158 110 110 110 115 115 115 (mqq) (mqq) 15 N ¹⁵N 120 120 120 125 125 125 130 130 130 ø [KSHV Pr Δ196] = ~ 20 μM [KSHV Pr (196] = 10 11 11 10 ģ 9 8 ¹H (ppm) ¹H (ppm) 10.5 10.0 10.5 10.0 9.5 0 562 Ø 120-120 122 22 122 124 124 ¹⁵N (ppm) 124 ¹⁵N (ppm) 126 126 126 128 128 ٥ 128 Ø 60 E66 130 130 0 W156 E1 130 (/156 s1 Ø 0 L115 132 132 132 10.0 9.5 10.5 9.0 8.5 8.0 7.5 9.5 10.5 10.0 9.0 8.5 ¹H (ppm) X = unassigned ¹H (ppm) x = unassigned 6 10 10 1,1 KSHV Pr \triangle 196 no inhibitor [0:1] KSHV Pr \triangle 196 no inhibitor [0:1] G151 G15 105 6 [25:1] 105 105 17 [22:1] 110 110 110 (mdd) N_{SL} 120 115 115 (mdd) N_{S1} 120 120 125 125 125 130 130 130 ٤. . [KSHV Pr ∆196]₀= [KSHV Pr ∆196]₀= 20 µN 11 10 10 8 ¹H (ppm) ¹H (ppm) 10.5 10.0 9.6 10.0 120 0 562 120 122 122 **6** 5136 122 124 ¹⁵N (ppm) 124 ¹⁵N (ppm)

Figure S3D

126

128

130

132

10.5

0

10.0

Ø

9.5

9.0

¹H (ppm)

8.5

8.0

128

130

132

7.5

X = unassigned

126

128

130

132

10.5

6

10.0

00 W156 ε1

() F66

9.0

¹H (ppm)

8.5

8.0

x = una

9.5

Figure S3E

Figures S3A-S3E:

Overlays of the ¹⁵N/¹H-HSQC spectra of uniformly ¹⁵N-labeled KSHV Pr \triangle 196 in the absence (black) and presence (red) of 20 - 25x molar excess of the Table 1 fragments. Top half of each panel: full ¹⁵N/¹H-HSQC spectra with the crowded middle resonances (blue dotted panel) at the inset. The black dotted regions of the spectra are zoomed in the lower half of each panel.

Figure S4:

The structure of monomeric KSHV Pr Δ 196 (PDB: 3NJQ) with the ¹⁵N/¹H^N-HSQC chemical shift perturbations for Fragment **6** indicated by color. Backbone amide resonances which displayed peak broadening upon addition of fragments are indicated in dark gray. Amide backbone nitrogen atoms are shown as colored spheres in (**a**), while surfaces are displayed in (**b**). The catalytic triad (His46, Ser114, and His134) and oxyanion hole (Arg142 and Arg143) residues are highlighted in cyan. Left and right structures are rotated 180° about the vertical axis.

Figure S5:

Backbone ¹⁵N/¹H-HSQC spectra of KSHV Pr \triangle 196 in the absence (black) and presence (colors) of 20-25x molar excess Table 1 Fragments, focusing on the Leu110 backbone amide peak. (A) Apo vs. Fragments 2 - 7, 10, 12, 15, and 17. (B) Apo vs. Fragments 1, 8, 9, 13, 14, 16, and 18. The linear nature of the chemical shift perturbations observed for the Leu110 amide peak are likely influenced more by the rotameric effects of the Trp109 indole conformation than to direct binding interactions with the fragments.

Figure S6:

Chemical shift perturbations (CSP) plotted against (**left**) IC_{50} against KSHV Pr, (**middle**) molecular volume, and (**right**) total polar surface area (TPSA) of the Table 1 Fragments. (**A**) Leu110 backbone amide CSPs. (**B**) Ile44 δ 1-methyl CSPs. (**C**) Ile105 δ 1-methyl CSPs. Table 1 Fragment numbers are indicated. The best correlations are for the molecular volume, indicating that smaller fragments have a larger effect on the CSP, regardless of its chemical scaffold.

Figure S7:

The 1D-STD NMR spectra of Fragments (A) 1, (B) 3, (C) 5, (D) 6, (E) 7, (F) 12, and (G) 19, focusing on the aromatic region of the ¹H spectrum. The top portion of each pair is the off-resonance (control) experiment, while the bottom corresponds to the difference spectrum. The on-resonance pulse was set to 0.9 ppm. Fragment 19 acts as the negative control.

Figure S8:

(a) Overlays of analytical size-exclusion chromatograms of 5 μ M KSHV Pr with 2% DMSO (black) and 30 μ M Fragment 30 (dotted red). The KSHV Pr displays a nearly 1:1 mixture of dimeric and monomeric states under the control conditions. Addition of Fragment 30 shifts the equilibrium to the monomeric state. (b) Dynamic light scattering data for 20 μ M Fragment 30 in enzyme assay buffer indicates no aggregate formation. In the inset is the raw autocorrelation curve. (c) Overlays of the ¹³C/¹H-HSQC spectra of selectively ¹³C-methionine labeled KSHV Pr in the absence (black) and presence (red) of ~25x molar excess of Fragment 30 validate the size-exclusion chromatogram results. (d) Michaelis-Menten binding curves for KSHV Pr + P6R substrate with varying concentrations of Fragment 30, as indicated.

Figure S9:

(a) Overlays of the ${}^{13}C/{}^{1}H$ -HSQC spectra of selectively ${}^{13}C$ -Isoleucine labeled KSHV Pr Δ 196 in the absence (black) and presence (red) of ~ 25x molar excess of Fragment **30** (Table 2). Perturbations of the lle44 and lle105 methyl group resonances indicate fragment binding at the dimer interface near the hot spot Trp109.

(**b**) Overlays of the 15 N/ 1 H-HSQC spectra of of uniformly 15 N-labeled KSHV Pr Δ 196 in the absence (black) and presence (red) of ~ 25x molar excess of Fragment **30** (Table 2). The crowded middle resonances (blue dotted panel) are at the inset.

(c) Zoomed view of the black dotted regions of the spectra from panel (b).

Figure S10:

The structure of monomeric KSHV Pr Δ 196 (PDB: 3NJQ) with the ¹⁵N/¹H^N-HSQC chemical shift perturbations for Fragment **30** indicated by color. Backbone amide resonances which displayed peak broadening upon addition of fragments are indicated in dark gray. Amide backbone nitrogen atoms are shown as colored spheres in (**a**), while surfaces are displayed in (**b**). The catalytic triad (His46, Ser114, and His134) and oxyanion hole (Arg142 and Arg143) residues are highlighted in cyan. Left and right structures are rotated 180° about the vertical axis.

Figure S11:

Overlays of the ¹³C/¹H-HSQC spectra of selectively ¹³C-Isoleucine labeled KSHV Pr \triangle 196 in the absence (black) and presence (red) of ~ 25x molar excess of selected aminothiazole fragments (Table 2) and Fragment **62** (Table S7). Perturbations of the IIe44 and IIe105 methyl group resonances indicate fragment binding at the dimer interface near the hot spot Trp109.

Figure S12B

Figures S12A-S12B:

Overlays of the ¹⁵N/¹H-HSQC spectra of uniformly ¹⁵N-labeled KSHV Pr Δ 196 in the absence (black) and presence (red) of ~ 25x molar excess of selected aminothiazole fragments (Table 2) and Fragment **62** (Table S7). Top half of each panel: full ¹⁵N/¹H-HSQC spectra with the crowded middle resonances (blue dotted panel) at the inset. The black dotted regions of the spectra are zoomed in the lower half of each panel.

Figure S13:

(A) Isoleucine δ 1-methyl and (B) backbone ${}^{15}N/{}^{1}H^{N}$ amide CSPs of KSHV Pr Δ 196 in the presence of 25x molar excess of selected aminothiazole fragments (Table 2). CSPs were calculated from the ${}^{13}C/{}^{1}H$ - and ${}^{15}N/{}^{1}H$ -HSQC spectra appearing in Supporting Figures S9, S11 and S12. The most perturbed backbone amides are highlighted in dotted boxes, and include residues at dimer interface near the hot spot W109, the oxyanion hole, helix 1, and the C-terminus. The largest CSP values for those fragments which demonstrate binding to KSHV Pr are consistently observed for the Leu110 backbone amide, as well as the Ile44 and Ile105 δ 1-methyl groups. Dotted gray lines represent lower CSP thresholds.