SPARSITY-BASED PIXEL SUPER RESOLUTION FOR LENS-FREE DIGITAL IN-LINE HOLOGRAPHY

Jun Song^{1,2}¶, Christine Leon Swisher^{1,3}¶, Hyungsoon Im^{1,3}, Sangmoo Jeong^{1,3}, Divya Pathania^{1,3}, Yoshiko Iwamoto¹, Misha Pivovarov^{1,3}, Ralph Weissleder^{1,3,4}, Hakho Lee^{1,3*}

¹ Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of Amcerica

² School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America.

³ Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America

⁴ Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America

Corresponding author: H. Lee, PhD <u>hlee@mgh.harvard.edu</u>

¶ These authors contributed equally to this work.

SUPPLEMENTARY FIGURES

Noise added to hologram (% of signal range)

Fig. S1. Noise test of the sparsity algorithm. Gaussian noise was added to the original hologram input (left) before the sparsity-based reconstruction. The noise level was varied in proportional to the signal range in the hologram. In this example, the sparsity algorithm tolerated up to 5% of the noise level.

Fig. S2. Reconstruction of an USAF1951 phantom. The test patterns in the red solid box (left) were imaged by the LDIH system, and reconstructed by the diffraction-based (middle) and the sparsity-based (right) algorithms. The sparsity method showed higher resolving power than the diffraction method. The sparsity method resolved all patterns including the smallest feature with the line width of 2.1 μ m.

Reconstructed image in the full field-of-view

Fig. S3. Wide field-of-view imaging. With its unit magnification, the LDIH supports wide field-of-view imaging. We reconstructed >10⁶ microbeads in a single view of 6 mm² (top). The sparsity algorithm was applied to reconstruct a high resolution object image (bottom).