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Figure S1: Size-exclusion chromatography of yeast V-ATPase c-ring in dodecyl, undecyl and decyl 

maltoside. Yeast total membranes were extracted with 0.6 mg DDM per mg of membrane protein and Vo 

was purified using 0.1% DDM in all buffers. Following removal of subunits a and d with LPPG/sarkosyl 

and ammonium sulfate precipitation, c-ring was dialyzed against 0.1% DDM containing buffer. c-ring 

was concentrated to ~2.7 mg/ml. ~2 mg was subjected to size-exclusion chromatography in either 0.02% 

DDM (a), 0.06% UnDM (b) or 0.18% DM (c). Fractions were analyzed by 13% SDS-PAGE and silver 

staining. The detergent content of the fractions was analyzed using thin-layer chromatography in 

chloroform/methanol/water (100:38.5:6.2 v/v) and visualized with iodine vapor. (d) Analysis of c-ring 

using blue native (BN) and high-resolution clear native (hrCN) 3-11% gradient PAGE1. Left gel: 5 µg 

dimeric c-ring purified in UnDM. The negatively charged Coomassie Blue dye and/or the electric field 

leads to partial dissociation of the c-ring dimers. Right gel: 5 µg Vo, 5 µg of dimeric, and ~1 µg of 

monomeric c-ring were analyzed.   
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Figure S2: Schematic of the single-molecule electrophysiology setup. Both the cis and trans sides of 

the chamber contained each 1.5 ml of 10 mM Tris-HCl, pH 8.0, 1 M KCl. The chambers were separated 

by a planar lipid bilayer of 1,2 diphytanoyl-sn-glycero-phosphatidylcholine, which was formed across a 

teflon aperture with a diameter of ~80 µm. Monomeric c-ring, which was extracted and purified in UnDM 

and containing less than 1% detergent, was added to the cis side to a final concentration of ~0.2-0.8 

ng/ml. The cis side was grounded, meaning that a positive current represents positive charge moving from 

the trans to the cis side, as depicted in the schematic. Electrophysiology measurements were conducted as 

described in references 2,3. 
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Figure S3: The c-ring transmembrane 

protein pore of the V-type ATPase shows 

a uniform large-conductance signature. 
(a) Two consecutive single-channel 

insertions of the c-ring monomer recorded at 

a transmembrane potential of +30 mV, 

resulting in 242 pA and 483 pA current 

levels. This electrical recording illustrates 

the uniformity of the single-channel 

conductance of the c-ring transmembrane 

protein pore with a value of ~8 nS; (b) The 

current-voltage profile is represented as 

average over at least three independent 

single-channel experimental determinations. 

This profile reveals a linear relationship 

with a slope of ~8.3 nS, which is consistent 

with an average conductance of 8.33 ± 0.24 

nS (n=66), as derived from different single-

channel determinations at different applied 

transmembrane potentials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure S4: A representative long-lived current blockade with a duration of ~50 s, which was recorded at 

a transmembrane potential of -40mV. These long-lived current blockades were either reversible or 

irreversible. They were not detected at transmembrane potentials of -20 mV or great than this value (e.g., 

-10 mV).  
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Figure S5: Dwell time and current amplitude histograms derived from a typical single-channel 
electrical recording acquired with the c-ring transmembrane protein pore at an applied 
transmembrane potential of -20 mV. (a) A representative dwell-time histogram of the open events. τO = 
616 ± 93 ms. For the fitting approach, we used a logarithmic likelihood ratio (LLR) test with a confidence 
number C=0.954,5. The fitting method was variable metric on the exponential probability function6.  χ2

crit
 = 

5.99,  χ2
1→2 = -1179; (b) A representative dwell-time histogram of the closed events. The fitting of this 

histogram indicated three time constants, τC1 = 1.09 ± 0.04 ms, τC2 = 10.1 ± 0.06 ms, and τC3 = 156.8 ± 
0.17 ms, with the normalized probabilities PC1 = 0.63 ±0.02, PC2 = 0.29 ± 0.01, and PC3 = 0.08 ± 0.01, 
respectively. The fitting method was variable metric on the exponential logarithmic-probability function 
for revealing time constants spanning over a three-order of magnitude range. We used a LLR test with a 
confidence number C=0.95. The correlation coefficient was R = 0.963. χ2

crit
 = 5.99,  χ2

1→2=354.8,  
χ2

2→3=37.90,  χ2
3→4=0.14; (c) A representative current-amplitude histogram fitted with a three-component 

Gaussian, revealing current blockade peaks of IB1 = 73 ± 1 pA, IB2 = 83 ± 1 pA, and IB3 = 100 ± 2 pA with 
the normalized probabilities of PB1 = 0.46 ± 0.05,  PB2 = 0.51 ± 0.09, and PB3 = 0.03 ± 0.02, respectively. 
The events list file was generated from a single-channel electrical trace with a duration of 135.7 s. 
pClamp 10.5 software (Axon Instruments) was used for data analysis after the single-channel traces were 
low-pass Bessel filtered at a frequency of 5 kHz. 
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Figure S6: Dwell time and current amplitude histograms derived from a typical single-channel 
electrical recording acquired with the c-ring transmembrane protein pore at an applied 
transmembrane potential of -40 mV. (a) A representative dwell time histogram of the open events. τO = 
238 ± 20 ms. For the fitting approach, we used a logarithmic likelihood ratio (LLR) test with a confidence 
number C=0.954,5. The fitting method was variable metric on the exponential probability function6.  χ2

crit
 = 

5.99,  χ2
1→2 = 1.7; (b) A representative dwell-time histogram of the closed events. The fitting of this 

histogram indicated three time constants, τC1 = 0.847 ± 0.057 ms, τC2 = 4.80 ± 0.16 ms, and τC3 = 71.20 ± 
0.31 ms. The normalized probabilities were PC1 = 0.82 ± 0.03, PC2 = 0.14 ± 0.02, and PC3 = 0.04 ± 0.01, 
respectively. The fitting method was variable metric on the exponential logarithmic-probability function 
for revealing time constants spanning over a three-order of magnitude range. We used a LLR test with a 
confidence number C=0.95. The correlation coefficient was R = 0.964. χ2

crit
 = 5.99,  χ2

1→2 = 360.5,  χ2
2→3 = 

14.6,  χ2
3→4 = -1.8×10-5; (c) A representative current-amplitude histogram fitted with a three-component 

Gaussian, revealing current blockade peaks of IB1 = 116 ± 1 pA, IB2 = 127 ± 1 pA, and IB3 = 146 ± 7 pA 
with the normalized probabilities of PB1 = 0.31 ± 0.01,  PB2 = 0.50 ± 0.08, and PB3 = 0.19 ± 0.07, 
respectively. The events list file was generated from a single-channel electrical trace with a duration of 
47.7 s. pClamp 10.5 software (Axon Instruments) was used for data analysis after the single-channel 
traces were low-pass Bessel filtered at a frequency of 5 kHz. 
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Figure S7: A representative single-channel 

electrical trace, acquired at a transmembrane 

potential of -50 mV, showing either an 

irreversible (a) or a reversible (b) current 

blockade to the fully-closed sub-state.   

 

 

 

 

 

 

 

 

 

 

Figure S8: Subunit d produced greater amplitudes of the current blockades of the c-ring 

transmembrane protein pore when added at a concentration of 0.45 μM to the cytosolic side. In 

panels (a) and (b), the applied transmembrane potential was +30 and -30 mV, respectively. In (a), a long-

lived current blockade to a lower conductance of ~4.1 nS was observed, which was followed by a full 

current blockade. At -30 mV, c-ring showed an open-state current decorated by frequent current 

blockades of varying amplitudes (Fig. 5b, the main text), but this was permanently and fully blocked by 

0.45 μM d subunit added to the cis (cytosolic) chamber (b).   
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Figure S9: Some examples of single-channel insertions of the purified Vo transmembrane complex in a 

planar lipid membrane indicates some variability in the unitary conductance. The applied transmembrane 

potential was +30 mV. Amplitudes of the single-channel currents were (a) 32, (b) 60, and (c) 96 pA. 
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Figure S10: Amino acid sequence of the cytosolic and vacuolar domains of the yeast V-ATPase 

proteolipids c, c’ and c’’. Surface representation of yeast c-ring. Yeast subunits c (Vma3p), c’ (Vma11p) 

and c’’ (Vma16p) were threaded into the crystal structure of the bacterial homolog from the E. hirae 

sodium V-ATPase (subunit K; 2bl2.pdb7) using the Phyre2 server8. Negatively and positively charged 

residues are highlighted in red and blue, respectively. Mass spectrometry data of intact subunits showed 

that the N-termini of subunit c (Vma3p) are acetylated and therefore carry no charge9. The model 

illustrates a clear asymmetry in the overall positive charge distribution at the cytosolic and vacuolar sites 

of the c-ring. This asymmetric charge distribution likely explains the observed uniform insertion of the c-

ring into the planar lipid bilayer. The single orientation was conserved regardless of the polarity of the 

applied potential. 
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Figure S11: Internal dimensions of the yeast proteolipid c-ring using a molecular surface 

representation. This homology structure was derived using the crystal structure of the bacterial homolog 

from the E. hirae sodium V-ATPase (subunit K; 2bl2.pdb7) and the Phyre2 server8. The horizontal scale 

bar at the midpoint of the pore lumen measures ~3.5 nm.  
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