
Supporting Information for:
Discovering governing equations from data:

Sparse identification of nonlinear dynamical systems

Steven L. Brunton1, Joshua L. Proctor2, J. Nathan Kutz3

1 Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, United States
2Institute for Disease Modeling, Intellectual Ventures Laboratory, Bellevue, WA 98004, United States
3 Department of Applied Mathematics, University of Washington, Seattle, WA 98195, United States

Contents

1 Technical introduction 2

2 Background 3
2.1 Symbolic regression and machine learning . 3
2.2 Sparse representation and compressive sensing . 3

3 Nonlinear system identification using sparse representation 4
3.1 Algorithm for sparse representation of dynamics with noise 6
3.2 Cross-validation to determine parsimonious sparse solution on Pareto front 7
3.3 Extensions and Connections . 7

3.3.1 Discrete-time representation . 7
3.3.2 High-dimensional systems, partial differential equations, and dimensional-

ity reduction . 8
3.3.3 External forcing, bifurcation parameters, and normal forms 8

4 Results 9
4.1 Example 1: Simple illustrative systems . 9

4.1.1 Example 1a: Two-dimensional damped oscillator (linear vs. nonlinear) 9
4.1.2 Example 1b: Three-dimensional linear system 9

4.2 Example 2: Lorenz system (Nonlinear ODE) . 11
4.3 Example 3: Fluid wake behind a cylinder (Nonlinear PDE) 14

4.3.1 Direct numerical simulation . 15
4.3.2 Mean field model . 15
4.3.3 Cubic nonlinearities . 17

4.4 Example 4: Bifurcations and normal forms . 18
4.4.1 Logistic map . 18
4.4.2 Hopf normal form . 19

4.5 Sparse identification of the Lorenz system with time-delay coordinates 20

5 Discussion 22

Appendix A: Choice of basis functions 23

Appendix B: Limitations of the sparse identification framework 25

Appendix C: Identified coefficients of dynamics 29

1

1 Technical introduction

There is a long and fruitful history of modeling dynamics from data, resulting in powerful tech-
niques for system identification [1]. Many of these methods arose out of the need to understand
complex flexible structures, such as the Hubble space telescope or the international space station.
The resulting models have been widely applied in nearly every branch of engineering and applied
mathematics, most notably for model-based feedback control. However, methods for system iden-
tification typically require assumptions on the form of the model, and most often result in linear
dynamics, limiting their effectiveness to small amplitude transient perturbations around a fixed
point of the dynamics [2].

A recent breakthrough in nonlinear system identification has resulted in a new approach to
determine the underlying structure of a nonlinear dynamical system from data [3]. This method
uses symbolic regression to determine dynamics and conservation laws, and it balances the com-
plexity of the model (measured in the number of model terms) with the agreement with data.
The resulting identification algorithm realizes a long-sought goal of the physics and engineering
communities to discover dynamical systems from data. However, the symbolic regression prob-
lem is expensive, does not clearly scale well to large-scale dynamical systems of interest, and may
be prone to over-fitting unless care is taken explicitly balance model complexity with predictive
power. In [3], the Pareto front is used to isolate parsimonious models from a large family of can-
didate models. There are a host of additional techniques for modeling emergent behavior [4] and
the discovery of governing equations from time-series data [5]. These include statistical methods
of automated inference of dynamics [6, 7, 8], and equation-free modeling [9], including empirical
dynamic modeling [10, 11].

In the present work, we re-envision the dynamical system discovery problem from the per-
spective of sparse regression [12, 13, 14] and compressive sensing [15, 16, 17, 18, 19, 20]. In par-
ticular, we leverage the fact that most physical systems have only a few nonlinear terms in the
dynamics, making the right hand side of the equations sparse in a high-dimensional nonlinear
function space. Before the advent of compressive sampling, and related sparsity-promoting meth-
ods, determining the few non-zero terms in a nonlinear dynamical system would have involved
a combinatorial brute-force search, meaning that the methods would not scale to larger problems
with Moore’s law. However, powerful new theory guarantees that the sparse solution may be de-
termined with high-probability using convex methods that do scale favorably with problem size.
The resulting nonlinear model identification inherently balances model complexity (i.e., sparsity
of right hand side dynamics) with accuracy, and the underlying convex optimization algorithms
ensure that the method will be applicable to large-scale problems.

The method described here shares some similarity to the recent dynamic mode decomposition
(DMD), which is a linear dynamic regression [21, 22]. DMD is an example of an equation-free
method [9], since it only relies on measurement data, but not on knowledge of the governing
equations. Recent advances in the extended DMD have developed rigorous connections between
DMD built on nonlinear observable functions and the Koopman operator theory for nonlinear
dynamical systems [21, 23]. However, there is currently no theory for which nonlinear observable
functions to use, so that assumptions must be made on the form of the dynamical system. In
contrast, the method developed here results in a sparse, nonlinear regression that automatically
determines the relevant terms in the dynamical system. The trend to exploit sparsity in dynamical
systems is recent but growing [24, 25, 26, 27, 28, 29, 30]. In this work, promoting sparsity in the
dynamics results in parsimonious natural laws.

2

2 Background

This work combines methods from symbolic regression and sparse representation. Symbolic re-
gression is used to find nonlinear functions describing the relationships between variables and
measured dynamics (i.e., time derivatives). Traditionally, model complexity is balanced with de-
scribing capability using parsimony arguments such as the Pareto front. Here, we use sparse
representation to determine the relevant model terms in an efficient and scalable framework.

2.1 Symbolic regression and machine learning

Symbolic regression involves the determination of a function that relates input–output data, and it
may be viewed as a form of machine learning. Typically, the function is determined using genetic
programming, which is an evolutionary algorithm that builds and tests candidate functions out of
simple building blocks [31]. These functions are then modified according to a set of evolutionary
rules and generations of functions are tested until a pre-determined accuracy is achieved.

Recently, symbolic regression has been applied to data from dynamical systems, and ordinary
differential equations were discovered from measurement data [3]. Because it is possible to overfit
with symbolic regression and genetic programming, a parsimony constraint must be imposed,
and in [3], they accept candidate equations that are at the Pareto front of complexity.

2.2 Sparse representation and compressive sensing

In many regression problems, only a few terms in the regression are important, and a sparse feature
selection mechanism is required. For example, consider data measurements y ∈ Rm that may
be a linear combination of columns from a feature library Θ ∈ Rm×p; the linear combination of
columns is given by entries of the vector ξ ∈ Rp so that:

y = Θξ. (1)

Performing a standard regression to solve for ξ will result in a solution with nonzero contributions
in each element. However, if sparsity of ξ is desired, so that most of the entries are zero, then it is
possible to add an L1 regularization term to the regression, resulting in the LASSO [12, 13, 14]:

ξ = argmin
ξ′

‖Θξ′ − y‖2 + λ‖ξ′‖1. (2)

The parameter λ weights the sparsity constraint. This formulation is closely related to the com-
pressive sensing framework, which allows for the sparse vector ξ to be determined from relatively
few incoherent random measurements [15, 16, 17, 18, 19, 20]. The sparse solution ξ to Eq. 1 may
also be used for sparse classification schemes. Importantly, the compressive sensing and sparse
representation architectures are convex and scale well to large problems, as opposed to brute-force
combinatorial alternatives.

3

3 Nonlinear system identification using sparse representation

In this work, we are concerned with identifying the governing equations that underly a physical
system based on data that may be realistically collected in simulations or experiments. Generically,
we seek to represent the system as a nonlinear dynamical system

ẋ(t) = f(x(t)). (3)

The vector x(t) =
[
x1(t) x2(t) · · · xn(t)

]T ∈ Rn represents the state of the system at time t,
and the nonlinear function f(x(t)) represents the dynamic constraints that define the equations of
motion of the system. In the following sections, we will generalize Eq. (3) to allow the dynamics f
to vary in time, and also with respect to a set of bifurcation parameters µ ∈ Rq.

The key observation in this paper is that for many systems of interest, the function f often
consists of only a few terms, making it sparse in the space of possible functions. For example,
the Lorenz system in Eq. (22c) has very few terms in the space of polynomial functions. Recent
advances in compressive sensing and sparse regression make this viewpoint of sparsity favorable,
since it is now possible to determine which right hand side terms are non-zero without performing
a computationally intractable brute-force search.

To determine the function f from data, we collect a time-history of the state x(t) and either
measure the derivative ẋ(t) or approximate it numerically from x. The data is sampled at several
times t1, t2, · · · , tm and arranged into two large matrices:

X =




xT (t1)
xT (t2)

...
xT (tm)


 =

state−−−−−−−−−−−−−−−−−−−−−−−−→


x1(t1) x2(t1) · · · xn(t1)
x1(t2) x2(t2) · · · xn(t2)

...
...

. . .
...

x1(tm) x2(tm) · · · xn(tm)




y

tim
e

(4a)

Ẋ =




ẋT (t1)
ẋT (t2)

...
ẋT (tm)


 =




ẋ1(t1) ẋ2(t1) · · · ẋn(t1)
ẋ1(t2) ẋ2(t2) · · · ẋn(t2)

...
...

. . .
...

ẋ1(tm) ẋ2(tm) · · · ẋn(tm)


 . (4b)

Next, we construct an augmented library Θ(X) consisting of candidate nonlinear functions of the
columns of X. For example, Θ(X) may consist of constant, polynomial and trigonometric terms:

Θ(X) =


 1 X XP2 XP3 · · · sin(X) cos(X) sin(2X) cos(2X) · · ·


 . (5)

Here, higher polynomials are denoted as XP2 ,XP3 , etc. For example, XP2 denotes the quadratic
nonlinearities in the state variable x, given by:

XP2 =




x21(t1) x1(t1)x2(t1) · · · x22(t1) x2(t1)x3(t1) · · · x2n(t1)
x21(t2) x1(t2)x2(t2) · · · x22(t2) x2(t2)x3(t2) · · · x2n(t2)

...
...

. . .
...

...
. . .

...
x21(tm) x1(tm)x2(tm) · · · x22(tm) x2(tm)x3(tm) · · · x2n(tm)


 . (6)

4

Ẋ ⇥(X)

⌅

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

. (28)

21

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

. (28)

21

1 x y z x2 xy xz y2 z5

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

. (28)

21

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

. (28)

21

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

. (28)

21

ẋ ẏ ż ⇠1 ⇠2 ⇠3

=
Data In

 '' 'xi_1' 'xi_2' 'xi_3'
 '1' [0] [0] [0]
 'x' [-9.9996] [27.9980] [0]
 'y' [9.9998] [-0.9997] [0]
 'z' [0] [0] [-2.6665]
 'xx' [0] [0] [0]
 'xy' [0] [0] [1.0000]
 'xz' [0] [-0.9999] [0]
 'yy' [0] [0] [0]
 'yz' [0] [0] [0]

 'yzzzz' [0] [0] [0]
 'zzzzz' [0] [0] [0]

Sparse Coefficients of Dynamics

tim
e

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

. (28)

21

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

. (28)

21

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

. (28)

21

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

. (28)

21

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

. (28)

21

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

. (28)

21

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

. (28)

21

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

. (28)

21

=

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

. (28)

21

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

. (28)

21

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

. (28)

21

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

. (28)

21

=

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

. (28)

21

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

. (28)

21

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

. (28)

21

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

. (28)

21

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

. (28)

21

⇥(X) =

2
666666666666666664

· · ·

3
777777777777777775

. (27)

⇥(X) =

2
666666666666666664

3
777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

. (28)

21

z xy ⇠3żx y xz ⇠2ẏ⇠1x yẋ

=

III. Identified System

4.2 Example 2: Lorenz system (Nonlinear ODE)

Here, we consider the nonlinear Lorenz system to explore the identification of chaotic dynamics:

ẋ = �(y � x) (18)
ẏ = x(⇢� z) � y (19)
ż = xy � �z. (20)

For this example, we use the standard parameters � = 10, � = 8/3, ⇢ = 28, with an initial condition⇥
x y z

⇤T
=

⇥
�8 7 27

⇤T .

2
4x(t) y(t) z(t) x(t)2 x(t)y(t) x(t)z(t) y(t)2 y(t)z(t) z(t)2 · · ·

3
5 (21)

Full Simulation

0

25

50

z

-20 0 20x -50
0

50
y

Identified System, ⌘ = 0.01

0

25

50

z

-20 0 20x -50
0

50
y

Identified System, ⌘ = 10

0

25

50

z

-20 0 20x -50
0

50
y

0

25

50

z

-20 0 20x -50
0

50
y

0

25

50

z

-20 0 20x -50
0

50
y

0

25

50

z

-20 0 20x -50
0

50
y

Figure 3: Trajectories of the Lorenz system for short-time integration from t = 0 to t = 20 (top)
and long-time integration from t = 0 to t = 250 (bottom). The full dynamics (left) are compared
with the sparse identified systems (middle, right) for various additive noise. The trajectories are
colored by �t, the adaptive Runge-Kutta time step. This color is a proxy for local sensitivity.

10

ẋ = ⇥(xT)⇠1

ẏ = ⇥(xT)⇠2

ż = ⇥(xT)⇠3

II. Sparse Regression to Solve for Active Terms in the Dynamics

4.2 Example 2: Lorenz system (Nonlinear ODE)

Here, we consider the nonlinear Lorenz system to explore the identification of chaotic dynamics:

ẋ = �(y � x) (18)
ẏ = x(⇢� z) � y (19)
ż = xy � �z. (20)

For this example, we use the standard parameters � = 10, � = 8/3, ⇢ = 28, with an initial condition⇥
x y z

⇤T
=

⇥
�8 7 27

⇤T .

2
4x(t) y(t) z(t) x(t)2 x(t)y(t) x(t)z(t) y(t)2 y(t)z(t) z(t)2 · · ·

3
5 (21)

Full Simulation

0

25

50

z

-20 0 20x -50
0

50
y

Identified System, ⌘ = 0.01

0

25

50

z

-20 0 20x -50
0

50
y

Identified System, ⌘ = 10

0

25

50

z

-20 0 20x -50
0

50
y

0

25

50

z

-20 0 20x -50
0

50
y

0

25

50

z

-20 0 20x -50
0

50
y

0

25

50

z

-20 0 20x -50
0

50
y

Figure 3: Trajectories of the Lorenz system for short-time integration from t = 0 to t = 20 (top)
and long-time integration from t = 0 to t = 250 (bottom). The full dynamics (left) are compared
with the sparse identified systems (middle, right) for various additive noise. The trajectories are
colored by �t, the adaptive Runge-Kutta time step. This color is a proxy for local sensitivity.

10

4.2 Example 2: Lorenz system (Nonlinear ODE)

Here, we consider the nonlinear Lorenz system to explore the identification of chaotic dynamics:

ẋ = �(y � x) (18)
ẏ = x(⇢� z) � y (19)
ż = xy � �z. (20)

For this example, we use the standard parameters � = 10, � = 8/3, ⇢ = 28, with an initial condition⇥
x y z

⇤T
=

⇥
�8 7 27

⇤T .

2
4x(t) y(t) z(t) x(t)2 x(t)y(t) x(t)z(t) y(t)2 y(t)z(t) z(t)2 · · ·

3
5 (21)

Full Simulation

0

25

50

z

-20 0 20x -50
0

50
y

Identified System, ⌘ = 0.01

0

25

50

z

-20 0 20x -50
0

50
y

Identified System, ⌘ = 10

0

25

50

z

-20 0 20x -50
0

50
y

0

25

50

z

-20 0 20x -50
0

50
y

0

25

50

z

-20 0 20x -50
0

50
y

0

25

50

z

-20 0 20x -50
0

50
y

Figure 3: Trajectories of the Lorenz system for short-time integration from t = 0 to t = 20 (top)
and long-time integration from t = 0 to t = 250 (bottom). The full dynamics (left) are compared
with the sparse identified systems (middle, right) for various additive noise. The trajectories are
colored by �t, the adaptive Runge-Kutta time step. This color is a proxy for local sensitivity.

10

I. True Lorenz System

M
odel O

ut

Figure 1: Schematic of sparse dynamic representation, demonstrated on the Lorenz equations. Data is col-
lected from measurements of a complex system, including states X = (x, y, z) and derivatives Ẋ = (ẋ, ẏ, ż).
Next, a large collection of nonlinear functions of the states, Θ(X) is constructed. This nonlinear feature
library is used to find the fewest dynamics terms to satisfy Ẋ = Θ(X)Ξ, resulting in a sparse model.

Each column of Θ(X) represents a candidate function for the right hand side of Eq. (3). There
is tremendous freedom of choice in constructing the entries in this matrix of nonlinearities. Since
we believe that only a few of these nonlinearities are active in each row of f , we may set up a
sparse regression problem to determine the sparse vectors of coefficients Ξ =

[
ξ1 ξ2 · · · ξn

]

that determine which nonlinearities are active, as illustrated in Fig. 1.

Ẋ = Θ(X)Ξ. (7)

Each column ξk of Ξ represents a sparse vector of coefficients determining which terms are
active in the right hand side for one of the row equations ẋk = fk(x) in Eq. (3). Once Ξ has been
determined, a model of each row of the governing equations may be constructed as follows:

ẋk = fk(x) = Θ(xT)ξk. (8)

Note that Θ(xT) is a vector of symbolic functions of elements of x, as opposed to Θ(X), which is
a data matrix. This results in the overall model

ẋ = f(x) = ΞT (Θ(xT))T . (9)

We may solve for Ξ in Eq. (7) using sparse regression. In many cases, we may need to normal-
ize the columns of Θ(X) first to ensure that the restricted isometry property holds [24]; this is
especially important when the entries in X are small, since powers of X will be minuscule.

5

3.1 Algorithm for sparse representation of dynamics with noise

There are a number of algorithms to determine sparse solutions Ξ to the regression problem in
Eq. (7). Each column of Eq. (7) requires a distinct optimization problem to find the sparse vector
of coefficients ξk for the kth row equation.

For the examples in this paper, the matrix Θ(X) has dimensions m× p, where p is the number
of candidate nonlinear functions, and where m � p since there are more time samples of data
than there are candidate nonlinear functions. Realistically, often only the data X is available, and
Ẋ must be approximated numerically, as in the examples below. Thus, both X and Ẋ will be
contaminated with noise so that Eq. (7) does not hold exactly. Instead,

Ẋ = Θ(X)Ξ + ηZ, (10)

where Z is a matrix of independent identically distributed Gaussian entries with zero mean, and
η is the noise magnitude. Thus we seek a sparse solution to an overdetermined system with noise.

The LASSO [12, 14] from statistics works well with this type of data, providing a sparse re-
gression. However, it may be computationally expensive for very large data sets.

An alternative is to implement the sequential thresholded least-squares algorithm in Code (1).
In this algorithm, we start with a least-squares solution for Ξ and then threshold all coefficients
that are smaller than some cutoff value λ. Once the indices of the remaining non-zero coefficients
are identified, we obtain another least-squares solution for Ξ onto the remaining indices. These
new coefficients are again thresholded using λ, and the procedure is continued until the non-zero
coefficients converge. This algorithm is computationally efficient, and it rapidly converges to a
sparse solution in a small number of iterations. The algorithm also benefits from simplicity, with
a single parameter λ required to determine the degree of sparsity in Ξ.

Depending on the noise, it may be necessary to filter X and Ẋ before solving for Ξ. In many
of the examples below, only the data X is available, and Ẋ is obtained by differentiation. To
counteract differentiation error, we use the total variation regularized derivative [32] to de-noise
the derivative; this is based on the total variation regularization [33]. This works quite well when
only state data X is available, as illustrated on the Lorenz system in Fig. 7. Alternatively, the
data X and Ẋ may be filtered, for example using the optimal hard threshold for singular values
described in [34]. It is important to note that previous algorithms to identify dynamics from data
have been quite sensitive to noise [3, 24]. The algorithm in Code 1 is remarkably robust to noise,
even when derivatives must be approximated from noisy data.

Code 1: Sparse representation algorithm in Matlab.

%% compute Sparse regression: sequential least squares
Xi = Theta\dXdt; % initial guess: Least-squares

% lambda is our sparsification knob.
for k=1:10

smallinds = (abs(Xi)<lambda); % find small coefficients
Xi(smallinds)=0; % and threshold
for ind = 1:n % n is state dimension

biginds = ˜smallinds(:,ind);
% Regress dynamics onto remaining terms to find sparse Xi
Xi(biginds,ind) = Theta(:,biginds)\dXdt(:,ind);

end
end

6

3.2 Cross-validation to determine parsimonious sparse solution on Pareto front

To determine the sparsification parameter λ in the algorithm in Code (1), it is helpful to use the
concept of cross-validation from machine learning. It is always possible to hold back some test
data apart from the training data to test the validity of models away from training values. In
addition, it is important to consider the balance of model complexity (given by the number of
nonzero coefficients in Ξ) with the model accuracy. There is an “elbow” in the curve of accuracy
vs. complexity parameterized by λ, the so-called Pareto front. This value of λ represents a good
tradeoff between complexity and accuracy, and it is similar to the approach taken in [3].

3.3 Extensions and Connections

There are a number of extensions to the basic theory above that generalize this approach to a
broader set of problems. First, the method is generalized to a discrete-time formulation, establish-
ing a connection with the dynamic mode decomposition (DMD). Next, high-dimensional systems
obtained from discretized partial differential equations are considered, extending the method to
incorporate dimensionality reduction techniques to handle big data. Finally, the sparse regression
framework is modified to include bifurcation parameters, time-dependence, and external forcing.

3.3.1 Discrete-time representation

The aforementioned strategy may also be implemented on discrete-time dynamical systems:

xk+1 = f(xk). (11)

There are a number of reasons to implement Eq. (11). First, many systems, such as the logistic
map in Eq. (26) are inherently discrete-time systems. In addition, it may be possible to recover
specific integration schemes used to advance Eq. (3). The discrete-time formulation also foregoes
the calculation of a derivative from noisy data. The data collection will now involve two matrices
Xm−1

1 and Xm
2 :

Xm−1
1 =




xT1
xT2
...

xTm−1


 , Xm

2 =




xT2
xT3
...

xTm


 . (12)

The continuous-time sparse regression problem in Eq. (7) now becomes:

Xm
2 = Θ(Xm−1

1)Ξ (13)

and the function f is the same as in Eq. (9).
In the discrete setting in Eq. (11), and for linear dynamics, there is a striking resemblance to

dynamic mode decomposition. In particular, if Θ(x) = x, so that the dynamical system is linear,
then Eq. (13) becomes

Xm
2 = Xm−1

1 Ξ =⇒ (Xm
2)T = ΞT

(
Xm−1

1

)T
. (14)

This is equivalent to the DMD, which seeks a dynamic regression onto linear dynamics ΞT . In
particular, ΞT is n×n dimensional, which may be prohibitively large for a high-dimensional state
x. Thus, DMD identifies the dominant terms in the eigendecomposition of ΞT .

7

3.3.2 High-dimensional systems, partial differential equations, and dimensionality reduction

Often, the physical system of interest may be naturally represented by a partial differential equa-
tion (PDE) in a few spatial variables. If data is collected from a numerical discretization or from
experimental measurements on a spatial grid, then the state dimension n may be prohibitively
large. For example, in fluid dynamics, even simple two-dimensional and three-dimensional flows
may require tens of thousands up to billions of variables to represent the discretized system.

The method described above is prohibitive for a large state dimension n, both because of the
factorial growth of Θ in n and because each of the n row equations in Eq. (8) requires a separate op-
timization. Fortunately, many high-dimensional systems of interest evolve on a low-dimensional
manifold or attractor that may be well-approximated using a dimensionally reduced low-rank ba-
sis Ψ. For example, if data X is collected for a high-dimensional system as in Eq. (4a), it is possible
to obtain a low-rank approximation using the singular value decomposition (SVD):

XT = ΨΣV∗. (15)

In this case, the state x may be well approximated in a truncated modal basis Ψr, given by the first
r columns of Ψ from the SVD:

x ≈ Ψra, (16)

where a is an r-dimensional vector of mode coefficients. We assume that this is a good approxi-
mation for a relatively low rank r. Thus, instead of using the original high-dimensional state x, it
is possible to obtain a sparse representation of the Galerkin projected dynamics fP in terms of the
coefficients a:

ȧ = fP (a). (17)

There are many choices for a low-rank basis, including proper orthogonal decomposition (POD) [35,
36], based on the SVD.

3.3.3 External forcing, bifurcation parameters, and normal forms

It is also possible to identify normal forms associated with a bifurcation parameter µ by suspend-
ing the parameter as:

ẋ = f(x;µ) (18a)
µ̇ = 0. (18b)

Here we consider the bifurcation parameter µ as a variable with zero time derivative. It is then
possible to identify the right hand side f(x;µ) as a sparse combination of functions of compo-
nents in x as well as the bifurcation parameter µ. This idea is illustrated on two examples, the
one-dimensional logistic map and the two-dimensional Hopf normal form. This is an important
generalization, since it is now possible to identify a normal form from data, allowing for the pre-
diction of bifurcation phenomena and dynamic unfoldings [2].

Similarly, time-dependence may be added to the vector field by suspending the time variable:

ẋ = f(x, t) (19a)
ṫ = 1. (19b)

This includes both time-varying vector fields as well as external forcing terms.

8

4 Results

The methods described in Sec. 3 to identify governing equations from data are now demonstrated
on a number of example systems of varying complexity. The first example illustrates the method
on simple systems including a comparison of two-dimensional linear vs. nonlinear damped os-
cillators, as well as a three-dimensional stable linear system. In the second example, the chaotic
Lorenz system is investigated, and the sparse identification algorithm accurately reproduces the
form of the governing equations, and hence the attractor dynamics. The third example demon-
strates the extension of this method to nonlinear partial differential equations (PDEs) by investi-
gating the fluid flow past a circular cylinder at Reynolds number 100. In this example, data from
direct numerical simulation of the Navier-Stokes equations are used to obtain a low-dimensional
proper orthogonal decomposition (POD) subspace. In POD coordinates, the identified system ac-
curately captures limit cycle dynamics as well as transients. Importantly, the identified nonlinear
terms are quadratic, which is consistent with the form of the Navier-Stokes equations; thus the
mean-field model captures the subtle slow-manifold dynamics of the system. In the fourth exam-
ple, normal forms are identified for both the logistic map and the Hopf normal form; in both cases,
the model is correctly parameterized. The examples in Sections 4.2-4.4 approximate derivatives ẋ
from noisy state measurements x using the total-variation regularized derivative [32].

4.1 Example 1: Simple illustrative systems

4.1.1 Example 1a: Two-dimensional damped oscillator (linear vs. nonlinear)

In this example, we consider the two-dimensional damped harmonic oscillator with either linear
dynamics, as in Eq. (20b), or with cubic dynamics, as in Eq. (20b). The dynamic data and the
sparse identified model are shown in Fig. 2. The correct form of the nonlinearity is obtained in
each case; the augmented nonlinear library Θ(x) includes polynomials in x up to fifth order. The
sparse identified model and algorithm parameters are shown in the Appendix in Tables 6 and 7.

d

dt

[
x
y

]
=

[
−0.1 2
−2 −0.1

] [
x
y

]
(20a)

d

dt

[
x
y

]
=

[
−0.1 2
−2 −0.1

] [
x3

y3

]
(20b)

4.1.2 Example 1b: Three-dimensional linear system

A linear system with three variables and the sparse approximation are shown in Fig. 3. In this
case, the dynamics are given by

d

dt



x
y
z


 =



−0.1 −2 0

2 −0.1 0
0 0 −0.3





x
y
z


 . (21)

The sparse identification algorithm correctly identifies the system in the space of polynomials up
to second or third order, and the sparse model is given in Table 8. Interestingly, including poly-
nomial terms of higher order (e.g. orders 4 or 5) introduces a degeneracy in the sparse identifica-
tion algorithm, because linear combinations of powers of eλt may approximate other exponential
rates. This unexpected degeneracy motivates a hierarchical approach to identification, where sub-
sequently higher order terms are included until the algorithm either converges or diverges.

9

Linear System Cubic Nonlinearity

 ��������

0 5 10 15 20 25
-2

0

2
x2

x1

model

Time

xk

0 5 10 15 20 25
-2

0

2

Time

xk

 ��������

-2 0 2
-2

0

2
xk
model

x1

x2

-2 0 2
-2

0

2

x1

x2

Figure 2: Comparison of linear system (left) against system with cubic nonlinearity (right). The sparse
identified system correctly identifies the form of the dynamics and accurately reproduces the phase por-
traits.

0 25 50
-2

0

2

Time

xk

-2
0

2 -2
0

2
0

0.5

1

x1 x2

x3

Figure 3: Three-dimensional linear system (solid colored lines) is well-captured by sparse identified system
(dashed black line).

10

Figure 2: Comparison of linear system (left) against system with cubic nonlinearity (right). The sparse
identified system correctly identifies the form of the dynamics and accurately reproduces the phase por-
traits.

Linear System Cubic Nonlinearity

 ��������

0 5 10 15 20 25
-2

0

2
x2

x1

model

Time

xk

0 5 10 15 20 25
-2

0

2

Time

xk

 ��������

-2 0 2
-2

0

2
xk
model

x1

x2

-2 0 2
-2

0

2

x1

x2

Figure 2: Comparison of linear system (left) against system with cubic nonlinearity (right). The sparse
identified system correctly identifies the form of the dynamics and accurately reproduces the phase por-
traits.

0 25 50
-2

0

2

Time

xk

-2
0

2 -2
0

2
0

0.5

1

x1 x2

x3

Figure 3: Three-dimensional linear system (solid colored lines) is well-captured by sparse identified system
(dashed black line).

10

Figure 3: Three-dimensional linear system (solid colored lines) is well-captured by sparse identified system
(dashed black line).

10

4.2 Example 2: Lorenz system (Nonlinear ODE)

Here, we consider the nonlinear Lorenz system [37] to explore the identification of chaotic dynam-
ics evolving on an attractor:

ẋ = σ(y − x) (22a)
ẏ = x(ρ− z)− y (22b)
ż = xy − βz. (22c)

For this example, we use the standard parameters σ = 10, β = 8/3, ρ = 28, with an initial condition[
x y z

]T
=
[
−8 7 27

]T . Data is collected from t = 0 to t = 100 with a time-step of ∆t = 0.001.
The system is identified in the space of polynomials in (x, y, z) up to fifth order:

Θ(X) =


x(t) y(t) z(t) x(t)2 x(t)y(t) x(t)z(t) y(t)2 y(t)z(t) z(t)2 · · · z(t)5


 . (23)

To explore the effect of noisy derivatives in a controlled setting, we add zero-mean Gaussian mea-
surement noise with variance η to the exact derivatives. The short-time (t = 0 to t = 20) and
long-time (t = 0 to t = 250) system reconstruction is shown in Fig. 4 for two different noise values,
η = 0.01 and η = 10. The trajectories are also shown in dynamo view in Fig. 5, and the `2 error vs.
time for increasing noise η is shown in Fig. 6. Although the `2 error increases for large noise val-
ues η, the form of the equations, and hence the attractor dynamics, are accurately captured. The
system has a positive Lyapunov exponent, and small differences in model coefficients or initial
conditions grow exponentially, until saturation, even though the attractor remains intact.

4.2 Example 2: Lorenz system (Nonlinear ODE)

Here, we consider the nonlinear Lorenz system [40] to explore the identification of chaotic dynam-
ics evolving on an attractor:

ẋ = �(y � x) (22a)
ẏ = x(⇢� z) � y (22b)
ż = xy � �z. (22c)

For this example, we use the standard parameters � = 10, � = 8/3, ⇢ = 28, with an initial condition⇥
x y z

⇤T
=

⇥
�8 7 27

⇤T . Data is collected from t = 0 to t = 100 with a time-step of �t = 0.001.
The system is identified in the space of polynomials in (x, y, z) up to fifth order:

⇥(X) =

2
4x(t) y(t) z(t) x(t)2 x(t)y(t) x(t)z(t) y(t)2 y(t)z(t) z(t)2 · · · z(t)5

3
5 . (23)

To explore the effect of noisy derivatives in a controlled setting, we add zero-mean Gaussian mea-
surement noise with variance ⌘ to the exact derivatives. The short-time (t = 0 to t = 20) and
long-time (t = 0 to t = 250) system reconstruction is shown in Fig. 4 for two different noise values,
⌘ = 0.01 and ⌘ = 10. The trajectories are also shown in dynamo view in Fig. 5, and the `2 error vs.
time for increasing noise ⌘ is shown in Fig. 6. Although the `2 error increases for large noise val-
ues ⌘, the form of the equations, and hence the attractor dynamics, are accurately captured. The
system has a positive Lyapunov exponent, and small differences in model coefficients or initial
conditions grow exponentially, until saturation, even though the attractor remains intact.

Full Simulation

0

25

50

z

-20 0 20x -50
0

50
y

Identified System, ⌘ = 0.01

0

25

50

z

-20 0 20x -50
0

50
y

Identified System, ⌘ = 10

0

25

50

z

-20 0 20x -50
0

50
y

0

25

50

z

-20 0 20x -50
0

50
y

0

25

50

z

-20 0 20x -50
0

50
y

0

25

50

z

-20 0 20x -50
0

50
y

Figure 4: Trajectories of the Lorenz system for short-time integration from t = 0 to t = 20 (top) and long-
time integration from t = 0 to t = 250 (bottom). The full dynamics (left) are compared with the sparse
identified systems (middle, right) for various additive noise, assuming measurements of x and ẋ. The
trajectories are colored by �t, the adaptive Runge-Kutta time step. This color is a proxy for local sensitivity.

11

Figure 4: Trajectories of the Lorenz system for short-time integration from t = 0 to t = 20 (top) and long-
time integration from t = 0 to t = 250 (bottom). The full dynamics (left) are compared with the sparse
identified systems (middle, right) for various additive noise, assuming measurements of x and ẋ. The
trajectories are colored by ∆t, the adaptive Runge-Kutta time step. This color is a proxy for local sensitivity.

11

0 5 10 15 20
-30

0

30

x

⌘ = 0.01

0 5 10 15 20
-30

0

30

x

⌘ = 10

0 5 10 15 20
-30

0

30

y

Time
0 5 10 15 20

-30

0

30

y

Time

Figure 5: Dynamo view of trajectories of the Lorenz system for the illustrative case where x and ẋ are
measured with noise. The exact system is shown in black (�) and the sparse identified system is shown in
the dashed red arrow (��).

Measuring x and ẋ Measuring x and computing derivatives

0 5 10 15 20
10�8

10�6

10�4

10�2

100

102

Time

Er
ro

r

Increasing ⌘

0 5 10 15 20
10�4

10�3

10�2

10�1

100

101

102

Time

Er
ro

r

Figure 6: Error vs. time for sparse identified systems generated from data with increasing noise mag-
nitude ⌘. When x and ẋ are measured, then noise is added to the derivative (left). This error corre-
sponds to the difference between solid black and dashed red curves in Fig. 5. Sensor noise values are
⌘ 2 {0.0001, 0.001, 0.01, 0.1, 1.0, 10.0}. When only x is measured, noise is added to the state, and the deriva-
tives ẋ are computed using the total variation regularized derivative [34] (right). In this case, the largest
noise magnitude ⌘ = 10.0 is omitted, because the approximation fails.

12

Figure 5: Dynamo view of trajectories of the Lorenz system for the illustrative case where x and ẋ are
measured with noise. The exact system is shown in black (−) and the sparse identified system is shown in
the dashed red arrow (−−).

0 5 10 15 20
-30

0

30

x

⌘ = 0.01

0 5 10 15 20
-30

0

30

x

⌘ = 10

0 5 10 15 20
-30

0

30

y

Time
0 5 10 15 20

-30

0

30

y

Time

Figure 5: Dynamo view of trajectories of the Lorenz system for the illustrative case where x and ẋ are
measured with noise. The exact system is shown in black (�) and the sparse identified system is shown in
the dashed red arrow (��).

Measuring x and ẋ Measuring x and computing derivatives

0 5 10 15 20
10�8

10�6

10�4

10�2

100

102

Time

Er
ro

r

Increasing ⌘

0 5 10 15 20
10�4

10�3

10�2

10�1

100

101

102

Time

Er
ro

r

Figure 6: Error vs. time for sparse identified systems generated from data with increasing noise mag-
nitude ⌘. When x and ẋ are measured, then noise is added to the derivative (left). This error corre-
sponds to the difference between solid black and dashed red curves in Fig. 5. Sensor noise values are
⌘ 2 {0.0001, 0.001, 0.01, 0.1, 1.0, 10.0}. When only x is measured, noise is added to the state, and the deriva-
tives ẋ are computed using the total variation regularized derivative [34] (right). In this case, the largest
noise magnitude ⌘ = 10.0 is omitted, because the approximation fails.

12

Figure 6: Error vs. time for sparse identified systems generated from data with increasing noise mag-
nitude η. When x and ẋ are measured, then noise is added to the derivative (left). This error corre-
sponds to the difference between solid black and dashed red curves in Fig. 5. Sensor noise values are
η ∈ {0.0001, 0.001, 0.01, 0.1, 1.0, 10.0}. When only x is measured, noise is added to the state, and the deriva-
tives ẋ are computed using the total variation regularized derivative [32] (right). In this case, the largest
noise magnitude η = 10.0 is omitted, because the approximation fails.

12

 ‘xi_1’ ‘xi_2’ ‘xi_3’
‘x’ [-9.9614] [27.5343] [0]
‘y’ [9.9796] [-0.8038] [0]
‘z’ [0] [0] [-2.6647]
‘xx’ [0] [0] [0]
‘xy’ [0] [0] [1.0003]
‘xz’ [0] [-0.9900] [0]

Noisy
Measurements

Computed
Derivatives

SINDy

x ẋ

ẏ

żz

y

x

y

xy

z
TVdiff

Figure 7: SINDy procedure when only noisy state measurements are available for the Lorenz
system. Gaussian noise with σ = 1 is added to the state, and derivatives are computed using
the total variation derivative [32]. The exact system without noise is shown in red, and the noisy
measurements and approximated derivatives are shown in black.

Next, we explore the SINDy algorithm on the Lorenz equation when only noisy measurements
of the state x are available. Gaussian noise with variance η is added to the state x, and derivatives
ẋ are computed using the total-variation regularized derivative [32]. This procedure is illustrated
for a relatively large noise magnitude η = 1.0 in Fig. 7. The correct terms are identified, and the
attractor is captured by these sparse identified dynamics. A systematic investigation for varying
η is shown in the right panel of Fig. 6. Again, the `2 error rapidly grows because of the chaotic
nature of the Lorenz attractor, so that individual trajectories rapidly diverge. However, even for
large noise magnitudes, the attractor dynamics are captured.

We also explore the ability to capture the attractor dynamics using time-delay coordinates
when incomplete measurements are taken. This extension is presented in Section 4.5.

13

4.3 Example 3: Fluid wake behind a cylinder (Nonlinear PDE)

Here we demonstrate the generalization of the sparse dynamics method to partial differential
equations (PDEs). Data is collected for the fluid flow past a cylinder at Reynolds number 100 using
direct numerical simulations of the two-dimensional Navier-Stokes equations [38, 39]. Then, the
dynamic relationship between low-rank coherent structures is determined.

The low-Reynolds number flow past a cylinder is a particularly interesting example because
of its rich history in fluid mechanics and dynamical systems. It has long been theorized that
turbulence may be the result of a sequence of Hopf bifurcations that occur as the Reynolds number
of the flow increases [40]. The Reynolds number is a rough measure of the ratio of inertial and
viscous forces, and an increasing Reynolds number may correspond, for example, to increasing
flow velocity, giving rise to more rich and intricate structures in the fluid.

It took roughly 15 years to find the first Hopf bifurcation in fluid mechanics, in the transition
from a laminar steady wake to laminar periodic vortex shedding behind a cylinder at Reynolds
number 47 [41, 42]. This discovery led to another long-standing debate about how a Hopf bi-
furcation, with cubic nonlinearity, can be exhibited in a Navier-Stokes fluid with quadratic non-
linearities. After 15 more years, this issue was finally resolved using a separation of time-scales
argument and a mean-field model [43]. It was demonstrated that coupling between oscillatory
wake modes with the base flow gives rise to a slow manifold (see Fig. 8), and this slow manifold
produces algebraic terms that approximate cubic nonlinearities on slow timescales.

This example provides a compelling test-case for the proposed algorithm, since the under-
lying form of the dynamics took nearly three decades to uncover. Indeed, the sparse dynam-
ics algorithm identifies the on-attractor and off-attractor dynamics using quadratic nonlinearities
and reproduces a parabolic slow manifold. It is interesting to note that when the off-attractor
trajectories are not included in the system identification, the algorithm incorrectly identifies the
dynamics using cubic nonlinearities, and fails to correctly identify the dynamics associated with
the shift mode, which connects the mean flow to the unstable steady state.

4.3 Example 3: Fluid wake behind a cylinder (Nonlinear PDE)

Here we demonstrate the generalization of the sparse dynamics method to partial differential
equations (PDEs). Data is collected for the fluid flow past a cylinder at Reynolds number 100 using
direct numerical simulations of the two-dimensional Navier-Stokes equations [44, 45]. Then, the
dynamic relationship between low-rank coherent structures is determined.

The low-Reynolds number flow past a cylinder is a particularly interesting example because
of its rich history in fluid mechanics and dynamical systems. It has long been theorized that
turbulence may be the result of a sequence of Hopf bifurcations that occur as the Reynolds number
of the flow increases [46]. The Reynolds number is a rough measure of the ratio of inertial and
viscous forces, and an increasing Reynolds number may correspond, for example, to increasing
flow velocity, giving rise to more rich and intricate structures in the fluid.

It took roughly 15 years to find the first Hopf bifurcation in fluid mechanics, in the transition
from a laminar steady wake to laminar periodic vortex shedding behind a cylinder at Reynolds
number 47 [47, 48, 49]. This discovery led to another long-standing debate about how a Hopf
bifurcation, with cubic nonlinearity, can be exhibited in a Navier-Stokes fluid with quadratic non-
linearities. After 15 more years, this issue was finally resolved using a separation of time-scales
argument and a mean-field model [50]. It was demonstrated that coupling between oscillatory
wake modes with the base flow gives rise to a slow manifold (see Fig. 8), and this slow manifold
produces algebraic terms that approximate cubic nonlinearities on slow timescales.

This example provides a compelling test-case for the proposed algorithm, since the under-
lying form of the dynamics took nearly three decades to uncover. Indeed, the sparse dynam-
ics algorithm identifies the on-attractor and off-attractor dynamics using quadratic nonlinearities
and reproduces a parabolic slow manifold. It is interesting to note that when the off-attractor
trajectories are not included in the system identification, the algorithm incorrectly identifies the
dynamics using cubic nonlinearities, and fails to correctly identify the dynamics associated with
the shift mode, which connects the mean flow to the unstable steady state.

x y

z

C

A

B

Limit cycle
A - vortex shedding

B - mean flow

C - unstable fixed point

ux - POD mode 1

uy - POD mode 2

uz - shift mode

Slow
manifold

-1 0 1 2 3 4 5 6 7 8
-2
-1
0
1
2

Figure 8: Illustration of the low-rank dynamics underlying the periodic vortex shedding behind a circular
cylinder at low Reynolds number, Re = 100.

14

Figure 8: Illustration of the low-rank dynamics underlying the periodic vortex shedding behind a circular
cylinder at low Reynolds number, Re = 100.

14

4.3.1 Direct numerical simulation

The direct numerical simulation involves a fast multi-domain immersed boundary projection
method [38, 39]. Four grids are used, each with a resolution of 450 × 200, with the finest grid
having dimensions of 9× 4 cylinder diameters and the largest grid having dimensions of 72× 32
diameters. The finest grid has 90,000 points, and each subsequent coarser grid has 67,500 distinct
points. Thus, if the state includes the vorticity at each grid point, then the state dimension is
292,500. The vorticity field on the finest grid is shown in Fig. 8. The code is non-dimensionalized
so that the cylinder diameter and free-stream velocity are both equal to one: D = 1 and U∞ = 1,
respectively. The simulation time-step is ∆t = 0.02 non dimensional time units.

4.3.2 Mean field model

To develop a mean-field model for the cylinder wake, first we must reduce the dimension of
the system. The proper orthogonal decomposition (POD) [36], provides a low-rank basis that is
optimal in the L2 sense; for fluid velocity fields, the POD results in a hierarchy of orthonormal
modes that, when truncated, capture the most energy of the original system for the given rank
truncation. The first two most energetic POD modes capture a significant portion of the energy;
the steady-state vortex shedding is a limit cycle in these coordinates. An additional mode, called
the shift mode, is included to capture the transient dynamics connecting the unstable steady state
with the mean of the limit cycle [43].

4.3.1 Direct numerical simulation

The direct numerical simulation involves a fast multi-domain immersed boundary projection
method [44, 45]. Four grids are used, each with a resolution of 450 ⇥ 200, with the finest grid
having dimensions of 9 ⇥ 4 cylinder diameters and the largest grid having dimensions of 72 ⇥ 32
diameters. The finest grid has 90,000 points, and each subsequent coarser grid has 67,500 distinct
points. Thus, if the state includes the vorticity at each grid point, then the state dimension is
292,500. The vorticity field on the finest grid is shown in Fig. 8. The code is non-dimensionalized
so that the cylinder diameter and free-stream velocity are both equal to one: D = 1 and U1 = 1,
respectively. The simulation time-step is �t = 0.02 non dimensional time units.

4.3.2 Mean field model

To develop a mean-field model for the cylinder wake, first we must reduce the dimension of
the system. The proper orthogonal decomposition (POD) [36], provides a low-rank basis that is
optimal in the L2 sense; for fluid velocity fields, the POD results in a hierarchy of orthonormal
modes that, when truncated, capture the most energy of the original system for the given rank
truncation. The first two most energetic POD modes capture a significant portion of the energy;
the steady-state vortex shedding is a limit cycle in these coordinates. An additional mode, called
the shift mode, is included to capture the transient dynamics connecting the unstable steady state
with the mean of the limit cycle [50].

-200
0

200-200
0

200-150

-75

0

x
y

z

Full Simulation

-200
0

200-200
0

200-150

-75

0

x
y

z

Identified System

Figure 9: Evolution of the cylinder wake trajectory in reduced coordinates. The full simulation (left) comes
from direct numerical simulation of the Navier-Stokes equations, and the identified system (right) captures
the dynamics on the slow manifold. Color indicates simulation time.

In the three-dimensional coordinate system described above, the mean-field model for the
cylinder dynamics are given by:

ẋ = µx � !y + Axz (24a)
ẏ = !x + µy + Ayz (24b)
ż = ��(z � x2 � y2). (24c)

If � is large, so that the z-dynamics are fast, then the mean flow rapidly corrects to be on the (slow)
manifold z = x2 +y2 given by the amplitude of vortex shedding. When substituting this algebraic
relationship into Eqs. 24a and 24b, we recover the Hopf normal form on the slow manifold.

15

Figure 9: Evolution of the cylinder wake trajectory in reduced coordinates. The full simulation (left) comes
from direct numerical simulation of the Navier-Stokes equations, and the identified system (right) captures
the dynamics on the slow manifold. Color indicates simulation time.

In the three-dimensional coordinate system described above, the mean-field model for the
cylinder dynamics are given by:

ẋ = µx− ωy +Axz (24a)
ẏ = ωx+ µy +Ayz (24b)
ż = −λ(z − x2 − y2). (24c)

If λ is large, so that the z-dynamics are fast, then the mean flow rapidly corrects to be on the (slow)
manifold z = x2 +y2 given by the amplitude of vortex shedding. When substituting this algebraic
relationship into Eqs. 24a and 24b, we recover the Hopf normal form on the slow manifold.

15

Remarkably, similar dynamics are discovered by the sparse dynamics algorithm, purely from
data collected from simulations. The identified model coefficients, shown in Table 10, only include
quadratic nonlinearity, consistent with the Navier-Stokes equations. Moreover, the transient be-
havior, shown in Figs. 10 and 11, is captured qualitatively for solutions that do not start on the
slow manifold. When the off-attractor dynamics in Fig. 10 are not included in the training data,
then the model only recovers a simple Hopf normal form in x and y with cubic terms, but does not
correctly identify the slow-manifold with quadratic nonlinearities. Note that time derivatives of
the POD coefficients are approximated numerically using a fourth order central difference scheme.

The data from Fig. 11 was not included in the training data, and although qualitatively similar,
the identified model does not exactly reproduce the transients. Since this initial condition had
twice the fluctuation energy in the x and y directions, the slow manifold approximation may not
be valid here. Finally, reducing the sparsifying parameter λ, it is possible to obtain models that
agree almost perfectly with the data in Figs. 9-11, although the model will then include higher
order nonlinearities; this is discussed in Sec. 4.3.3.

Remarkably, similar dynamics are discovered by the sparse dynamics algorithm, purely from
data collected from simulations. The identified model coefficients, shown in Table 9, only include
quadratic nonlinearity, consistent with the Navier-Stokes equations. Moreover, the transient be-
havior, shown in Figs. 10 and 11, is captured qualitatively for solutions that do not start on the
slow manifold. When the off-attractor dynamics in Fig. 10 are not included in the training data,
then the model only recovers a simple Hopf normal form in x and y with cubic terms, but does not
correctly identify the slow-manifold with quadratic nonlinearities. Note that time derivatives of
the POD coefficients are approximated numerically using a fourth order central difference scheme.

The data from Fig. 11 was not included in the training data, and although qualitatively similar,
the identified model does not exactly reproduce the transients. Since this initial condition had
twice the fluctuation energy in the x and y directions, the slow manifold approximation may not
be valid here. Finally, reducing the sparsifying parameter �, it is possible to obtain models that
agree almost perfectly with the data in Figs. 9-11, although the model will then include higher
order nonlinearities; this is discussed in Sec. 4.3.3.

-200
0

200-200
0

200-150

-75

0

x
y

z

Full Simulation

-200
0

200-200
0

200-150

-75

0

x
y

z

Identified System

Figure 10: Evolution of the cylinder wake trajectory starting from a flow state initialized at the mean of
the steady-state limit cycle. Both the full simulation and sparse model capture the off-attractor dynamics,
characterized by rapid attraction of the trajectory onto the slow manifold.

-200
0

200-200
0

200
-50

0

50

x
y

z

Full Simulation

-200
0

200-200
0

200
-50

0

50

x
y

z

Identified System

Figure 11: This simulation corresponds to an initial condition obtained by doubling the magnitude of the
limit cycle behavior. This data was not included in the training of the sparse model.

16

Figure 10: Evolution of the cylinder wake trajectory starting from a flow state initialized at the mean of
the steady-state limit cycle. Both the full simulation and sparse model capture the off-attractor dynamics,
characterized by rapid attraction of the trajectory onto the slow manifold.

Remarkably, similar dynamics are discovered by the sparse dynamics algorithm, purely from
data collected from simulations. The identified model coefficients, shown in Table 9, only include
quadratic nonlinearity, consistent with the Navier-Stokes equations. Moreover, the transient be-
havior, shown in Figs. 10 and 11, is captured qualitatively for solutions that do not start on the
slow manifold. When the off-attractor dynamics in Fig. 10 are not included in the training data,
then the model only recovers a simple Hopf normal form in x and y with cubic terms, but does not
correctly identify the slow-manifold with quadratic nonlinearities. Note that time derivatives of
the POD coefficients are approximated numerically using a fourth order central difference scheme.

The data from Fig. 11 was not included in the training data, and although qualitatively similar,
the identified model does not exactly reproduce the transients. Since this initial condition had
twice the fluctuation energy in the x and y directions, the slow manifold approximation may not
be valid here. Finally, reducing the sparsifying parameter �, it is possible to obtain models that
agree almost perfectly with the data in Figs. 9-11, although the model will then include higher
order nonlinearities; this is discussed in Sec. 4.3.3.

-200
0

200-200
0

200-150

-75

0

x
y

z

Full Simulation

-200
0

200-200
0

200-150

-75

0

x
y

z

Identified System

Figure 10: Evolution of the cylinder wake trajectory starting from a flow state initialized at the mean of
the steady-state limit cycle. Both the full simulation and sparse model capture the off-attractor dynamics,
characterized by rapid attraction of the trajectory onto the slow manifold.

-200
0

200-200
0

200
-50

0

50

x
y

z

Full Simulation

-200
0

200-200
0

200
-50

0

50

x
y

z

Identified System

Figure 11: This simulation corresponds to an initial condition obtained by doubling the magnitude of the
limit cycle behavior. This data was not included in the training of the sparse model.

16

Figure 11: This simulation corresponds to an initial condition obtained by doubling the magnitude of the
limit cycle behavior. This data was not included in the training of the sparse model.

16

4.3.3 Cubic nonlinearities

It is important to note that although the nonlinear system in Figs. 9 and 10 is identified using
only quadratic nonlinearities, they also contain constant forcing terms, which introduce an extra
spurious fixed point in the z direction. If we decrease the sparsifying parameter λ, so that we
obtain a model that also includes cubic nonlinearities, the identified system is more accurate in
terms of the dynamic response and does not posses this spurious extra fixed point. This is not
entirely surprising that the quadratic response has limitations when only using three POD modes,
since there is additional energy captured by higher POD pairs.

4.3.3 Cubic nonlinearities

It is important to note that although the nonlinear system in Figs. 9 and 10 is identified using
only quadratic nonlinearities, they also contain constant forcing terms, which introduce an extra
spurious fixed point in the z direction. If we decrease the sparsifying parameter �, so that we
obtain a model that also includes cubic nonlinearities, the identified system is more accurate in
terms of the dynamic response and does not posses this spurious extra fixed point. This is not
entirely surprising that the quadratic response has limitations when only using three POD modes,
since there is additional energy captured by higher POD pairs.

-200
0

200-200
0

200-150

-75

0

x
y

z

Full Simulation

-200
0

200-200
0

200-150

-75

0

x
y

z

Identified System

Figure 12: Evolution of the cylinder wake trajectory in reduced coordinates. The full simulation (left)
comes from direct numerical simulation of the Navier-Stokes equations, and the identified system (right)
captures the dynamics on the slow manifold. Color indicates simulation time.

-200
0

200-200
0

200-150

-75

0

x
y

z

Full Simulation

-200
0

200-200
0

200-150

-75

0

x
y

z

Identified System

Figure 13: Evolution of the cylinder wake trajectory starting from a flow state initialized at the mean of
the steady-state limit cycle. Both the full simulation and sparse model capture the off-attractor dynamics,
characterized by rapid attraction of the trajectory onto the slow manifold.

17

Figure 12: Evolution of the cylinder wake trajectory in reduced coordinates. The full simulation (left)
comes from direct numerical simulation of the Navier-Stokes equations, and the identified system (right)
captures the dynamics on the slow manifold. Color indicates simulation time.

4.3.3 Cubic nonlinearities

It is important to note that although the nonlinear system in Figs. 9 and 10 is identified using
only quadratic nonlinearities, they also contain constant forcing terms, which introduce an extra
spurious fixed point in the z direction. If we decrease the sparsifying parameter �, so that we
obtain a model that also includes cubic nonlinearities, the identified system is more accurate in
terms of the dynamic response and does not posses this spurious extra fixed point. This is not
entirely surprising that the quadratic response has limitations when only using three POD modes,
since there is additional energy captured by higher POD pairs.

-200
0

200-200
0

200-150

-75

0

x
y

z

Full Simulation

-200
0

200-200
0

200-150

-75

0

x
y

z

Identified System

Figure 12: Evolution of the cylinder wake trajectory in reduced coordinates. The full simulation (left)
comes from direct numerical simulation of the Navier-Stokes equations, and the identified system (right)
captures the dynamics on the slow manifold. Color indicates simulation time.

-200
0

200-200
0

200-150

-75

0

x
y

z

Full Simulation

-200
0

200-200
0

200-150

-75

0

x
y

z

Identified System

Figure 13: Evolution of the cylinder wake trajectory starting from a flow state initialized at the mean of
the steady-state limit cycle. Both the full simulation and sparse model capture the off-attractor dynamics,
characterized by rapid attraction of the trajectory onto the slow manifold.

17

Figure 13: Evolution of the cylinder wake trajectory starting from a flow state initialized at the mean of
the steady-state limit cycle. Both the full simulation and sparse model capture the off-attractor dynamics,
characterized by rapid attraction of the trajectory onto the slow manifold.

17

4.4 Example 4: Bifurcations and normal forms

It is also possible to identify normal forms associated with a bifurcation parameter µ by suspend-
ing it in the dynamics as a variable:

ẋ = f(x;µ) (25a)
µ̇ = 0. (25b)

It is then possible to identify the right hand side f(x;µ) as a sparse combination of functions of
components in x as well as the bifurcation parameter µ. This idea is illustrated on two examples,
the one-dimensional logistic map and the two-dimensional Hopf normal form.

4.4.1 Logistic map

The logistic map is a classical model that exhibits a cascade of bifurcations, leading to chaotic
trajectories. The dynamics with stochastic forcing ηk and parameter r are given by

xk+1 = rxk(1− xk) + ηk. (26)

Sampling the stochastic system at ten parameter values of r, the algorithm correctly identifies the
underlying parameterized dynamics, shown in Fig. 14 and Table 12.

4.4 Example 4: Bifurcations and Normal Forms

It is also possible to identify normal forms associated with a bifurcation parameter µ by suspend-
ing it in the dynamics as a variable:

ẋ = f(x; µ) (25a)
µ̇ = 0. (25b)

It is then possible to identify the right hand side f(x; µ) as a sparse combination of functions of
components in x as well as the bifurcation parameter µ. This idea is illustrated on two examples,
the one-dimensional logistic map and the two-dimensional Hopf normal form.

4.4.1 Logistic map

The logistic map is a classical model that exhibits a cascade of bifurcations, leading to chaotic
trajectories. The dynamics with stochastic forcing ⌘k and parameter r are given by

xk+1 = rxk(1 � xk) + ⌘k. (26)

Sampling the stochastic system at ten parameter values of r, the algorithm correctly identifies the
underlying parameterized dynamics, shown in Fig. 14 and Table 11.

Stochastic System Sparse Identified System

0 0.5 1
4

3

2

1

x

r

0 0.5 1
4

3

2

1

x

r

0 0.5 1
4

3.82

3.63

3.45

x

r

0 0.5 1
4

3.82

3.63

3.45

x

r

Figure 14: Attracting sets of the logistic map vs. the parameter r. (left) Data from stochastically
forced system and (right) the sparse identified system. Data is sampled at rows indicated in red for
r 2 {2.5, 2.75, 3, 3.25, 3.5, 3.75, 3.8, 3.85, 3.9, 3.95}. The forcing ⌘k is Gaussian with magnitude 0.025.

18

Figure 14: Attracting sets of the logistic map vs. the parameter r. (left) Data from stochastically
forced system and (right) the sparse identified system. Data is sampled at rows indicated in red for
r ∈ {2.5, 2.75, 3, 3.25, 3.5, 3.75, 3.8, 3.85, 3.9, 3.95}. The forcing ηk is Gaussian with magnitude 0.025.

18

4.4.2 Hopf normal form

The final example illustrating the ability of the sparse dynamics method to identify parameterized
normal forms is the Hopf normal form [44]. Noisy data is collected from the Hopf system

ẋ = µx+ ωy −Ax(x2 + y2) (27a)
ẏ = −ωx+ µy −Ay(x2 + y2) (27b)

for various values of the parameter µ. Data is collected on the blue and red trajectories in Fig. 15,
and noise is added to simulate sensor noise. The total variation derivative [32] is used to de-noise
the derivative for use in the algorithm.

The sparse model identification algorithm correctly identifies the Hopf normal form, with
model parameters given in Table 13. The noise-free model reconstruction is shown in Fig. 16.
Note that with noise in the training data, although the model terms are correctly identified, the
actual values of the cubic terms are off by almost 8%. Collecting more training data or reducing
the noise magnitude both improve the model agreement.

4.4.2 Hopf normal form

The final example illustrating the ability of the sparse dynamics method to identify parameterized
normal forms is the Hopf normal form [53]. Noisy data is collected from the Hopf system

ẋ = µx + !y � Ax(x2 + y2) (27a)
ẏ = �!x + µy � Ay(x2 + y2) (27b)

for various values of the parameter µ. Data is collected on the blue and red trajectories in Fig. 15,
and noise is added to simulate sensor noise. The total variation derivative [34] is used to de-noise
the derivative for use in the algorithm.

The sparse model identification algorithm correctly identifies the Hopf normal form, with
model parameters given in Table 12. The noise-free model reconstruction is shown in Fig. 16.
Note that with noise in the training data, although the model terms are correctly identified, the
actual values of the cubic terms are off by almost 8%. Collecting more training data or reducing
the noise magnitude both improve the model agreement.

-0.2 0. 0.2 0.4 0.6

-1

0

1

-1

0

1

µ

y

x

Figure 15: Training data to identify Hopf normal form. Blue trajectories denote solutions that start outside
of the fixed point for µ < 0 or the limit cycle for µ > 0, and red trajectories denote solutions that start inside
of the limit cycle.

-0.2 0. 0.2 0.4 0.6

-1

0

1

-1

0

1

µ

y

x

Figure 16: Sparse model captures the Hopf normal form. Initial conditions are the same as in Fig. 15

19

Figure 15: Training data to identify Hopf normal form. Blue trajectories denote solutions that start outside
of the fixed point for µ < 0 or the limit cycle for µ > 0, and red trajectories denote solutions that start inside
of the limit cycle.

4.4.2 Hopf normal form

The final example illustrating the ability of the sparse dynamics method to identify parameterized
normal forms is the Hopf normal form [53]. Noisy data is collected from the Hopf system

ẋ = µx + !y � Ax(x2 + y2) (27a)
ẏ = �!x + µy � Ay(x2 + y2) (27b)

for various values of the parameter µ. Data is collected on the blue and red trajectories in Fig. 15,
and noise is added to simulate sensor noise. The total variation derivative [34] is used to de-noise
the derivative for use in the algorithm.

The sparse model identification algorithm correctly identifies the Hopf normal form, with
model parameters given in Table 12. The noise-free model reconstruction is shown in Fig. 16.
Note that with noise in the training data, although the model terms are correctly identified, the
actual values of the cubic terms are off by almost 8%. Collecting more training data or reducing
the noise magnitude both improve the model agreement.

-0.2 0. 0.2 0.4 0.6

-1

0

1

-1

0

1

µ

y

x

Figure 15: Training data to identify Hopf normal form. Blue trajectories denote solutions that start outside
of the fixed point for µ < 0 or the limit cycle for µ > 0, and red trajectories denote solutions that start inside
of the limit cycle.

-0.2 0. 0.2 0.4 0.6

-1

0

1

-1

0

1

µ

y

x

Figure 16: Sparse model captures the Hopf normal form. Initial conditions are the same as in Fig. 15

19

Figure 16: Sparse model captures the Hopf normal form. Initial conditions are the same as in Fig. 15

19

4.5 Sparse identification of the Lorenz system with time-delay coordinates

It is not always clear what measurements of a dynamical system to take, and even if we did know,
these measurements may be prohibitively expensive to collect. Here, we explore the ability to
extract dynamics in the Lorenz system if only the first variable x(t) is measured. It is well-known
that time-delay coordinates allow us to synthesize additional dynamic variables using a time-
series measurement from a single variable x(t) [11]. The dynamics in these time-delay coordinates
produce a new attractor with the same topology, according to Takens’ theorem [45] . In particular,
we construct a Hankel matrix by stacking delayed time-series of x as rows:

H =




x1 x2 x3 · · · xp
x2 x3 x4 · · · xp+1

x3 x4 x5 · · · xp+2
...

...
...

. . .
...

xq xq+1 xq+2 · · · xp+q−1




(28)

Taking the singular value decomposition (SVD), we obtain

H = ΨΣV∗, (29)

where we may think of columns of V as a hierarchical set of eigen-time-series. For this example,
we collect measurements from t = 0 to t = 100 with ∆t = 0.001, and we stack q = 10 rows in H; it
is possible to stack more rows in H, although this is not relevant for this discussion.

We choose the first three dominant eigen-time-series given by the first three columns of V,
and we denote these coordinates as u, v, and w for convenience. The new time-delay embedding
is shown, for short time up to t = 5, in Fig. 17.

Using these time-delay coordinates, it is possible to compute the derivatives u̇, v̇, and ẇ nu-
merically using a fourth-order central difference; in cases with noise, we recommend the total-
variation regularized derivative. Next, we use our time-delay coordinates and derivatives as in-
puts to the SINDy algorithm, and the resulting model coefficients identified up to cubic order are
shown in Table 1. These coefficients have been identified after normalizing the columns of Θ(V).
We use a third order polynomial basis since increasing the polynomial order results in over-fitting
for this case. Since we determine time-delay coordinates using the SVD, there is a small amount of
information missing from the three coordinates chosen that are captured in lower energy columns

4.5 Sparse Identification of the Lorenz System with Time-Delay Coordinates

It is not always clear what measurements to take of a dynamical system, and even if we did know,
these measurements may be prohibitively expensive to collect. Here, we explore the ability to
extract dynamics in the Lorenz system if only the first variable x is measured. It is well-known
that time-delay coordinates allow us to synthesize additional dynamic variables using a time-
series measurement from a single variable x(t). The dynamics in these time-delay coordinates
produce a new attractor with the same topology, according to Takens’ theorem [38] . In particular,
we construct a Hankel matrix by stacking delayed time-series of x as rows:

H =

2
666664

x1 x2 x3 · · · xp

x2 x3 x4 · · · xp+1

x3 x4 x5 · · · xp+2
...

...
...

. . .
...

xq xq+1 xq+2 · · · xp+q�1

3
777775

(28)

Taking the singular value decomposition (SVD), we obtain

H = ⌃V⇤, (29)

where we may think of columns of V as a hierarchical set of eigen-time-series. For this example,
we collect measurements from t = 0 to t = 100 with �t = 0.001, and we stack q = 10 rows in H; it
is possible to stack more rows in H, although this is not relevant for this discussion.

We choose the first three dominant eigen-time-series given by the first three columns of V,
and we denote these coordinates as u, v, and w for convenience. The new time-delay embedding
is shown, for short time up to t = 5, in Fig. 17.

Using these time-delay coordinates, it is possible to compute the derivatives u̇, v̇, and ẇ nu-
merically using a fourth-order central difference; in cases with noise, we recommend the total-
variation regularized derivative. Next, we use our time-delay coordinates and derivatives as in-
puts to the sparse identification of nonlinear dynamics algorithm, and the resulting model coef-
ficients identified up to cubic order are shown in Table 1. These coefficients have been identified
after normalizing the columns of⇥(V).

-0.01 0 0.01
u

-0.01

-0.005

0

0.005

0.01

v

-0.01 0 0.01
u

-0.01

-0.005

0

0.005

0.01

0.015

w

-0.01 0 0.01
v

-0.01

-0.005

0

0.005

0.01

0.015

w

Figure 17: Lorenz attractor in time-delay coordinates for short time.

20

Figure 17: Lorenz attractor in time-delay coordinates for short time.

20

-0.01 0 0.01
u

-0.01

-0.005

0

0.005

0.01

v

-0.01 0 0.01
u

-0.01

-0.005

0

0.005

0.01

0.015

w

-0.01 0 0.01
v

-0.01

-0.005

0

0.005

0.01

0.015

w

Figure 18: SINDy reconstruction of Lorenz attractor in time-delay coordinates.

The reconstruction using the sparse identified dynamics from Table 1 is shown in Fig. 18. For
short times, the identified dynamics are qualitatively quite similar to the true time-delay embed-
ding, capturing the skeleton of the attractor. For longer times, the identified dynamics do not have
the same measure on the attractor as the time-delay embedding, but instead attract onto a compli-
cated quasi-periodic orbit on the attractor. We believe that this behavior in the identified system
is the result of small numerical errors introduced by truncating the SVD and the nonlinear terms.
However, the short-time behavior is extremely promising, indicating that it is possible to capture
very similar dynamics even without collecting the right measurements up-front. Finally, Fig. 19
shows the accuracy of the identified dynamics in satisfying the equations V̇ = ⇥(V)⌅.

Table 1: SINDy coefficients for Lorenz system in time-delay coordinates.

’’ ’udot’ ’vdot’ ’wdot’
’1’ [0] [0] [0]
’u’ [0] [-5.1787] [-12.0796]
’v’ [5.2307] [0] [-7.2660]
’w’ [0] [-10.3782] [-5.1039]
’uu’ [0] [0] [0]
’uv’ [0] [0] [0]
’uw’ [0] [0] [0]
’vv’ [0] [0] [0]
’vw’ [0] [0] [0]
’ww’ [0] [0] [0]
’uuu’ [0] [0] [17.3748]
’uuv’ [0] [0] [20.0657]
’uuw’ [0] [0] [0]
’uvv’ [0] [0] [-4.9360]
’uvw’ [0] [0] [0]
’uww’ [0] [0] [0]
’vvv’ [0] [0] [0]
’vvw’ [0] [0] [0]
’vww’ [0] [0] [0]
’www’ [0] [0] [0]

21

Figure 18: SINDy reconstruction of Lorenz attractor in time-delay coordinates.

of V. Thus, when selecting higher order polynomials, we may encounter overfit models, when in
reality there is a small amount of missing information in the lower energy coordinates. It would
be interesting to investigate the interplay between the number and energy of the time-delay coor-
dinates, the polynomial order, and the attainable model fidelity.

The reconstruction using the sparse identified dynamics from Table 1 is shown in Fig. 18. For
short times, the identified dynamics are qualitatively quite similar to the true time-delay embed-
ding, capturing the skeleton of the attractor. For longer times, the identified dynamics do not have
the same measure on the attractor as the time-delay embedding, but instead attract onto a compli-
cated quasi-periodic orbit on the attractor. We believe that this behavior in the identified system
is the result of small numerical errors introduced by truncating the SVD and the nonlinear terms.
However, the short-time behavior is extremely promising, indicating that it is possible to capture
very similar dynamics even without collecting the right measurements up-front. Finally, Fig. 19
shows the accuracy of the identified dynamics in satisfying the equations V̇ = Θ(V)Ξ, and Fig. 20
shows the correlation between measured and approximated derivatives for various λ.

Table 1: SINDy coefficients for Lorenz system in time-delay coordinates.

’’ ’udot’ ’vdot’ ’wdot’
’1’ [0] [0] [0]
’u’ [0] [-5.1787] [-12.0796]
’v’ [5.2307] [0] [-7.2660]
’w’ [0] [-10.3782] [-5.1039]
’uu’ [0] [0] [0]
’uv’ [0] [0] [0]
’uw’ [0] [0] [0]
’vv’ [0] [0] [0]
’vw’ [0] [0] [0]
’ww’ [0] [0] [0]
’uuu’ [0] [0] [17.3748]
’uuv’ [0] [0] [20.0657]
’uuw’ [0] [0] [0]
’uvv’ [0] [0] [-4.9360]
’uvw’ [0] [0] [0]
’uww’ [0] [0] [0]
’vvv’ [0] [0] [0]
’vvw’ [0] [0] [0]
’vww’ [0] [0] [0]
’www’ [0] [0] [0]

21

40 42 44 46 48 50 52 54 56 58 60
-0.05

0

0.05

u

40 42 44 46 48 50 52 54 56 58 60
-0.2

-0.1

0

0.1

0.2

v

40 42 44 46 48 50 52 54 56 58 60
Time

-0.4

-0.2

0

0.2

0.4

w

Θ(V)Ξ

V̇

Figure 19: Accuracy of sparse dynamics coefficients in capturing V̇ = ⇥(V)⌅.

5 Discussion

In this work, we have demonstrated a powerful new technique to identify nonlinear dynamical
systems from data without assumptions on the form of the nonlinearity. This builds on prior work
in symbolic regression but with innovations related to sparse representation, which allow our al-
gorithms to scale to high-dimensional complex systems. The new method is demonstrated on a
number of example systems exhibiting chaos, big data with low-rank coherence, and parameter-
ized dynamics. The identification of sparse nonlinearities and parameterizations mark a significant
step toward the long-held goal of intelligent, unassisted identification of dynamical systems.

There are numerous fields where this method may be applied, where there is ample data and
the absence of governing equations. These applications include neuroscience, climate science, epi-
demiology, and financial markets. As shown in the Lorenz example, the ability to predict a specific
trajectory, may be less important than the ability to capture the attractor dynamics. The method
also generalizes to partial differential equations, as demonstrated on an example from fluid me-
chanics. Finally, normal forms may be discovered by including parameters in the optimization, as
shown on two examples.

In each of the examples shown, we have investigated the robustness of the sparse dynamics
algorithm to measurement noise and the unavailability of derivative measurements. In each case,
the sparse regression framework appears well-suited to measurement and process noise, espe-
cially when derivatives are smoothed using the total-variation regularized derivative. However,
we do find that larger noise magnitude increases the data required for accurate model identifica-
tion.

22

w

v

u

Figure 19: Accuracy of sparse dynamics coefficients in capturing V̇ = Θ(V)Ξ.

10-3 10-2 10-1 100 101

Lambda, λ

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

U
V
W

10-3 10-2 10-1 100 101

Lambda, λ

0

5

10

15

20

N
um

be
r o

f t
er

m
s

Figure 20: (left) Correlation of computed derivatives Θ(V)Ξ with measured derivatives V̇ and
(right) number of terms in the differential equations as a function of the sparsifying parameter λ.

5 Discussion

In this work, we have demonstrated a powerful new technique to identify nonlinear dynamical
systems from data without assumptions on the form of the nonlinearity. This builds on prior work
in symbolic regression but with innovations related to sparse representation, which allow our al-
gorithms to scale to high-dimensional complex systems. The new method is demonstrated on a
number of example systems exhibiting chaos, big data with low-rank coherence, and parameter-
ized dynamics. The identification of sparse nonlinearities and parameterizations mark a significant
step toward the long-held goal of intelligent, unassisted identification of dynamical systems.

There are numerous fields where this method may be applied, where there is ample data and

22

the absence of governing equations. These applications include neuroscience, climate science, epi-
demiology, and financial markets. As shown in the Lorenz example, the ability to predict a specific
trajectory, may be less important than the ability to capture the attractor dynamics. The method
also generalizes to partial differential equations, as demonstrated on an example from fluid me-
chanics. Finally, normal forms may be discovered by including parameters in the optimization, as
shown on two examples.

In each of the examples shown, we have investigated the robustness of the sparse dynamics
algorithm to measurement noise and the unavailability of derivative measurements. In each case,
the sparse regression framework appears well-suited to measurement and process noise, espe-
cially when derivatives are smoothed using the total-variation regularized derivative. We also
find that larger noise magnitude increases the data required for accurate model identification.

There are significant implications of this method for fields that are already using symbolic re-
gression or genetic programming. The inclusion of genetic programming and symbolic regression
in a convex framework may allow these methods to generalize to much larger systems.

A number of open problems remain surrounding the dynamical systems aspects of this pro-
cedure. For example, many systems possess dynamical symmetries and conserved quantities that
may alter the form of the identified dynamics. For example, the degenerate identification of a
linear system in a space of high-order polynomial nonlinearities suggest a connection with near-
identity transformations and dynamic similarity. We believe that this may be a fruitful line of re-
search. A significant outstanding issue in the above approach is the correct choice of measurement
coordinates and the choice of sparsifying function basis for the dynamics. There is no simple so-
lution to this challenge, and there must be a coordinated effort to incorporate expert knowledge,
feature extraction, and inference based methods to tackle this in general. However, in practice,
there may be some hope of obtaining the correct coordinate system and function basis without
knowing the solution ahead of time, since we often know something about the physics that guide
the choice of function space. In the case that we have few measurements, these may be augmented
using time delay coordinates, and when we have too many measurements, we may extract coher-
ent structures using advanced methods from dimensionality reduction and machine learning. It
may also be possible to make the dynamics more sparse through subsequent coordinate trans-
formations [2]. We hope that this connection between sparsity methods, machine learning, and
dynamical systems will spur developments to automate and improve these choices.

Appendix A: Choice of basis functions

In real-world systems, the correct choice of basis functions to sparsely represent the dynamics
might not be clear, although physical intuition may be leveraged in many systems. Here, we
explore a simple ODE where the right hand side dynamics are given by a trigonometric function:

d

dt
x = − sin(x) (30a)

= −x+
1

3!
x3 − 1

5!
x5 +O(x7). (30b)

On this test problem, we investigate the SINDy algorithm with different bases, including polyno-
mial basis functions, trigonometric functions, and a combination of polynomial and trigonometric
functions. In the case of a polynomial basis, shown in Table 2, the SINDy algorithm identifies the
correct terms in the Taylor expansion of f(x) = − sin(x). The dynamic reconstruction, shown in
Fig. 21 is excellent. In both of the other cases of a purely trigonometric basis or a basis consisting
of polynomials and trigonometric functions, the correct term f(x) = − sin(x) is identified.

23

Table 2: Polynomial basis.

’’ ’xdot’
’1’ [0]
’x’ [-1.0000]
’xx’ [0]
’xxx’ [0.1664]
’xxxx’ [0]
’xxxxx’ [-0.0079]

Table 3: Trigonometric basis.

’’ ’xdot’
’sin(x)’ [-1.0000]
’cos(x)’ [0]
’sin(2x)’ [0]
’cos(2x)’ [0]

Table 4: Polynomial and trigonometric basis.

’’ ’xdot’
’1’ [0]
’x’ [0]
’xx’ [0]
’xxx’ [0]
’xxxx’ [0]
’xxxxx’ [0]
’sin(x)’ [-1.0000]
’cos(x)’ [0]
’sin(2x)’ [0]
’cos(2x)’ [0]

0 5 10 15 20 25 30 35 40 45 50
-2

-1

0

1

2

0 5 10 15 20 25 30 35 40 45 50

Time

-2

-1

0

1

2

ẋ

x

Figure 20: Data (black) and sparse dynamics reconstruction (red) for a sequence of initial condi-
tions initialized every 5 time units. Initial conditions are chosen from �1.25 to 1.25 in increments
of 0.25 (excluding x0 = 0).

Appendix B: Identified Coefficients of Dynamics

Table 5: Damped harmonic oscillator with linear terms.

’’ ’xdot’ ’ydot’
’1’ [0] [0]
’x’ [-0.1015] [-1.9990]
’y’ [2.0027] [-0.0994]
’xx’ [0] [0]
’xy’ [0] [0]
’yy’ [0] [0]
’xxx’ [0] [0]
’xxy’ [0] [0]
’xyy’ [0] [0]
’yyy’ [0] [0]
’xxxx’ [0] [0]
’xxxy’ [0] [0]
’xxyy’ [0] [0]
’xyyy’ [0] [0]
’yyyy’ [0] [0]
’xxxxx’ [0] [0]
’xxxxy’ [0] [0]
’xxxyy’ [0] [0]
’xxyyy’ [0] [0]
’xyyyy’ [0] [0]
’yyyyy’ [0] [0]

25

Figure 21: Data (black) and sparse dynamics reconstruction (red) for a sequence of initial condi-
tions initialized every 5 time units. Initial conditions are chosen from −1.25 to 1.25 in increments
of 0.25 (excluding x0 = 0).

24

Appendix B: Limitations of the sparse identification framework

The sparse identification algorithm above relies on having measurements in a sensible coordinate
system where the dynamics are sparse in the chosen function basis. Here, we explore the limi-
tations of this modeling framework when the coordinates or function basis are not amenable to
sparse representation of the dynamics.

B-1: Lorenz system in nonlinear coordinates

The limitations of the method are clear when we transform the simple Lorenz example from the
natural coordinates (x, y, z) nonlinearly into the new coordinates (A,B,C) according to the map:

A = x sin(x) (31a)
B = y cos(y) (31b)
C = z sin(z). (31c)

In these new coordinates the Lorenz system has complicated nonlinear behavior that is not well
approximated by a dynamical system with polynomial nonlinearities. The system response in
(A,B,C) coordinates is shown in Fig. 22.

The sparse identification algorithm fails to identify a model that agrees with the measured
derivatives for any value of the sparsity promoting parameter λ, as shown in the correlation plot
in Fig. 23. For this problem, various search spaces were explored, including polynomial nonlin-
earities up to fifth order as well as trigonometric functions.

-20 -10 0 10 20

A

-30

-20

-10

0

10

20

30

B

-20 -10 0 10 20

A

-50

0

50

C

-20 0 20

B

-50

0

50

C

Figure 22: Lorenz attractor in nonlinear coordinates (A,B,C) from Eq. (31).

10-6 10-4 10-2 100

Lambda, λ

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

A
B
C

10-6 10-4 10-2 100

Lambda, λ

0

10

20

30

40

50

60

N
um

be
r o

f t
er

m
s

Figure 23: Correlation of sparse prediction of derivatives Θ(X)Ξ and measured derivatives Ẋ of
Lorenz system in nonlinear coordinates (A,B,C) from Eq. (31).

25

As in Sec. 4.5, the use of generalized eigen-time-delay coordinates present a promising tech-
nique to find a natural coordinate system. Figure 24 shows the first three time-delay coordinates
obtained from the eigen-decomposition of the Hankel matrix in Eq. (28); for this example, the
number of rows is q = 100 and the Lorenz system is simulated from t = 0 to t = 100 with
∆t = 0.001. Using these time-delay coordinates results in much better correlation between mea-
sured and modeled derivatives, even for relatively sparse models, as shown in Fig. 25. Increasing
the number of time-delay coordinates to the leading four results in improved correlation, shown
in Fig. 26. However, the resulting dynamical systems for each of these cases does not accurately
reproduce the attractor dynamics, motivating further research to identify natural coordinate sys-
tems to measure in and natural function bases to represent dynamics sparsely.

-0.02 0 0.02

u

-0.01

-0.005

0

0.005

0.01

v

-0.02 0 0.02

u

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

w

-0.01 0 0.01

v

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

w

Figure 24: Lorenz attractor in time-delay coordinates obtained from measurements (A,B,C) from Eq. (31).

10-3 10-2 10-1 100 101

Lambda, λ

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

u
v
w

10-3 10-2 10-1 100 101

Lambda, λ

0

5

10

15

20

N
um

be
r o

f t
er

m
s

Figure 25: Correlation of sparse model prediction Θ(X)Ξ and measured derivatives Ẋ of Lorenz system
using the first three time-delay coordinates obtained from measurements (A,B,C) from Eq. (31).

10-3 10-2 10-1 100 101

Lambda, λ

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

u
v
w
x

10-3 10-2 10-1 100 101

Lambda, λ

0

10

20

30

40

50

60

70

N
um

be
r o

f t
er

m
s

Figure 26: Correlation of sparse model prediction Θ(X)Ξ and measured derivatives Ẋ of Lorenz system
using the first four time-delay coordinates obtained from measurements (A,B,C) from Eq. (31).

26

B-2: Glycolytic oscillator model

The glycolytic oscillator model is a standard benchmark problem for model prediction, system
identification and automatic inference [6, 8, 7]. We simulate the system presented in Daniels and
Nemenman [8] (Eq. (19) in [8]) :

dS1
dt

= J0 −
k1S1S6

1 + (S6/K1)q
, (32a)

dS2
dt

= 2
k1S1S6

1 + (S6/K1)q
− k2S2(N − S5)− k6S2S5, (32b)

dS3
dt

= k2S2(N − S5)− k3S3(A− S6), (32c)

dS4
dt

= k3S3(A− S6)− k4S4S5 − κ(S4 − S7), (32d)

dS5
dt

= k2S2(N − S5)− k4S4S5 − k6S2S5, (32e)

dS6
dt

= −2
k1S1S6

1 + (S6/K1)q
+ 2k3S3(A− S6)− k5S6, (32f)

dS7
dt

= ψκ(S4 − S7)− kS7. (32g)

Daniels and Nemenman [8] provide the various parameters (Table 1 in [8]) and initial con-
ditions (Table 2 in [8]) to match yeast glycolysis. Data from a simulation of Eq. (32) using these
parameters and initial conditions and a time step of ∆t = 0.001 minutes is shown in Fig. 27.

0 1 2 3 4 5 6 7 8 9 10

Time (minutes)

0

0.5

1

1.5

2

2.5

3

3.5

C
o

n
c
e

n
tr

a
ti
o

n
 (

m
M

)

S
1

S
2

S
3

S
4

S
5

S
6

S
7

Figure 27: Glycolytic oscillator network dynamics for random initial conditions chosen from the
ranges provided in Table 2 of Daniels and Nemenman [8].

27

The results of the sparse identification of nonlinear dynamics algorithm are shown in Tab. 5.
The algorithm accurately identifies the dynamics for S3, S4, S5, and S7, since each of these vari-
ables have dynamics that are sparse in the polynomial search basis. However, the algorithm does
not identify sparse dynamics for the S1, S2, and S6 terms, which each have a rational function
in their dynamics. Although the identified model in Tab. 5 produces derivatives that accurately
match the measured derivatives, as seen in the correlation plot in Fig. 28, the dynamic model does
not agree with the true system, except for a very short time at the beginning of the simulation.

The fact that the algorithm produces accurate sparse dynamics in some of the variables (S3, S4, S5,
and S7) is a good indication that the measurement coordinates are correct. The fact that the dynam-
ics are not sparse in the remaining equations indicates that the function basis is not appropriate for
sparse representation of the dynamics for the remaining equations (S1, S2, and S6). Investigating
how to generalize the SINDy algorithm to include a broader function search space is an important
area of current and future work.

Table 5: Identified dynamics for metabolic network.

’’ ’S1dot’ ’S2dot’ ’S3dot’ ’S4dot’ ’S5dot’ ’S6dot’ ’S7dot’
’1’ [-780.181] [1.565e+03] [0] [0] [0] [-1.565e+03] [0]
’S1’ [-82.317] [164.633] [0] [0] [0] [-164.633] [0]
’S2’ [-70.328] [134.657] [6.00] [0] [6.00] [-140.657] [0]
’S3’ [-1.578e+04] [3.156e+04] [-64.00] [64.00] [0] [-3.143e+04] [0]
’S4’ [-1.044e+03] [2.087e+03] [0] [-13.00] [0] [-2.087e+03] [1.3000]
’S5’ [1.309e+04] [-2.618e+04] [0] [0] [0] [2.618e+04] [0]
’S6’ [-439.231] [878.461] [0] [0] [0] [-879.741] [0]
’S7’ [3.982e+04] [-7.964e+04] [0] [13.00] [0] [7.964e+04] [-3.1000]
’S1S1’ [18.308] [-36.615] [0] [0] [0] [36.615] [0]
’S1S2’ [253.763] [-507.527] [0] [0] [0] [507.526] [0]
’S1S3’ [3.706e+03] [-7.412e+03] [0] [0] [0] [7.412e+03] [0]
’S1S4’ [-607.006] [1.214e+03] [0] [0] [0] [-1.214e+03] [0]
’S1S5’ [-1.752e+03] [3.505e+03] [0] [0] [0] [-3.505e+03] [0]
’S1S6’ [311.284] [-622.568] [0] [0] [0] [622.568] [0]
’S1S7’ [-9.857e+03] [1.972e+04] [0] [0] [0] [-1.972e+04] [0]
’S2S2’ [231.996] [-463.993] [0] [0] [0] [463.993] [0]
’S2S3’ [1.107e+04] [-2.213e+04] [0] [0] [0] [2.213e+04] [0]
’S2S4’ [-242.407] [484.813] [0] [0] [0] [-484.813] [0]
’S2S5’ [-8.786e+03] [1.757e+04] [-6.00] [0] [-18.00] [-1.757e+04] [0]
’S2S6’ [434.818] [-869.636] [0] [0] [0] [869.636] [0]
’S2S7’ [-2.041e+04] [4.082e+04] [0] [0] [0] [-4.082e+04] [0]
’S3S3’ [-1.086e+03] [2.171e+03] [0] [0] [0] [-2.171e+03] [0]
’S3S4’ [-3.535e+04] [7.071e+04] [0] [0] [0] [-7.071e+04] [0]
’S3S5’ [2.056e+04] [-4.112e+04] [0] [0] [0] [4.112e+04] [0]
’S3S6’ [5.193e+03] [-1.039e+04] [16.00] [-16.00] [0] [1.035e+04] [0]
’S3S7’ [4.116e+03] [-8.232e+03] [0] [0] [0] [8.232e+03] [0]
’S4S4’ [7.587e+03] [-1.517e+04] [0] [0] [0] [1.517e+04] [0]
’S4S5’ [1.342e+04] [-2.684e+04] [0] [-100.00] [-100.00] [2.684e+04] [0]
’S4S6’ [1.267e+03] [-2.533e+03] [0] [0] [0] [2.533e+03] [0]
’S4S7’ [-1.320e+04] [2.640e+04] [0] [0] [0] [-2.640e+04] [0]
’S5S5’ [-7.955e+03] [1.591e+04] [0] [0] [0] [-1.591e+04] [0]
’S5S6’ [-5.507e+03] [1.101e+04] [0] [0] [0] [-1.101e+04] [0]
’S5S7’ [2.174e+04] [-4.348e+04] [0] [0] [0] [4.348e+04] [0]
’S6S6’ [214.779] [-429.558] [0] [0] [0] [429.558] [0]
’S6S7’ [-1.561e+04] [3.122e+04] [0] [0] [0] [-3.122e+04] [0]
’S7S7’ [8.259e+04] [-1.652e+05] [0] [0] [0] [1.652e+05] [0]

28

10-2 100 102 104

Lambda, λ

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

S1
S2
S3
S4
S5
S6
S7

10-2 100 102 104

Lambda, λ

0

10

20

30

40

N
um

be
r o

f t
er

m
s

S3

S5

S7

S1

S2

S6

S4
S2

S6

Figure 28: Correlation of sparse model prediction Θ(X)Ξ and measured derivatives Ẋ for gly-
colytic oscillator model.

Appendix C: Identified coefficients of dynamics

Table 6: Damped harmonic oscillator with linear terms.

’’ ’xdot’ ’ydot’
’1’ [0] [0]
’x’ [-0.1015] [-1.9990]
’y’ [2.0027] [-0.0994]
’xx’ [0] [0]
’xy’ [0] [0]
’yy’ [0] [0]
’xxx’ [0] [0]
’xxy’ [0] [0]
’xyy’ [0] [0]
’yyy’ [0] [0]
’xxxx’ [0] [0]
’xxxy’ [0] [0]
’xxyy’ [0] [0]
’xyyy’ [0] [0]
’yyyy’ [0] [0]
’xxxxx’ [0] [0]
’xxxxy’ [0] [0]
’xxxyy’ [0] [0]
’xxyyy’ [0] [0]
’xyyyy’ [0] [0]
’yyyyy’ [0] [0]

29

Table 7: Damped harmonic oscillator with cubic nonlinearity.

’’ ’xdot’ ’ydot’
’1’ [0] [0]
’x’ [0] [0]
’y’ [0] [0]
’xx’ [0] [0]
’xy’ [0] [0]
’yy’ [0] [0]
’xxx’ [-0.0996] [-1.9994]
’xxy’ [0] [0]
’xyy’ [0] [0]
’yyy’ [1.9970] [-0.0979]
’xxxx’ [0] [0]
’xxxy’ [0] [0]
’xxyy’ [0] [0]
’xyyy’ [0] [0]
’yyyy’ [0] [0]
’xxxxx’ [0] [0]
’xxxxy’ [0] [0]
’xxxyy’ [0] [0]
’xxyyy’ [0] [0]
’xyyyy’ [0] [0]
’yyyyy’ [0] [0]

Table 8: Three-dimensional linear system.

’’ ’xdot’ ’ydot’ ’zdot’
’1’ [0] [0] [0]
’x’ [-0.0996] [-1.9997] [0]
’y’ [2.0005] [-0.0994] [0]
’z’ [0] [0] [-0.3003]
’xx’ [0] [0] [0]
’xy’ [0] [0] [0]
’xz’ [0] [0] [0]
’yy’ [0] [0] [0]
’yz’ [0] [0] [0]
’zz’ [0] [0] [0]

30

Table 9: Lorenz system identified using SINDy, assuming measurements of x and ẋ, with η = 1.0.

’’ ’xdot’ ’ydot’ ’zdot’
’1’ [0] [0] [0]
’x’ [-9.9996] [27.9980] [0]
’y’ [9.9998] [-0.9997] [0]
’z’ [0] [0] [-2.6665]
’xx’ [0] [0] [0]
’xy’ [0] [0] [1.0000]
’xz’ [0] [-0.9999] [0]
’yy’ [0] [0] [0]
’yz’ [0] [0] [0]
’zz’ [0] [0] [0]
’xxx’ [0] [0] [0]
’xxy’ [0] [0] [0]
’xxz’ [0] [0] [0]
’xyy’ [0] [0] [0]
’xyz’ [0] [0] [0]
’xzz’ [0] [0] [0]
’yyy’ [0] [0] [0]
’yyz’ [0] [0] [0]
’yzz’ [0] [0] [0]
’zzz’ [0] [0] [0]
’xxxx’ [0] [0] [0]
’xxxy’ [0] [0] [0]
’xxxz’ [0] [0] [0]
’xxyy’ [0] [0] [0]
’xxyz’ [0] [0] [0]
’xxzz’ [0] [0] [0]
’xyyy’ [0] [0] [0]
’xyyz’ [0] [0] [0]
’xyzz’ [0] [0] [0]
’xzzz’ [0] [0] [0]
’yyyy’ [0] [0] [0]
’yyyz’ [0] [0] [0]
’yyzz’ [0] [0] [0]
’yzzz’ [0] [0] [0]
’zzzz’ [0] [0] [0]
’xxxxx’ [0] [0] [0]
’xxxxy’ [0] [0] [0]
’xxxxz’ [0] [0] [0]
’xxxyy’ [0] [0] [0]
’xxxyz’ [0] [0] [0]
’xxxzz’ [0] [0] [0]
’xxyyy’ [0] [0] [0]
’xxyyz’ [0] [0] [0]
’xxyzz’ [0] [0] [0]
’xxzzz’ [0] [0] [0]
’xyyyy’ [0] [0] [0]
’xyyyz’ [0] [0] [0]
’xyyzz’ [0] [0] [0]
’xyzzz’ [0] [0] [0]
’xzzzz’ [0] [0] [0]
’yyyyy’ [0] [0] [0]
’yyyyz’ [0] [0] [0]
’yyyzz’ [0] [0] [0]
’yyzzz’ [0] [0] [0]
’yzzzz’ [0] [0] [0]
’zzzzz’ [0] [0] [0]

31

Table 10: Identified dynamics of cylinder wake modes. Notice that quadratic terms are identified.

’’ ’xdot’ ’ydot’ ’zdot’
’1’ [-0.1225] [-0.0569] [-20.8461]
’x’ [-0.0092] [1.0347] [-4.6476e-04]
’y’ [-1.0224] [0.0047] [2.4057e-04]
’z’ [-9.2203e-04] [-4.4932e-04] [-0.2968]
’xx’ [0] [0] [0.0011]
’xy’ [0] [0] [0]
’xz’ [2.1261e-04] [0.0022] [0]
’yy’ [0] [0] [8.6432e-04]
’yz’ [-0.0019] [-0.0018] [0]
’zz’ [0] [0] [-0.0010]
’xxx’ [0] [0] [0]
’xxy’ [0] [0] [0]
’xxz’ [0] [0] [0]
’xyy’ [0] [0] [0]
’xyz’ [0] [0] [0]
’xzz’ [0] [0] [0]
’yyy’ [0] [0] [0]
’yyz’ [0] [0] [0]
’yzz’ [0] [0] [0]
’zzz’ [0] [0] [0]
’xxxx’ [0] [0] [0]
’xxxy’ [0] [0] [0]
’xxxz’ [0] [0] [0]
’xxyy’ [0] [0] [0]
’xxyz’ [0] [0] [0]
’xxzz’ [0] [0] [0]
’xyyy’ [0] [0] [0]
’xyyz’ [0] [0] [0]
’xyzz’ [0] [0] [0]
’xzzz’ [0] [0] [0]
’yyyy’ [0] [0] [0]
’yyyz’ [0] [0] [0]
’yyzz’ [0] [0] [0]
’yzzz’ [0] [0] [0]
’zzzz’ [0] [0] [0]
’xxxxx’ [0] [0] [0]
’xxxxy’ [0] [0] [0]
’xxxxz’ [0] [0] [0]
’xxxyy’ [0] [0] [0]
’xxxyz’ [0] [0] [0]
’xxxzz’ [0] [0] [0]
’xxyyy’ [0] [0] [0]
’xxyyz’ [0] [0] [0]
’xxyzz’ [0] [0] [0]
’xxzzz’ [0] [0] [0]
’xyyyy’ [0] [0] [0]
’xyyyz’ [0] [0] [0]
’xyyzz’ [0] [0] [0]
’xyzzz’ [0] [0] [0]
’xzzzz’ [0] [0] [0]
’yyyyy’ [0] [0] [0]
’yyyyz’ [0] [0] [0]
’yyyzz’ [0] [0] [0]
’yyzzz’ [0] [0] [0]
’yzzzz’ [0] [0] [0]
’zzzzz’ [0] [0] [0]

32

Table 11: Identified dynamics of cylinder wake modes with smaller λ, resulting in cubic nonlinearities.

’’ ’xdot’ ’ydot’ ’zdot’
’1’ [0] [0] [0]
’x’ [0] [0] [0]
’y’ [-1.0420] [0.0062] [2.5451e-04]
’z’ [1.9812e-05] [-3.5585e-05] [0.4750]
’xx’ [0] [0] [6.0153e-05]
’xy’ [0] [0] [-1.9444e-04]
’xz’ [0.0014] [-0.0074] [0]
’yy’ [0] [0] [-5.7268e-05]
’yz’ [-0.0037] [-0.0037] [0]
’zz’ [0] [0] [0.0053]
’xxx’ [0] [4.5311e-05] [0]
’xxy’ [0] [0] [0]
’xxz’ [0] [0] [-3.0965e-05]
’xyy’ [0] [4.9559e-05] [0]
’xyz’ [0] [0] [-2.3562e-05]
’xzz’ [1.0918e-05] [-2.1442e-05] [0]
’yyy’ [0] [0] [0]
’yyz’ [0] [0] [-2.4035e-05]
’yzz’ [-1.5787e-05] [-1.6271e-05] [0]
’zzz’ [0] [0] [1.4677e-05]
’xxxx’ [0] [0] [0]
’xxxy’ [0] [0] [0]
’xxxz’ [0] [0] [0]
’xxyy’ [0] [0] [0]
’xxyz’ [0] [0] [0]
’xxzz’ [0] [0] [0]
’xyyy’ [0] [0] [0]
’xyyz’ [0] [0] [0]
’xyzz’ [0] [0] [0]
’xzzz’ [0] [0] [0]
’yyyy’ [0] [0] [0]
’yyyz’ [0] [0] [0]
’yyzz’ [0] [0] [0]
’yzzz’ [0] [0] [0]
’zzzz’ [0] [0] [0]
’xxxxx’ [0] [0] [0]
’xxxxy’ [0] [0] [0]
’xxxxz’ [0] [0] [0]
’xxxyy’ [0] [0] [0]
’xxxyz’ [0] [0] [0]
’xxxzz’ [0] [0] [0]
’xxyyy’ [0] [0] [0]
’xxyyz’ [0] [0] [0]
’xxyzz’ [0] [0] [0]
’xxzzz’ [0] [0] [0]
’xyyyy’ [0] [0] [0]
’xyyyz’ [0] [0] [0]
’xyyzz’ [0] [0] [0]
’xyzzz’ [0] [0] [0]
’xzzzz’ [0] [0] [0]
’yyyyy’ [0] [0] [0]
’yyyyz’ [0] [0] [0]
’yyyzz’ [0] [0] [0]
’yyzzz’ [0] [0] [0]
’yzzzz’ [0] [0] [0]
’zzzzz’ [0] [0] [0]

33

Table 12: Logistic map identified using SINDy.

’’ ’x_{k+1}’ ’r_{k+1}’
’1’ [0] [0]
’x’ [0] [0]
’r’ [0] [1.0000]
’xx’ [0] [0]
’xr’ [0.9993] [0]
’rr’ [0] [0]
’xxx’ [0] [0]
’xxr’ [-0.9989] [0]
’xrr’ [0] [0]
’rrr’ [0] [0]
’xxxx’ [0] [0]
’xxxr’ [0] [0]
’xxrr’ [0] [0]
’xrrr’ [0] [0]
’rrrr’ [0] [0]
’xxxxx’ [0] [0]
’xxxxr’ [0] [0]
’xxxrr’ [0] [0]
’xxrrr’ [0] [0]
’xrrrr’ [0] [0]
’rrrrr’ [0] [0]

34

Table 13: Hopf normal form identified with SINDy. Here u represents the bifurcation parameter µ.

’’ ’xdot’ ’ydot’ ’udot’
’1’ [0] [0] [0]
’x’ [0] [0.9914] [0]
’y’ [-0.9920] [0] [0]
’u’ [0] [0] [0]
’xx’ [0] [0] [0]
’xy’ [0] [0] [0]
’xu’ [0.9269] [0] [0]
’yy’ [0] [0] [0]
’yu’ [0] [0.9294] [0]
’uu’ [0] [0] [0]
’xxx’ [-0.9208] [0] [0]
’xxy’ [0] [-0.9244] [0]
’xxu’ [0] [0] [0]
’xyy’ [-0.9211] [0] [0]
’xyu’ [0] [0] [0]
’xuu’ [0] [0] [0]
’yyy’ [0] [-0.9252] [0]
’yyu’ [0] [0] [0]
’yuu’ [0] [0] [0]
’uuu’ [0] [0] [0]
’xxxx’ [0] [0] [0]
’xxxy’ [0] [0] [0]
’xxxu’ [0] [0] [0]
’xxyy’ [0] [0] [0]
’xxyu’ [0] [0] [0]
’xxuu’ [0] [0] [0]
’xyyy’ [0] [0] [0]
’xyyu’ [0] [0] [0]
’xyuu’ [0] [0] [0]
’xuuu’ [0] [0] [0]
’yyyy’ [0] [0] [0]
’yyyu’ [0] [0] [0]
’yyuu’ [0] [0] [0]
’yuuu’ [0] [0] [0]
’uuuu’ [0] [0] [0]
’xxxxx’ [0] [0] [0]
’xxxxy’ [0] [0] [0]
’xxxxu’ [0] [0] [0]
’xxxyy’ [0] [0] [0]
’xxxyu’ [0] [0] [0]
’xxxuu’ [0] [0] [0]
’xxyyy’ [0] [0] [0]
’xxyyu’ [0] [0] [0]
’xxyuu’ [0] [0] [0]
’xxuuu’ [0] [0] [0]
’xyyyy’ [0] [0] [0]
’xyyyu’ [0] [0] [0]
’xyyuu’ [0] [0] [0]
’xyuuu’ [0] [0] [0]
’xuuuu’ [0] [0] [0]
’yyyyy’ [0] [0] [0]
’yyyyu’ [0] [0] [0]
’yyyuu’ [0] [0] [0]
’yyuuu’ [0] [0] [0]
’yuuuu’ [0] [0] [0]
’uuuuu’ [0] [0] [0]

35

References

[1] Ljung L (1999) System Identification: Theory for the User (Prentice Hall).

[2] Holmes P, Guckenheimer J (1983) Nonlinear oscillations, dynamical systems, and bifurcations of
vector fields, Applied Mathematical Sciences (Springer-Verlag, Berlin) Vol. 42.

[3] Schmidt M, Lipson H (2009) Distilling free-form natural laws from experimental data. Science
324:81–85.

[4] Roberts AJ (2014) Model emergent dynamics in complex systems (SIAM).

[5] Crutchfield JP, McNamara BS (1987) Equations of motion from a data series. Complex systems
1:417–452.

[6] Schmidt MD, et al. (2011) Automated refinement and inference of analytical models for
metabolic networks. Physical biology 8:055011.

[7] Daniels BC, Nemenman I (2015) Automated adaptive inference of phenomenological dynam-
ical models. Nature communications 6.

[8] Daniels BC, Nemenman I (2015) Efficient inference of parsimonious phenomenological mod-
els of cellular dynamics using s-systems and alternating regression. PloS one 10:e0119821.

[9] Kevrekidis IG, et al. (2003) Equation-free, coarse-grained multiscale computation: Enabling
microscopic simulators to perform system-level analysis. Communications in Mathematical
Science 1:715–762.

[10] Sugihara G, et al. (2012) Detectingcausality incomplexecosystems. Science338:496–500.

[11] Ye H, et al. (2015) Equation-free mechanistic ecosystem forecasting using empirical dynamic
modeling. PNAS 112:E1569–E1576.

[12] Hastie T, et al. (2009) The elements of statistical learning (Springer) Vol. 2.

[13] James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning
(Springer).

[14] Tibshirani R (1996) Regression shrinkage and selection via the lasso. J. of the Royal Statistical
Society B pp 267–288.

[15] Donoho DL (2006) Compressed sensing. IEEETrans. InformationTheory 52:1289–1306.

[16] Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruc-
tion from highly incomplete frequency information. IEEE Transactions on Information Theory
52:489–509.

[17] Candès EJ, Romberg J, Tao T (2006) Stable signal recovery from incomplete and inaccurate
measurements. Communications in Pure and Applied Mathematics 59:1207–1223.

[18] Candès EJ (2006) Compressive sensing. Proc. International Congress of Mathematics.

[19] Baraniuk RG (2007) Compressive sensing. IEEE Signal Processing Magazine 24:118–120.

36

[20] Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal
matching pursuit. IEEE Transactions on Information Theory 53:4655–4666.

[21] Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson D (2009) Spectral analysis of nonlin-
ear flows. J. Fluid Mech. 645:115–127.

[22] Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. Journal
of Fluid Mechanics 656:5–28.

[23] Mezic I (2013) Analysis of fluid flows via spectral properties of the koopman operator. Annual
Review of Fluid Mechanics 45:357–378.

[24] Wang WX, Yang R, Lai YC, Kovanis V, Grebogi C (2011) Predicting catastrophes in nonlinear
dynamical systems by compressive sensing. PRL 106:154101.

[25] Schaeffer H, Caflisch R, Hauck CD, Osher S (2013) Sparse dynamics for partial differential
equations. Proceedings of the National Academy of Sciences USA 110:6634–6639.

[26] Ozoliņš V, Lai R, Caflisch R, Osher S (2013) Compressed modes for variational problems in
mathematics and physics. Proceedings of the National Academy of Sciences 110:18368–18373.

[27] Mackey A, Schaeffer H, Osher S (2014) On the compressive spectral method. Multiscale
Modeling & Simulation 12:1800–1827.

[28] Brunton SL, Tu JH, Bright I, Kutz JN (2014) Compressive sensing and low-rank libraries for
classification of bifurcation regimes in nonlinear dynamical systems. SIAM Journal on Applied
Dynamical Systems 13:1716–1732.

[29] Proctor JL, Brunton SL, Brunton BW, Kutz JN (2014) Exploiting sparsity and equation-free
architectures in complex systems (invited review). The European Physical Journal Special Topics
223:2665–2684.

[30] Bai Z, et al. (2014) Low-dimensional approach for reconstruction of airfoil data via compres-
sive sensing. AIAA Journal pp 1–14.

[31] Koza JR (1992) Genetic programming: on the programming of computers by means of natural selec-
tion (MIT press) Vol. 1.

[32] Chartrand R (2011) Numerical differentiation of noisy, nonsmooth data. ISRN Applied Math-
ematics 2011.

[33] Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms.
Physica D: Nonlinear Phenomena 60:259–268.

[34] Gavish M, Donoho DL (2014) The optimal hard threshold for singular values is 4/
√

3. ArXiv
e-prints.

[35] Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis
of turbulent flows. Annual Review of Fluid Mechanics 23:539–575.

[36] Holmes PJ, Lumley JL, Berkooz G, Rowley CW (2012) Turbulence, coherent structures, dynamical
systems and symmetry, Cambridge Monographs in Mechanics (Cambridge University Press,
Cambridge, England), 2nd edition.

37

[37] Lorenz EN (1963) Deterministic nonperiodic flow. J. Atmos. Sciences 20:130–141.

[38] Taira K, Colonius T (2007) The immersed boundary method: a projection approach. Journal
of Computational Physics 225:2118–2137.

[39] Colonius T, Taira K (2008) A fast immersed boundary method using a nullspace approach
and multi-domain far-field boundary conditions. Computer Methods in Applied Mechanics and
Engineering 197:2131–2146.

[40] Ruelle D, Takens F (1971) On the nature of turbulence. Comm. Math. Phys. 20:167–192.

[41] Jackson CP (1987) A finite-element study of the onset of vortex shedding in flow past vari-
ously shaped bodies. Journal of Fluid Mechanics 182:23–45.

[42] Zebib Z (1987) Stability of viscous flow past a circular cylinder. Journal of Engineering Mathe-
matics 21:155–165.

[43] Noack BR, Afanasiev K, Morzynski M, Tadmor G, Thiele F (2003) A hierarchy of low-
dimensional models for the transient and post-transient cylinder wake. Journal of Fluid Me-
chanics 497:335–363.

[44] Marsden JE, McCracken M (1976) The Hopf bifurcation and its applications (Springer-Verlag)
Vol. 19.

[45] Takens F (1981) Detecting strange attractors in turbulence. Lecture Notes in Mathematics
898:366–381.

38

