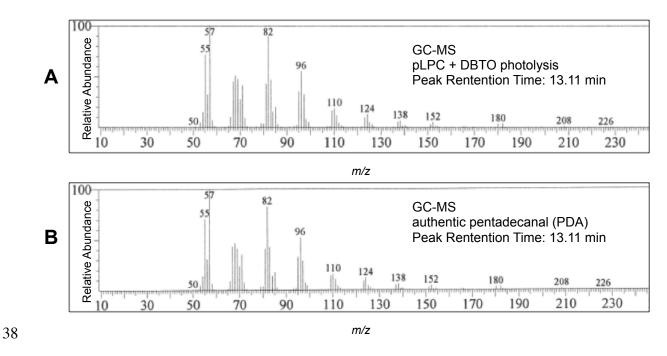
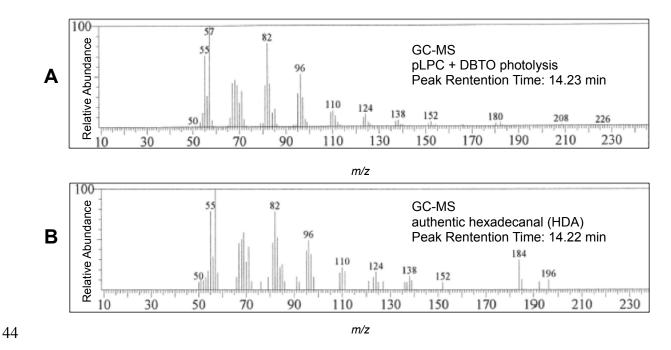

1	SUPPORTING INFORMATION
2	for
3	Oxidation of Plasmalogen, Lipoprotein, and RAW 264.7 Cells by
4	Photoactivatable Atomic Oxygen Precursors
5	Max T. Bourdillon ¹ , Benjamin A. Ford ² , Ashley T. Knulty ³ , Colleen N. Gray ¹ , Miao
6	Zhang ¹ , David A. Ford ^{*2} , Ryan D. McCulla ^{*1} ,
7	¹ . Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA
8	² . Department of Biochemistry and Molecular Biology, and Center for Cardiovascular
9	Research, Saint Louis University, School of Medicine, St. Louis, MO 6313, USA
10	³ . Department of Chemistry, College of the Ozarks, Point Lookout, MO 65726, USA
11	*Corresponding author e-mail: <u>rmccull2@slu.edu</u> (R. McCulla), <u>fordda@slu.edu</u>
12	(D. Ford)
13	

14	TABLE OF CONTENTS
15	Description of preparation of dibenzothiophene S-oxide.
16	Figure S1.
17	Figure S2.
18	Figure S3.
19	


20	Preparation of Dibenzothiophene- S- Oxide. m-Chloroperoxybenzoic acid (28.8 mmol)
21	dichloromethane (20 ml) solution was added slowly to a solution of Dibenzothiophenen (24
22	mmol) at -78 °C in dichloromethane (20 ml) during 30 min. The mixture was stirred at this
23	temperature for 2 hours then the reaction was quenched with a saturated aqueous solution of
24	NaHCO ₃ . The aqueous portion was extracted with dichloromethane several times. The
25	combined organic layers were dried over MgSO ₄ , and then the solvent was removed under
26	reduced pressure. The residue was purified by column chromatography (Hexane/ethyl acetate)
27	to afford desired compound in a 63% yield, which was confirmed by comparison to a
28	previously reported NMR. ¹ ¹ H NMR (DMSO, 400Hz) δ 7.59 (2H, t, <i>J</i> =8Hz); δ 7.72 (2H, t,
29	<i>J</i> =8Hz); δ 8.08 (2H, d, <i>J</i> =8Hz); δ 8.14 (2H, d, <i>J</i> =8Hz).
30	

33 Figure S1. Comparison GC-MS results of unknown product from pLPC oxidation by UV

35 GC-MS data for an authentic sample of tetradecanal.



39 Figure S2. Comparison GC-MS results of unknown product from pLPC oxidation by UV

40 irradiation of DBTO to authentic sample of pentadecanal. A: GC-MS of unknown aldehyde.

41 B: GC-MS data for an authentic sample of pentadecanal.

42

45 **Figure S3.** Comparison GC-MS results of unknown product from pLPC oxidation by UV

46 irradiation of DBTO to authentic sample of hexadecanal. A: GC-MS of unknown aldehyde. B:

47 GC-MS data for an authentic sample of hexadecanal.

48

49 **REFERENCES**

- 50 [1] Nelsen, S. F., Y. Luo, M. N. Weaver, J. V. Lockard, J. I. Zink, (2006) Optical spectra
- 51 of protected diamine 10-bond-bridged intervalence radical cations related to N,N,N'N'-
- 52 tetraalkylbenzidine. J. Org. Chem. **71**, 4286-4295.