Supplementary Materials for

TRPV1 on astrocytes rescues nigral dopamine neurons in the Parkinson's disease via CNTF

Jin H. Nam^{1*}, Eun S. Park^{1,16*}, So-Yoon Won^{2*}, Yu A. Lee^{1*}, Kyoung I. Kim^{1*}, Jae Y. Jeong^{1*}, Jeong Y. Baek^{1*}, Eun J. Cho¹, Minyoung Jin¹, Young C. Chung^{1,17}, Byoung D. Lee¹, Sung Hyun Kim¹, Eung-Gook Kim², Kyunghee Byun³, Bonghee Lee³, Dong Ho Woo^{4,18}, C. Justin Lee⁴, Sang R. Kim⁵, Eugene Bok^{1,6}, Yoon-Seong Kim⁶, Tae-Beom Ahn⁷, Hyuk Wan Ko¹, Saurav Brahmachari^{8,9,13}, Olga Pletinkova¹⁰, Juan C. Troconso^{9,10}, Valina L. Dawson^{8,9,11,12,14}, Ted M. Dawson^{8,9,11,13,14,15}, and Byung K. Jin^{1**}

^{*}These authors contributed equally to this work.

**Correspondence: <u>bkjin@khu.ac.kr</u>

This PDF file includes:

Supplementary Figure and legends

Supplementary Figs 1-4

Supplementary Tables 1-3

Supplementary Figure and legends

Supplementary Figure 1. Degeneration of Dopamine neurons and expression of astrocytic TRPV1 in MPP⁺-lesioned rat SNpc *in vivo*.

(A-L) Photomicrographs of TH⁺ cells in the substantia nigra (SN) (A-D), TH⁺ fibers in the striatum (STR) (E-H) or colocalized cells of GFAP (green) and TRPV1 (red) (I-L) in the rat substantia nigra pars compacta (SNpc) at 1 (B, F,J), 2 (C, G, K) and 10 (D, H, L) weeks after a unilateral MFB injection of MPP⁺ or at 2 weeks after injection of PBS as a control (A, E, I). (M) Number of TH⁺ and Nissl⁺ cells in the SNpc, **P* < 0.01, significantly different from control. (N) Optical density of TH⁺ fibers in the STR **P* < 0.01, significantly different from control. Note no differences of remaining TH⁺ cells in the SNpc and TH⁺ fibers in the STR between 2 and 10 weeks post MPP⁺, indicating that degeneration of nigrostriatal dopamine neurons was complete at 2 weeks post MPP⁺ and sustained up to 10 weeks post MPP⁺. (O) Quantification of TRPV1 expression colocalized with GFAP⁺ astrocytes in the SNpc of MPP⁺-lesioned rat brain at

indicated time point *P < 0.05, **P < 0.01, significantly different from control. Scale bars: 400 μ m (A-D, SN), 2 mm (E-H, STR), 20 μ m (I-L). Mean \pm s.e.m..; M-O, n = 5 to 10 in each group; ANOVA and Student-Newman-Keuls analysis.

Supplementary Figure 2. Efficiency and specificity of TRPV1 knockdown.

Rats were given a unilateral medial forebrain bundle (MFB) injection of MPP⁺ followed by injection of shTRPV1 or shCtrl (control) into the substantia nigra (SN) (See **Fig. 1A**). At 1 week post MPP⁺, brain tissues were prepared for Western blot (**A** and **B**;*P < 0.001, significantly different from MPP⁺) or immunohistochemical analysis (**C**-**H**). shTRPV1 reduced TRPV1 protein levels (**A** and **B**) or TRPV1 immunoreactivity (green, **C**) within GFAP⁺ astrocytes (blue, **C**) in the substantia nigra pars compacta (SNpc), compared to shCtrl (**A**-**C**). The viruses transduced the fluorescent mCherry protein (red, **A-E**), indicating infected cells. mCherry⁺ cells were mainly colocalized within GFAP⁺ astrocytes (**C** and **F**) whereas there was minimal mCherry⁺ cells colocalized in TH⁺ neurons (**D** and **F**) or OX-42⁺ microglia (**E** and **F**) in the SNpc of MPP⁺-lesioned rats, ;*P < 0.001, significantly different from mCherry cells colocalized in TH⁺ or OX-42⁺ cells. Photomicrographs of TH⁺ cells in the SNpc (**G**) and number of TH⁺ or Nissl⁺ cells in the SNpc (**H**) *P < 0.01, significantly different from control, "P < 0.05, "#P < 0.01, significantly different from MPP⁺, $^{\&}P < 0.05$, $^{\&\&}P < 0.01$, significantly different from MPP⁺ + shTRPV1. Note that TRPV1 knockdown enhances MPP⁺ neurotoxicity in the SNpc *in vivo*. Scale bars; C-E 20 µm. g, 400 µm. Mean ± s.e.m..; B, n = 4; F and H, n = 5. ANOVA and Student-Newman-Keuls analysis.

Supplementary Figure 3. Expression of TRPV1, CNTFRα and CNTF in α-synucleinlesioned rat brain.

(A-L) Rats were given a unilateral injection of AAV2- α -synuclein (α -syn) or AAV2-eGFP (eGFP, control) into the substantia nigra (SN) and transcardially perfused for immunohistochemical analysis at 7 weeks after transduction (See Fig. 6A). Photomicrographs of eGFP⁺ or α -syn⁺ cells in the SN and fibers in the striatum (STR) (A). Fluorescence images showing colocalization of eGFP⁺ (green) or α -syn⁺ (green) cells in TH⁺ (dopamine neurons; red) cells, but not in GFAP⁺ (astrocytes; red) or Iba-1⁺ (microglia; red) cells, respectively (**B**). (**C**) Number of TH^+ cells in the SNpc and optical density of TH⁺ fibers in the STR, *P < 0.001, ${}^{\#}P < 0.01$, significantly different from control, **P < 0.05, ##P < 0.05 significantly different from 7 weeks post α -syn. Fluorescence images of TRPV1 (red) and GFAP (green), and both images are merged in the substantia nigra pars compacta (SNpc) (**D**), and quantification of TRPV1 and GFAP expression (E; *P < 0.01, significantly different from eGFP), and TRPV1 expression colocalized in GFAP⁺ astrocytes (**F**; *P < 0.05, significantly different from eGFP) in the SNpc. Fluorescence images of $CNTFR\alpha$ (green) and TH (red), and both images are merged in the SNpc (G), and quantification of CNTFR α or TH expression (**H**; **P* < 0.001, significantly different from eGFP) and CNTFR α expression colocalized in TH⁺ dopamine neurons (I; *P < 0.01, significantly different from eGFP) in the SNpc. Sections adjacent to those used in Fig. 3 were immunostained. Fluorescence images of CNTF (red) and GFAP (green), and both images are merged in the SNpc at 8 weeks post α -syn (**J**), and quantification of CNTF expression (**K**; *P < 0.05, significantly different from α -svn + CAP) or CNTF expression colocalized with GFAP⁺ astrocytes (L; *P < 0.05, significantly different from eGFP, ${}^{\#}P < 0.01$, significantly different from α -syn) in the SNpc at 8 weeks post α -syn. Fluorescence images of GFAP (eGFP, **D** and **J**) and CNTFR α (eGFP, **G**) were pseudo-colored from blue to green. Scale bars; 20 μ m. Mean \pm s.e.m.; C, n = 4 to 7 in each group; E, F, n = 4 to 14 in each group; H, I, n = 6 in each group; K, L, n = 4 to 6 in each group. ANOVA and Student-Newman-Keuls analysis.

Supplementary Figure 4. Model of TRPV1-mediated CNTF production in astrocytes and neuroprotection of nigral dopamine neurons of Parkinson's disease.

There is a dramatic expression of TRPV1 and CNTF in reactive astrocytes in the substantia nigra pars compacta of human Parkinson's disease and Parkinson's disease-related neuropathology (MPP⁺- or α -synuclein-lesioned rats), compared to the respective controls. Note that astrocytic TRPV1 activation by CAP significantly increases CNTF production and rescues dopamine neurons through over-expressed CNTF receptor alpha on DA neurons in the SNpc of Parkinson's disease *in vivo*. TRPV1, Transient Receptor Potential Vanilloid 1. shTRPV1, TRPV1 shRNA lentivirus. DA, Dopamine. CNTF, Ciliary Neurotrophic Factor. CNTFR α , CNTF receptor alpha. CNTFR α NAb, CNTF receptor alpha neutralizing antibody. CAP, capsaicin.

Supplementary Tables 1-3

Sample No	Final Diagnosis	Age	Sex	Race	PMD	Tissue
1	Control	73	М	W	9	
2		62	м	W	14	CN
3		68	м	W	14	210
4		66	м	W	10	
1	PD W/D	83	М	W	16.5	
2	PD W/D	75	М	W	6	
3	PD	76	М	W	7.5	SN
4	PD W/D	74	м	W	19	
5	PD W/D	75	F	W	24	

Supplementary Table 1. Human postmortem tissues used for Western blots in Fig. 7 A-D.

W/D, with dementia; M, Male; F, Female; W, White; PMD, Postmortem delays; SN, Substantia nigra

Sample No.	Final Diagnosis	Age	Sex	Race	PMD	Tissue	
1	Control	73	М	W	9		
2		62	м	W	14	Cortex	
3		80	м	В	21		
4		80	F	W	6		
5		79	М	W	16		
1	PD W/D	75	M W		6		
2	PD	75	F	W	24	Cortex	
3	PD W/D	83	м	W	7		
4	PD W/D	85	М	W	11		

Supplementary Table 2. Human postmortem tissues used for Western blots in Fig 7E and F.

W/D, with dementia; M, Male; F, Female; W, White; PMD, Postmortem delays.

Sample No	Final Diagnosis	Age	Sex	PMD	Staining	Tissue
10-303	- Control	43.2	М	44		
08-026		67.3	М	24	GFAP+TRPV1	
07-787		66.5	М	19		
04-112		73.5	М	22	GFAP+CNTF	SN
V11-038		39.2	М	51		
07-239		78.8	М	19		
08-260		67.3	F	24	CNTFRa	
V11-038		39.2	М	51		
04-424		75.1	F	22.5		
08-319	PD -	70	М	32.5	GFAP+TRPV1	
07-566		78.4	М	32.5		
09-260		66.8	F	20		
V11-042		72.1	М	25	GFAP+CNTF	SN
03-819		63.6	F	56		
09-260		66.8	F	20		
09-260		66.8	F	20	CNTFRα	
V11-730		80	М	65		
07-566		78.4	М	32.5		

Supplementary Table 3. Human postmortem tissues used for immunostaining in Fig. 7G and H (GFAP+TRPV1), I and J (GFAP+CNTF) and K-O (CNTFR α).

M, Male; F, Female;

PMD, Postmortem delays; SN, Substantia nigra